1
|
Xiao T, Yang L, He X, Wang L, Zhang D, Cui T, Zhang K, Li H, Li Z, Dong J. Assessing the ecotoxicological risk of nicosulfuron on maize using multi-source phenotype data and hyperspectral imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118176. [PMID: 40215693 DOI: 10.1016/j.ecoenv.2025.118176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/06/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Herbicide-induced toxicity in maize crops poses significant challenges for agricultural management. Traditional assessment methods for herbicide toxicity in crops often show inconsistent accuracy. This study explores rapid and non-invasive techniques for evaluating herbicide toxicity, focusing on the physiological, biochemical, and growth responses of maize varieties subjected to two concentrations of nicosulfuron. We developed a comprehensive toxicity evaluation model to classify samples into three toxicity levels, showing a strong correlation (r = 0.95) with traditional tassel stage toxicity assessments. Additionally, we used hyperspectral imaging coupled with deep learning techniques to predict early toxicity levels in maize following herbicide exposure. After 4 days of herbicide treatment, our ToxicNet model using spectral data achieved an impressive 89.66 % accuracy in predicting nicosulfuron toxicity levels, facilitating early detection. Furthermore, by integrating leaf spectral data, Soil-Plant Analysis Development (SPAD) values and water content, the ToxicNet-MS model achieved a remarkable prediction accuracy of 91.38 %. Notably, this model demonstrated robust generalization across different years and planting seasons, with accuracies of 83.33 % and 89.89 %, respectively. These results significantly outperformed traditional machine learning methods (Support Vector Machine, Random Forest), classical deep learning models (Multilayer Perceptron, AlexNet), and the spectral-based ToxicNet model. This advancement offers a promising, early, and non-invasive solution for assessing herbicide-induced toxicity in maize crops, ultimately benefiting both sustainable agricultural practices and effective crop management.
Collapse
Affiliation(s)
- Tianpu Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Li Yang
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China.
| | - Xiantao He
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Dongxing Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Tao Cui
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Kailiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Hongsheng Li
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Zhimin Li
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| | - Jiaqi Dong
- College of Engineering, China Agricultural University, Beijing 100083, China; The Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China
| |
Collapse
|
2
|
Wang J, Fan Y, Liang L, Dong Z, Li M, Wu Z, Lin X, Wang X, Zhen Z. GO promotes detoxification of nicosulfuron in sweet corn by enhancing photosynthesis, chlorophyll fluorescence parameters, and antioxidant enzyme activity. Sci Rep 2024; 14:21213. [PMID: 39261661 PMCID: PMC11390891 DOI: 10.1038/s41598-024-72203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Although graphene oxide (GO) has extensive recognized application prospects in slow-release fertilizer, plant pest control, and plant growth regulation, the incorporation of GO into nano herbicides is still in its early stages of development. This study selected a pair of sweet corn sister lines, nicosulfuron (NIF)-resistant HK301 and NIF-sensitive HK320, and sprayed them both with 80 mg kg-1 of GO-NIF, with clean water as a control, to study the effect of GO-NIF on sweet corn seedling growth, photosynthesis, chlorophyll fluorescence, and antioxidant system enzyme activity. Compared to spraying water and GO alone, spraying GO-NIF was able to effectively reduce the toxic effect of NIF on sweet corn seedlings. Compared with NIF treatment, 10 days after of spraying GO-NIF, the net photosynthetic rate (A), stomatal conductance (Gs), transpiration rate (E), photosystem II photochemical maximum quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and photosynthetic electron transfer rate (ETR) of GO-NIF treatment were significantly increased by 328.31%, 132.44%, 574.39%, 73.53%, 152.41%, and 140.72%, respectively, compared to HK320. Compared to the imbalance of redox reactions continuously induced by NIF in HK320, GO-NIF effectively alleviated the observed oxidative pressure. Furthermore, compared to NIF treatment alone, GO-NIF treatment effectively increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both lines, indicating GO induced resistance to the damage caused by NIF to sweet corn seedlings. This study will provides an empirical basis for understanding the detoxification promoting effect of GO in NIF and analyzing the mechanism of GO induced allogeneic detoxification in cells.
Collapse
Affiliation(s)
- Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Yanyan Fan
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Lina Liang
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China
| | - Zechen Dong
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China
| | - Mengyang Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Xiuping Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
| | - Zhihua Zhen
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
3
|
Yue W, Wang X, Zhang J, Bao J, Yao M. Degradation Characteristics of Nicosulfuron in Water and Soil by MnO 2 Nano-Immobilized Laccase. TOXICS 2024; 12:619. [PMID: 39195721 PMCID: PMC11360116 DOI: 10.3390/toxics12080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
As a typical sulfonylurea herbicide, nicosulfuron is mainly used to control grass weeds and some broadleaf weeds in corn fields. However, as the amount of use continues to increase, it accumulates in the environment and eventually becomes harmful to the ecosystem. In the present study, a new metallic nanomaterial, δ-MnO2, was prepared, which not only has a similar catalytic mechanism as laccase but also has a significant effect on pesticide degradation. Therefore, the bicatalytic property of MnO2 can be utilized to improve the remediation of nicosulfuron contamination. Firstly, MnO2 nanomaterials were prepared by controlling the hydrothermal reaction conditions, and immobilized laccase was prepared by the adsorption method. Next, we investigate the effects of different influencing factors on the effect of immobilized laccase, MnO2, and free laccase on the degradation of nicosulfuron in water and soil. In addition, we also analyze the metabolic pathway of nicosulfuron degradation in immobilized laccase and the bicatalytic mechanism of MnO2. The results demonstrated that the degradation rate of nicosulfuron in water by immobilized laccase was 88.7%, and the optimal conditions were 50 mg/L, 25 h, 50 °C, and pH 5. For nicosulfuron in soil, the optimal conditions for the degradation by immobilized laccase were found to be 151.1 mg/kg, 46 °C, and pH 5.9; under these conditions, a degradation rate of 90.1% was attained. The findings of this study provide a theoretical reference for the immobilized laccase treatment of sulfonylurea herbicide contamination in water and soil.
Collapse
Affiliation(s)
- Wanlei Yue
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (W.Y.); (J.Z.); (J.B.)
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (W.Y.); (J.Z.); (J.B.)
| | - Jiale Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (W.Y.); (J.Z.); (J.B.)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (W.Y.); (J.Z.); (J.B.)
| | - Mengqin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
4
|
Zhang Y, Zhang Q, Liu Q, Zhao Y, Xu W, Hong C, Xu C, Qi X, Qi X, Liu B. Fine mapping and functional validation of the maize nicosulfuron-resistance gene CYP81A9. FRONTIERS IN PLANT SCIENCE 2024; 15:1443413. [PMID: 39157517 PMCID: PMC11328016 DOI: 10.3389/fpls.2024.1443413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Nicosulfuron, a widely utilized herbicide, is detrimental to some maize varieties due to their sensitivity. Developing tolerant varieties with resistance genes is an economical and effective way to alleviate phytotoxicity. In this study, map-based cloning revealed that the maize resistance gene to nicosulfuron is Zm00001eb214410 (CYP81A9), which encodes a cytochrome P450 monooxygenase. qRT- PCR results showed that CYP81A9 expression in the susceptible line JS188 was significantly reduced compared to the resistant line B73 during 0-192 hours following 80 mg/L nicosulfuron spraying. Meanwhile, a CYP81A9 overexpression line exhibited normal growth under a 20-fold nicosulfuron concentration (1600 mg/L), while the transgenic acceptor background material Zong31 did not survive. Correspondingly, silencing CYP81A9 through CRISPR/Cas9 mutagenesis and premature transcription termination mutant EMS4-06e182 resulted in the loss of nicosulfuron resistance in maize. Acetolactate Synthase (ALS), the target enzyme of nicosulfuron, exhibited significantly reduced activity in the roots, stems, and leaves of susceptible maize post-nicosulfuron spraying. The CYP81A9 expression in the susceptible material was positively correlated with ALS activity in vivo. Therefore, this study identified CYP81A9 as the key gene regulating nicosulfuron resistance in maize and discovered three distinct haplotypes of CYP81A9, thereby laying a solid foundation for further exploration of the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Yongzhong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingrong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhi Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yan Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Wei Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Cuiping Hong
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Changli Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xiushan Qi
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xinli Qi
- Department of Maize Breeding, Taian Denghai WuYue Taishan Seed Industry CO., LTD, Taian, Shandong, China
| | - Baoshen Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
5
|
Zhao X, Xie Q, Song B, Riaz M, Lal MK, Wang L, Lin X, Huo J. Research on phytotoxicity assessment and photosynthetic characteristics of nicosulfuron residues on Beta vulgaris L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120159. [PMID: 38310797 DOI: 10.1016/j.jenvman.2024.120159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 μg kg-1, it inhibited the growth of sugar beet. When it reached 36 μg kg-1 (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 μg kg-1 significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross-section while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China
| | - Qing Xie
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Longfeng Wang
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China
| | - Xiaochen Lin
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China
| | - Jialu Huo
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
6
|
Huang J, Liu Y, Xiao R, Yu T, Guo T, Wang H, Lv X, Li X, Zhu M, Li F. Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings. PHOTOSYNTHETICA 2024; 62:58-70. [PMID: 39650638 PMCID: PMC11609774 DOI: 10.32615/ps.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 12/11/2024]
Abstract
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Collapse
Affiliation(s)
- J.X. Huang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - Y.B. Liu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - R. Xiao
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Yu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Guo
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - H.W. Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.L. Lv
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.N. Li
- Liaoyuan Farmer Science and Technology Education Center, 136200 Liaoyuan, Jilin Province, China
| | - M. Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - F.H. Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Guo H, Cui Y, Li Z, Nie C, Xu Y, Hu T. Photosynthesis, Water Status and K +/Na + Homeostasis of Buchoe dactyloides Responding to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2459. [PMID: 37447020 DOI: 10.3390/plants12132459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Soil salinization is one of the most serious abiotic stresses restricting plant growth. Buffalograss is a C4 perennial turfgrass and forage with an excellent resistance to harsh environments. To clarify the adaptative mechanisms of buffalograss in response to salinity, we investigated the effects of NaCl treatments on photosynthesis, water status and K+/Na+ homeostasis of this species, then analyzed the expression of key genes involved in these processes using the qRT-PCR method. The results showed that NaCl treatments up to 200 mM had no obvious effects on plant growth, photosynthesis and leaf hydrate status, and even substantially stimulated root activity. Furthermore, buffalograss could retain a large amount of Na+ in roots to restrict Na+ overaccumulation in shoots, and increase leaf K+ concentration to maintain a high K+/Na+ ratio under NaCl stresses. After 50 and 200 mM NaCl treatments, the expressions of several genes related to chlorophyll synthesis, photosynthetic electron transport and CO2 assimilation, as well as aquaporin genes (BdPIPs and BdTIPs) were upregulated. Notably, under NaCl treatments, the increased expression of BdSOS1, BdHKT1 and BdNHX1 in roots might have helped Na+ exclusion by root tips, retrieval from xylem sap and accumulation in root cells, respectively; the upregulation of BdHAK5 and BdSKOR in roots likely enhanced K+ uptake and long-distance transport from roots to shoots, respectively. This work finds that buffalograss possesses a strong ability to sustain high photosynthetic capacity, water balance and leaf K+/Na+ homeostasis under salt stress, and lays a foundation for elucidating the molecular mechanism underlying the salt tolerance of buffalograss.
Collapse
Affiliation(s)
- Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhen Li
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Chunya Nie
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
8
|
Lin D, Zhou X, Zhao H, Tao X, Yu S, Zhang X, Zang Y, Peng L, Yang L, Deng S, Li X, Mao X, Luan A, He J, Ma J. The Synergistic Mechanism of Photosynthesis and Antioxidant Metabolism between the Green and White Tissues of Ananas comosus var. bracteatus Chimeric Leaves. Int J Mol Sci 2023; 24:ijms24119238. [PMID: 37298190 DOI: 10.3390/ijms24119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.
Collapse
Affiliation(s)
- Dongpu Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xuzixin Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Huan Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiaoguang Tao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Sanmiao Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiaopeng Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Yaoqiang Zang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Li Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Shuyue Deng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiyan Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xinjing Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Aiping Luan
- Tropical Crop Genetic Resources Institute, Chinese Academy of Agricultural Science, Haikou 571101, China
| | - Junhu He
- Tropical Crop Genetic Resources Institute, Chinese Academy of Agricultural Science, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
9
|
Wang J, Yang Q, Han J, He Z, Yang M, Wang X, Lin X. Effect of nicosulfuron on dynamic changes in the starch-sugar interconversion in sweet maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59606-59620. [PMID: 37010681 DOI: 10.1007/s11356-023-26766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Starch is an important reserve of sugar, and starch-sugar conversion in plants plays an important role in the response of plants to various abiotic stresses. Nicosulfuron is a post-emergence herbicide commonly applied to maize fields. However, it is unclear how sucrose and starch in sweet corn are converted to accommodate nicosulfuron stress. Field and pot experiments were conducted to study the effects of nicosulfuron on the sugar metabolism enzymes, starch metabolism enzymes, non-enzyme substances, and expression of key enzyme genes in leaves and roots of sweet maize seedlings. Accordingly, this research compared the responses of the sister lines HK301 and HK320, which are nicosulfuron tolerant and sensitive, respectively. Under nicosulfuron stress, compared with HK301 seedlings, the accumulation of stem and root dry matter of HK320 seedlings was significantly reduced, resulting in a lower root-to-shoot ratio. Compared with HK320 seedlings, nicosulfuron stress significantly increased the sucrose, soluble sugar, and starch contents in HK301 leaves and roots. This may be related to the enhanced carbohydrate metabolism under nicosulfuron stress, including significant changes in sugar metabolism enzyme activity and the levels of SPS and SuSys expression. Further, under nicosulfuron stress, sucrose transporter genes (SUC 1, SUC 2, SWEET 13a, and SWEET 13b) in the leaves and roots of HK301 seedlings were significantly upregulated. Our results emphasize that changes in sugar distribution, metabolism, and transport can improve the adaptability of sweet maize to nicosulfuron stress.
Collapse
Affiliation(s)
- Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Jinling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Zidian He
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
- Analysis and Testing Center, Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Xiaohu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
- Analysis and Testing Center, Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
| |
Collapse
|
10
|
Wu ZX, Wang J, Lin XH, Yang Q, Wang TZ, Chen JJ, Li XN, Guan Y, Lv GH. Nicosulfuron stress on the glyoxalase system and endogenous hormone content in sweet maize seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49290-49300. [PMID: 36773263 DOI: 10.1007/s11356-023-25777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
To reduce the harmful effects of nicosulfuron on sweet corn, the physiological regulation mechanism of sweet corn detoxification was studied. This study analyzed the effects of nicosulfuron stress on the glyoxalase system, hormone content, and key gene expression of nicosulfuron-tolerant "HK301" and nicosulfuron-sensitive "HK320" sweet corn seedling sister lines. After spraying nicosulfuron, the methylglyoxal (MG) content in HK301 increased first and then decreased. Glyoxalase I (GlyI) and glyoxalase II (GlyII) activities, non-enzymatic glutathione (GSH), and the glutathione redox state glutathione/(glutathione + glutathione disulfide) (GSH/(GSH + GSSG)) showed a similar trend as the MG content. Abscisic acid (ABA), gibberellin (GA), and zeatin nucleoside (ZR) also increased first and then decreased, whereas the auxin (IAA) increased continuously. In HK301, all indices after spraying nicosulfuron were significantly greater than those of the control. In HK320, MG accumulation continued to increase after nicosulfuron spraying and GlyI and GlyII activities, and GSH first increased and then decreased after 1 day of stress. The indicators above were significantly greater than the control. The GSH/(GSH + GSSG) ratio showed a decreasing trend and was significantly smaller than the control. Furthermore, ABA and IAA continued to increase, and the GA and ZR first increased and then decreased. Compared with HK320, HK301 significantly upregulated the transcription levels of GlyI and GlyII genes in roots, stems, and leaves. Comprehensive analysis showed that sweet maize seedlings improved their herbicide resistance by changing the glyoxalase system and regulating endogenous hormones. The results provide a theoretical basis for further understanding the response mechanism of the glyoxalase system and the regulation characteristics of endogenous hormones in maize under nicosulfuron stress.
Collapse
Affiliation(s)
- Zhen-Xing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiao-Hu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Ting-Zhen Wang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Jian-Jian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Xiang-Nan Li
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Yuan Guan
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Gui-Hua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China.
| |
Collapse
|
11
|
Gao Q, Huo J, Chen L, Yang D, Zhang W, Jia B, Xu X, Barnych B, Zhang J, Hammock BD. Development of immunoassay based on a specific antibody for sensitive detection of nicosulfuron in environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160247. [PMID: 36400293 PMCID: PMC10042444 DOI: 10.1016/j.scitotenv.2022.160247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Nicosulfuron, one of the most widely used selective herbicides in corn field, can effectively control annual and perennial grass weeds, sedges, and some broadleaf weeds. The residual phytotoxicity of nicosulfuron in soil and water has become increasingly prominent. Therefore, an efficient method for detection of nicosulfuron was critical to ensure the sustainable and healthy development of agriculture and the ecological environment. In this paper, five nicosulfuron haptens which contained carboxyl group or aldehyde groups were designed and synthesized, and an indirect competitive immunoassay was developed for the first time. The assay showed an IC50 of 8.42 ng/mL and had negligible cross reactivities toward other sulfonylurea herbicides. In the spike and recovery studies, the recovery rate from soil samples was 95 %-104 %, and that of wheat roots was 92 %-98 %, which showed a good correlation with LC-MS analysis for nicosulfuron. The immunoassay was then used to quantify nicosulfuron concentration which could cause the obvious phytotoxic symptoms to wheat. Obvious symptoms of nicosulfuron phytotoxicity in wheat root was observed at the concentration of 0.068 ± 0.006 mg/kg (ELISA result) which was consistent with 0.072 ± 0.007 mg/kg obtained by LC-MS. The developed immunoassay method is an effective tool for environment contamination monitoring.
Collapse
Affiliation(s)
- Qingqing Gao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Weihong Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Bin Jia
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Xiaotong Xu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| |
Collapse
|
12
|
Li Y, Li S, Feng Q, Zhang J, Han X, Zhang L, Yang F, Zhou J. Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. Seedlings under drought stress. BMC PLANT BIOLOGY 2022; 22:578. [PMID: 36510126 PMCID: PMC9743734 DOI: 10.1186/s12870-022-03978-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Drought is one of the main environmental factors limiting plant growth and development. Pennisetum purpureum Schum. was used to explore the mitigation effects of exogenous strigolactone (SL) on drought stress during the seedling stage. The effects of different concentrations (1, 3, 5, and 7 μmol·L- 1) of SL on the photosynthesis characteristics, growth performance, and endogenous abscisic acid (ABA) of P. purpureum under drought stress were studied. RESULTS Exogenous SL could effectively alleviate the inhibitory effect of drought stress on P. purpureum growth. Compared with drought stress, the net photosynthesis rate, stomatal conductance, transpiration rate, and water-use efficiency of the leaves of P. purpureum after SL treatment significantly increased, thereby exerting a significant mitigation effect on the decrease in photosystem II maximum photochemical efficiency and the performance index based on light absorption caused by drought. Moreover, the exogenous application of SL can effectively increase the fresh and dry weight of the leaves and roots and the main-root length. After applying SL for 120 h, the ABA content of P. purpureum decreased significantly. The activity of key enzymes of photosynthesis significantly increased after 48 h of external application of SL to P. purpureum. CONCLUSIONS SL treatment can improve the photosynthesis performance of P. purpureum leaves under drought conditions and increase the antioxidant capacity of the leaves, thereby reducing the adverse effects of drought, promoting the growth of P. purpureum, and effectively improving the drought resistance of P. purpureum.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sutao Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixian Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuelin Han
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jing Zhou
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Xu N, Wu Z, Li X, Yang M, Han J, Lu B, Lu B, Wang J. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.). PLoS One 2022; 17:e0276606. [PMID: 36269745 PMCID: PMC9586374 DOI: 10.1371/journal.pone.0276606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
The sulfonylurea herbicide nicosulfuron is efficient, harmless and selective at low doses and has been widely used in maize cultivation. In this study, a pair of corn sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was chosen to study the effect of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.) seedlings. All the experimental samples were subjected to treatment with water or 80 mg kg–1 of nicosulfuron when the sweet maize seedlings grew to the four-leaf stage. Nicosulfuron significantly inhibited the growth of NS line. The content of sucrose and the activities of sucrose phosphate synthase and sucrose synthase in the two inbred lines increased differentially under nicosulfuron stress compared with the respective control treatment. After nicosulfuron treatment, the activities of hexokinase and 6-phosphofructokinase and the contents of pyruvic acid and citric acid in NS line decreased significantly compared with those of NT line, while the content of sucrose and activities of sucrose phosphate synthase and sucrose synthase increased significantly. The disruption of sugar metabolism in NS line led to a lower supply of energy for growth. This study showed that the glycolysis pathway and the tricarboxylic acid cycle were enhanced in nicosulfuron-tolerant line under nicosulfuron stress in enhancing the adaptability of sweet maize.
Collapse
Affiliation(s)
- Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Jinling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Bingshe Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- * E-mail: (BL); (JW)
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
- * E-mail: (BL); (JW)
| |
Collapse
|
14
|
Wang L, Riaz M, Song B, Song X, Huang W, Bai X, Zhao X. Study on phytotoxicity evaluation and physiological properties of nicosulfuron on sugar beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:998867. [PMID: 36304402 PMCID: PMC9593059 DOI: 10.3389/fpls.2022.998867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 05/25/2023]
Abstract
Nicosulfuron is an herbicide widely used in corn fields. In northeast China, sugar beet is often planted adjacent to corn, resulting in frequent phytotoxicity of nicosulfuron drift in sugar beet fields. This study was conducted by spraying nicosulfuron to assess the phytotoxicity and clarify the mechanism of nicosulfuron toxicity on sugar beet. The results showed that nicosulfuron impaired growth and development by reducing photosynthetic capacity and disrupting antioxidant systems at a lethal dose of 81.83 g a.i. ha-1. Nicosulfuron damaged the function of photosynthetic system II (PSII), lowered photosynthetic pigment content, and inhibited photosynthetic efficiency. Compared with the control, the electron transfer of PSII was blocked. The ability of PSII reaction centers to capture and utilize light energy was reduced, resulting in a weakened photosynthetic capacity. The maximum net photosynthetic rate (Amax), light saturation point (LSP), and apparent quantum yield (AQY) decreased gradually as the nicosulfuron dose increased, whereas the light compensation point (LCP) and dark respiration (Rd) increased. Nicosulfuron led to reactive oxygen species (ROS) accumulation in sugar beet leaf, a significant rise in malondialdehyde (MDA) content, electrolytic leakage (EL), and considerable oxidative damage to the antioxidant system. This study is beneficial for elucidating the effects of nicosulfuron toxicity on sugar beet, in terms of phytotoxicity, photosynthetic physiology, and antioxidative defense system.
Collapse
Affiliation(s)
- Longfeng Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Muhammad Riaz
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-biore Sources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Baiquan Song
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xin Song
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wengong Huang
- Safety and Quality Institution of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoshan Bai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xiaoyu Zhao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
15
|
Wu ZX, Xu NW, Yang M, Li XL, Han JL, Lin XH, Yang Q, Lv GH, Wang J. Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37248-37265. [PMID: 35032265 DOI: 10.1007/s11356-022-18641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Weed control in maize (Zea mays L.) crops is usually undertaken using the postemergence herbicide nicosulfuron. The toxicity of nicosulfuron on maize, especially sweet maize, has been widely reported. In order to examine the effect of nicosulfuron on seedling photosynthetic characteristics, chlorophyll fluorescence, reactive oxygen species production, antioxidant enzyme activities, and gene expressions on sweet maize, nicosulfuron-tolerant "HK310" and nicosulfuron-sensitive "HK320" were studied. All experiment samples were subjected to a water or 80 mg kg-1 of nicosulfuron treatment when sweet maize seedlings grow to the stage of four leaves. After treatment with nicosulfuron, results for HK301 were significantly higher than those for HK320 for net photosynthetic rate, transpiration rate, stomatal conductance, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the electron transport rate. These results were contrary to nonphotochemical quenching and intercellular CO2 concentration. As exposure time increased, associated effects also increased. Both O2·- and H2O2 detoxification is modulated by antioxidant enzymes. Compared to HK301, SOD, POD, and CAT activities of HK320 were significantly reduced as exposure time increase. Compared to HK320, the gene expression for the majority of SOD genes, except for SOD2, increased due to inducement by nicosulfuron, and it significantly upregulated the gene expression of CAT in HK301. Results from this study indicate that plants can improve photosynthesis, scavenging capabilities of ROS, and protective mechanisms to alleviate phytotoxic effect of nicosulfuron. Future research is needed to further elucidate the important role antioxidant systems and gene regulation play in herbicide detoxification in sweet maize.
Collapse
Affiliation(s)
- Zhen-Xing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Ning-Wei Xu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiang-Ling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Jin-Ling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiao-Hu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Gui-Hua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China.
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China.
| |
Collapse
|