1
|
Xie E, Chen Z, Zhang X, Zhang X, Zheng L, Wang X, Zhang D. Stable isotope probing and oligotyping reveal the impact of organophosphorus pesticides on the carbon fixation related bacterioplankton lineage. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138159. [PMID: 40187249 DOI: 10.1016/j.jhazmat.2025.138159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Freshwater bacterioplankton communities play a pivotal role in global carbon fixation and energy exchange. However, establishing direct linkages between environmental stressors like organophosphorus pesticides (OPPs) and the ecological functions, such as carbon-fixing related microorganisms (CFMs), remains challenging. This study investigated the effects of four OPPs - two phosphates (dichlorvos, monocrotophos) and two phosphorothioates (omethoate, parathion) - on bacterioplankton communities using stable isotope probing, high-throughput sequencing and oligotyping analysis. Seven CFMs were identified. All OPPs significantly reduced total biomass (from 7.87 ×104 to 2.30-4.11 ×104 cells/mL) but stimulated CFMs proliferation. Notably, phosphorothioates induced a greater increase in CFMs abundance (36.84 %-57.18 %, up from 21.1 %) compared to phosphates (23.85 %-37.10 %; p < 0.05). Principal coordinate analysis (PCoA) revealed that phosphorothioates exerted stronger effects on microbial community and CFMs oligotypes structure compared to phosphates (p < 0.05). Variance partitioning analysis (VPA) identified pesticide type as the dominant driver of community structure. PICRUSt2 prediction demonstrated that OPPs suppressed oxidoreductase pathways linked to energy metabolism while activating transferase pathways associated with microbial stress resistance. Phosphorothioates depleted 64 pathways and enhanced 208 pathways, far exceeding phosphate impacts (2 depleted, 22 enhanced), indicating the phosphorothioates played a more important role on bacterioplankton communities than phosphate. Additionally, OPPs exposure reduced functional redundancy and destabilized community stability in bacterioplankton, potentially granting CFMs a long-term competitive advantage and elevating algal bloom risks. These findings provide insights into active CFMs in aquatic systems and their responses to diverse OPPs, offering new perspectives for managing organophosphorus pesticide contamination.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China.
| | - Ziwei Chen
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xu Zhang
- Chongqing Nanan District ecology and environment Bureau, Chongqing 401336, PR China
| | - Xinyuan Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Lv L, Jia F, Deng M, Di S, Chu T, Wang Y. Toxic mechanisms of imazalil, azoxystrobin and their mixture to hook snout carp (Opsariichthys bidens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172022. [PMID: 38552970 DOI: 10.1016/j.scitotenv.2024.172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
While combinations of pesticides better represent actual conditions within aquatic ecosystems, the specific toxic effects of these combinations have not been determined yet. The objective of this research was to assess the combined impact of imazalil and azoxystrobin on the hook snout carp (Opsariichthys bidens) and delve into the underlying causes. Our findings indicated that the 4-day LC50 value for imazalil (1.85 mg L-1) was greater than that for azoxystrobin (0.90 mg L-1). When imazalil and azoxystrobin were combined, they presented a heightened effect on the species. Enzyme activities like SOD, CAT, GST, and CarE, along with androgen and estrogen levels, displayed marked differences in most single and combined treatments in comparison to the baseline group. Moreover, four genes (mn-sod, cu-sod, il-1, and esr) related to oxidative stress, immunity, and the endocrine system exhibited more pronounced expression changes when exposed to combined pesticides rather than individual ones. Our tests revealed that the combined use of imazalil and azoxystrobin had more detrimental effect on aquatic vertebrates than when evaluated individually. This finding suggested that future ecological hazard analyses based only on individual tests might not sufficiently safeguard our aquatic ecosystems.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
4
|
Tosadori A, Di Guardo A, Finizio A. Spatial distributions and temporal trends (2009-2020) of chemical mixtures in streams and rivers across Lombardy region (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170839. [PMID: 38340863 DOI: 10.1016/j.scitotenv.2024.170839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Chemical mixtures in the environment are of increasing concern in the scientific community and regulators. Indeed, evidence indicates that aquatic wildlife and humans can be simultaneously and successively exposed to multiple chemicals mainly originating from different anthropic sources by direct uptake from water and indirectly via eating aquatic organisms. This study analyses a large set of sampling data referring to the entire Lombardy region, the most industrialised and at the same time the most important agriculture area in Italy, investigating the presence and potential effects of chemical mixtures in surface water bodies. We enriched and further developed an approach based on a previous work, where the overall mixture toxicity was evaluated for three representative aquatic organisms (algae, Daphnia, fish) using the concentration addition model to combine exposure with ecotoxicological data. The calculation of the mixture toxicity has been realised for two scenarios, namely best- and worst-case scenarios. The former considered only quantified compounds in the monitoring campaign, while the latter also included substances with concentrations below the limit of quantification (LoQ). Differences between the two scenario results established the potential toxicity range. Our findings revealed that differences were minimal when the calculated toxicity in the best-case scenario indicated potential risk and, on the contrary, they suggest that the worst-case scenario is overly conservative; we could also state that including substances with concentrations below the LoQ when calculating the overall toxicity of the mixture is useless and then we focused solely on the best-case scenario. The analysis of spatial and temporal risk trends together with contaminant types and target organisms highlighted specific clusters of contamination. Finally, in several cases, our study found that only few compounds were responsible for the majority of mixture toxicity.
Collapse
Affiliation(s)
- Andrea Tosadori
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Andrea Di Guardo
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Antonio Finizio
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
5
|
Schuster HS, Taylor NS, Sur R, Weyers A. Analysis and management of herbicidal mixtures in a high-intensity agricultural landscape in Belgium. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1297-1306. [PMID: 36541121 DOI: 10.1002/ieam.4727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Water bodies located in anthropogenically influenced environments, such as agricultural landscapes, may be exposed to different chemicals simultaneously or sequentially. Yet, current environmental risk assessments focus on single active substances for unintended mixtures. For 3.5 years, the present study monitored the mixture of herbicides, within an intensively managed agricultural catchment, accompanied by a stewardship program. Twelve herbicides and one metabolite were monitored on a daily to sub-daily basis, generating a unique, high temporal resolution data set, enabling an assessment of cumulative exposure in a worst-case scenario. Analyses focused on the number of events at which the herbicide mixture concentration exceeded the regulatory accepted concentration for algae and macrophytes, based on concentration addition, and the potential factors influencing the frequency of these events are considered. A low number of individual herbicides drove the toxicity and only two of these overlapped for the two organism groups, algae and macrophytes. The observed exceedance events coincided with seasonal influences, and low rainfall during the 2011 season correlated with a highly reduced number of these events. The major influence was found to be the implementation of the stewardship program, which directed farmers to use more advanced farming techniques, avoid spillages, and other point sources. The number of exceedance events was reduced by more than half for algae (9% of the daily mean samples in 2010 and 4% in 2013) and by approximately 10 times for macrophytes (36% in 2010 to 3% in 2013). This high-resolution monitoring data set illustrates how knowledge of the influencing factors can help reduce unintended exposure to chemicals and achieve real-world improvements. Overall, a single-substance assessment is protective of mixture effects. Where mixture effects do play a role, local measures to manage point sources are more effective than changes to the desk-based environmental risk assessments that focus on diffuse sources. Integr Environ Assess Manag 2023;19:1297-1306. © 2022 Cambridge Environmental Assessments RSK ADAS Ltd and Bayer AG. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Hanna S Schuster
- Cambridge Environmental Assessments (RSK ADAS Ltd.), Cambridge, UK
| | - Nadine S Taylor
- Cambridge Environmental Assessments (RSK ADAS Ltd.), Cambridge, UK
| | - Robin Sur
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Arnd Weyers
- Bayer AG, Crop Science Division, Environmental Safety, Monheim, Germany
| |
Collapse
|
6
|
Bertrans-Tubau L, Menard Y, Batisson I, Creusot N, Mazzella N, Millan-Navarro D, Moreira A, Morin S, Ponsá S, Abril M, Proia L, Romaní AM, Artigas J. Dissipation of pesticides by stream biofilms is influenced by hydrological histories. FEMS Microbiol Ecol 2023; 99:fiad083. [PMID: 37480243 DOI: 10.1093/femsec/fiad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Yoann Menard
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | | | | | | | | | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, F-33612 Cestas, France
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17005 Girona, Spain
| | - Joan Artigas
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Vormeier P, Schreiner VC, Liebmann L, Link M, Schäfer RB, Schneeweiss A, Weisner O, Liess M. Temporal scales of pesticide exposure and risks in German small streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162105. [PMID: 36758694 DOI: 10.1016/j.scitotenv.2023.162105] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Following agricultural application, pesticides can enter streams through runoff during rain events. However, little information is available on the temporal dynamics of pesticide toxicity during the main application period. We investigated pesticide application and large scale in-stream monitoring data from 101 agricultural catchments obtained from a Germany-wide monitoring from April to July in 2018 and 2019. We analysed temporal patterns of pesticide application, in-stream toxicity and exceedances of regulatory acceptable concentrations (RAC) for over 70 pesticides. On a monthly scale from April to July, toxicity to invertebrates and algae/aquatic plants (algae) obtained with event-driven samples (EDS) was highest in May/June. The peak of toxicity towards invertebrates and algae coincided with the peaks of insecticide and herbicide application. Future monitoring, i.e. related to the Water Framework Directive, could be limited to time periods of highest pesticide applications on a seasonal scale. On a daily scale, toxicity to invertebrates from EDS exceeded those of grab samples collected within one day after rainfall by a factor of 3.7. Within two to three days, toxicity in grab samples declined compared to EDS by a factor of ten for invertebrates, and a factor of 1.6 for algae. Thus, toxicity to invertebrates declined rapidly within 1 day after a rainfall event, whereas toxicity to algae remained elevated for up to 4 days. For six pesticides, RAC exceedances could only be detected in EDS. The exceedances of RACs coincided with the peaks in pesticide application. Based on EDS, we estimated that pesticide exposure would need a 37-fold reduction of all analysed pesticides, to meet the German environmental target to keep RAC exceedances below 1 % of EDS. Overall, our study shows a high temporal variability of exposure on a monthly but also daily scale to individual pesticides that can be linked to their period of application and related rain events.
Collapse
Affiliation(s)
- Philipp Vormeier
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute of Ecology & Computational Life Science, Templergraben 55, 52056 Aachen, Germany
| | - Verena C Schreiner
- RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, 76829 Landau in der Pfalz, Germany
| | - Liana Liebmann
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Department of Evolutionary Ecology & Environmental Toxicology (E3T), 60438 Frankfurt am Main, Germany
| | - Moritz Link
- RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, 76829 Landau in der Pfalz, Germany
| | - Ralf B Schäfer
- RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, 76829 Landau in der Pfalz, Germany
| | - Anke Schneeweiss
- RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, 76829 Landau in der Pfalz, Germany
| | - Oliver Weisner
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute of Ecology & Computational Life Science, Templergraben 55, 52056 Aachen, Germany.
| |
Collapse
|
8
|
da Silva SP, da Silva JDF, da Costa CBL, da Silva PM, de Freitas AFS, da Silva CES, da Silva AR, de Oliveira AM, Sá RA, Peixoto AR, de Oliveira APS, Paiva PMG, Napoleão TH. Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL). Probiotics Antimicrob Proteins 2023; 15:287-299. [PMID: 34420188 DOI: 10.1007/s12602-021-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 °C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 μg/mL for all Pectobacterium strains, respectively; MIC of 1.48 μg/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 μg/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.
Collapse
Affiliation(s)
- Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Roberto Araújo Sá
- Centro Acadêmico Do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - Ana Rosa Peixoto
- Departamento de Tecnologia E Ciências Sociais, Universidade Do Estado da Bahia, Juazeiro, Bahia, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
9
|
Finizio A, Di Guardo A, Menaballi L, Barra Caracciolo A, Grenni P. Mix-Tool: An Edge-of-Field Approach to Predict Pesticide Mixtures of Concern in Surface Water From Agricultural Crops. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2028-2038. [PMID: 35579390 PMCID: PMC9544912 DOI: 10.1002/etc.5363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Current regulation on the authorization of plant protection products (PPPs) in the European Union is limited to the evaluation of ecological risks for the single active substances they contain. However, plant protection treatments in agriculture often consist of PPPs already containing more than one active substance; moreover, each cropped field receives multiple applications per year, leading to complex pesticide mixtures in the environment. Different transport processes lead to a multitude of heterogeneous and potentially toxic substances that, for example, may reach water bodies and act simultaneously on natural freshwater ecosystems. In this context, the development of methodologies and tools to manage risks of pesticides mixtures is imperative to improve the current ecological risk assessment procedures and to avoid further deterioration of ecological quality of natural resources. The present study suggests new procedures for identifying pesticide mixtures of potential concern released from agricultural crops in surface water. The approach follows the European Union regulatory context for the authorization of PPPs in the market (edge-of field risk assessment) and requires the use of Forum for the Co-ordination of pesticide fate models and their Use (FOCUS) models (Step 3 and 4) for calculating the concentrations in surface water of mixture components on a daily basis. Moreover, it uses concentration addition models to calculate the toxic potency of the pesticide mixtures released by a treated crop. To implement this procedure, we developed a simple Microsoft-Excel-based tool. We also considered two case studies (maize and apple tree), representative of Italian agricultural scenarios for annual and perennial crops. Moreover, we compared results with 3 years of monitoring data of surface water bodies of the Lombardia region (northern Italy) where the two crops are largely present. Environ Toxicol Chem 2022;41:2028-2038. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Antonio Finizio
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaMilanoItaly
- Water Research InstituteNational Research CouncilMonterotondoRomeItaly
| | - Andrea Di Guardo
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaMilanoItaly
| | - Luca Menaballi
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaMilanoItaly
- TEAM mastery srlComoItaly
| | | | - Paola Grenni
- Water Research InstituteNational Research CouncilMonterotondoRomeItaly
| |
Collapse
|
10
|
Finizio A, Grenni P, Petrangeli AB, Barra Caracciolo A, Santoro S, Di Guardo A. Use of large datasets of measured environmental concentrations for the ecological risk assessment of chemical mixtures in Italian streams: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150614. [PMID: 34597558 DOI: 10.1016/j.scitotenv.2021.150614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
A method to evaluate the ecological risk of chemical mixtures in water bodies is here presented. In the first phase, the approach considered routine chemical monitoring data (MEC: measured environmental concentrations) obtained from the Italian National Institute for Environmental Protection and Research, which were georeferenced to a single coordinate system for each monitoring station. The overall mixture toxicity were then evaluated for three representative aquatic organisms (algae, Daphnia, fish) using the concentration addition model to combine exposure with ecotoxicological data (from different databases). A database management system was used to facilitate the creation, organisation, and management of the large datasets of this study. The outputs were obtained as GIS-based mixture risk maps and tables (listing the toxic unit of mixtures and individual substances) useful for further analysis. The method was applied to an Italian watershed (Adda River) as a case study. In the first phase, the mixture toxicity was calculated using two scenarios: best- and worst-case; wherein the former included only those compounds that were be detected, while the latter involved also substances with concentrations below the limit of quantification. The ratio between the two scenarios indicated the range within which mixture toxicity should ideally vary. The method demonstrates that these ratios were very small when the calculated toxicity using the best case indicated a potential risk and vice versa, indicating that the worst-case scenario could not be appropriate (extremely conservative). Consequently, in the successive phase, we focused exclusively on the best-case scenario. Finally, this approach allowed the priority mixture identification (those most likely occurring in the analysed water samples), algae as the organism at the highest risk, and the substances that contributed the most to the overall mixture toxicity (terbuthylazine and s-metolachlor for algae, and chlorpyrifos and chlorpyrifos-CH3 for Daphnia and fish).
Collapse
Affiliation(s)
- Antonio Finizio
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; Water Research Institute, National Research Council, via Salaria km 29,300, 00015 Monterotondo, Rome, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council, via Salaria km 29,300, 00015 Monterotondo, Rome, Italy.
| | - Anna Bruna Petrangeli
- Water Research Institute, National Research Council, via Salaria km 29,300, 00015 Monterotondo, Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, via Salaria km 29,300, 00015 Monterotondo, Rome, Italy
| | - Serena Santoro
- Ministry for Ecological Transition/Institute on Atmospheric Pollution, National Research Council, via Cristoforo Colombo, 44, 00147 Rome, Italy
| | - Andrea Di Guardo
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
11
|
Freitas IBF, Ogura AP, Cunha DGF, Cossolin AS, Ferreira MDS, Goulart BV, Montagner CC, Espíndola ELG. The Longitudinal Profile of a Stream Contaminated With 2,4-D and its Effects on Non-Target Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:131-141. [PMID: 34797381 DOI: 10.1007/s00244-021-00903-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e., 2,4-D) was simulated under controlled conditions in a 500-m-long reach of a first-order tropical stream in Southeastern Brazil. Two water samplings at eight stations investigated the stream longitudinal contamination profile. The ecotoxicological effects were analyzed using Eruca sativa L. seed germination assays and the acute and chronic toxicity tests with the neotropical cladoceran Ceriodaphnia silvestrii. Physicochemical parameters of water quality were evaluated to characterize the study area and quantify 2,4-D concentrations along the stream to assess pesticide retention. The 2,4-D concentration was reduced by approximately 50% downstream in the samplings, indicating that the herbicide was retained along the stream. Moreover, C. silvestrii reproduction in long-term assays decreased approximately 50% in the stations with higher concentrations of 2,4-D than the laboratory control. After contamination, E. sativa L. showed a lower average root growth (1.0 cm), statistically different from the control (2.2 cm). On the other hand, similar growth values were obtained among the background and the most downstream stations. Our study highlighted the relevance of reviewing and updating herbicide guidelines and criteria to prevent possible ecological risks.
Collapse
Affiliation(s)
- Isabele Baima Ferreira Freitas
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Allan Pretti Ogura
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Aline Silva Cossolin
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Murilo de Souza Ferreira
- Department of Hydraulic and Sanitation, BIOTACE/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, LQA, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, LQA, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
12
|
Weisner O, Frische T, Liebmann L, Reemtsma T, Roß-Nickoll M, Schäfer RB, Schäffer A, Scholz-Starke B, Vormeier P, Knillmann S, Liess M. Risk from pesticide mixtures - The gap between risk assessment and reality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149017. [PMID: 34328899 DOI: 10.1016/j.scitotenv.2021.149017] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Pesticide applications in agricultural crops often comprise a mixture of plant protection products (PPP), and single fields face multiple applications per year leading to complex pesticide mixtures in the environment. Restricted to single PPP, the current European Union PPP regulation, however, disregards the ecological risks of pesticide mixtures. To quantify this additional risk, we evaluated the contribution of single pesticide active ingredients to the additive mixture risk for aquatic risk indicators (invertebrates and algae) in 464 different PPP used, 3446 applications sprayed and 830 water samples collected in Central Europe, Germany. We identified an average number of 1.3 different pesticides in a single PPP, 3.1 for complete applications often involving multiple PPP and 30 in stream water samples. Under realistic worst-case conditions, the estimated stream water pesticide risk based on additive effects was 3.2 times higher than predicted from single PPP. We found that in streams, however, the majority of regulatory threshold exceedances was caused by single pesticides alone (69% for algae, 81% for invertebrates). Both in PPP applications and in stream samples, pesticide exposure occurred in repeated pulses each driven by one to few alternating pesticides. The time intervals between pulses were shorter than the 8 weeks considered for ecological recovery in environmental risk assessment in 88% of spray series and 53% of streams. We conclude that pesticide risk assessment should consider an additional assessment factor to account for the additive, but also potential synergistic simultaneous pesticide mixture risk. Additionally, future research and risk assessment need to address the risk from the frequent sequential pesticide exposure observed in this study.
Collapse
Affiliation(s)
- Oliver Weisner
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau in der Pfalz, Germany.
| | - Tobias Frische
- German Federal Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Liana Liebmann
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thorsten Reemtsma
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau in der Pfalz, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Björn Scholz-Starke
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; darwin statistics, 52072 Aachen, Germany
| | - Philipp Vormeier
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Saskia Knillmann
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; German Federal Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Matthias Liess
- Helmholtz-Centre for Environmental Research (UFZ) Leipzig, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
13
|
Andrée DC, Marie Anne Eurie F, Niels DT, Isabel GA, Arne D, Wout VE, Lenin RF, Jasmine DR, Liesbeth J, Pieter S, Luis DG, Peter L M G. From field to plate: Agricultural pesticide presence in the guayas estuary (Ecuador) and commercial mangrove crabs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117955. [PMID: 34435567 DOI: 10.1016/j.envpol.2021.117955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Mangroves are unique coastal ecosystems, located in tropical and subtropical regions. Yet, the functioning of these essential ecosystems is threatened by the presence of pollutants, including pesticides originating from agricultural activities. We investigated pesticide residues in the Guayas estuarine environment, since agricultural activities rapidly increased in the Guayas river basin over the past decades. A multi-residue analysis involving a selection of 88 pesticides was performed on the white meat and the hepatopancreas of the red mangrove crab (Ucides Occidentalis) at 15 sampling sites within the Guayas estuary along with water, sediment, and leaves samples. We found that 35 active compounds were present in the Guayas estuary, of which pyrimethanil was most commonly detected and had the highest concentrations in almost all compartments. Also, cadusafos was present in all studied compartments of the Guayas mangrove system and several prohibited pesticides (including carbendazim, carbofuran, and parathion) were detected. An ecotoxicological and probabilistic consumer risk assessment pointed out that current butachlor, carbendazim, and fludioxonil concentrations can cause adverse effects in aquatic organisms in the long term. Moreover, high potential acute and chronic risks of cadusafos residues on aquatic invertebrates and of diuron on algae in the Guayas wetlands were observed. Still, the exposure results indicated that the health risk for the consumers of the commercial red mangrove crab is low concerning cadusafos, chlorpyrifos, diuron, linuron, and pyrimethanil residues in crab tissues. The findings presented in this research can provide a useful basis for local water managers and environmental conservation groups to act and reduce the usage of pesticides, to avoid threatening aquatic and human health.
Collapse
Affiliation(s)
- De Cock Andrée
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Forio Marie Anne Eurie
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - De Troyer Niels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Garcia Arevalo Isabel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Laboratoire de Biogéochimie des Contaminants Métalliques, Ifremer, Centre Atlantique, F-44311, Nantes Cedex 3, France
| | - Deknock Arne
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Van Echelpoel Wout
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Riascos Flores Lenin
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - De Rop Jasmine
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Jacxsens Liesbeth
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Spanoghe Pieter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Dominguez Granda Luis
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Goethals Peter L M
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Lee JC, Lee B, Kim HW, Jeon BH, Lim H. Techno-economic analysis of livestock urine and manure as a microalgal growth medium. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:276-286. [PMID: 34560510 DOI: 10.1016/j.wasman.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have the potential to utilize the nutrients in livestock urine and manure (LUM) for the production of useful biomass, which can be used as a source of bioindustry. This study aims to evaluate the economic benefits of LUM feedstock that have not been clearly discussed before. Two types of photobioreactors were designed with a capacity of 200 m3 d-1. Using the experimental data, the economic feasibility of the suggested processes was evaluated via techno-economic analysis. Itemized cost estimation indicated that the submerged membrane photobioreactor has a lower unit production cost (5.4 $ to 5.1 $ kg-1) than the conventional photobioreactor system (14.6 $ to 13.8 $ kg-1). In addition, LUM-based growth is another good option for reducing the unit production cost of biomass. The revenues from lowering the cost of LUM treatment significantly contribute to enhancing the economic profitability, where the break-even prices were 1.18 $ m-3 (photobioreactor) and 0.98 $ m-3 (submerged membrane photobioreactor). Finally, this study provides several emerging suggestions to reduce microalgal biomass production costs.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Division of advanced biology, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Boreum Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, 06520-8286, United States
| | - Hyun-Woo Kim
- Department of Environment and Energy, Division of Civil/Environmental/Mineral Resources and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
15
|
Liess M, Liebmann L, Vormeier P, Weisner O, Altenburger R, Borchardt D, Brack W, Chatzinotas A, Escher B, Foit K, Gunold R, Henz S, Hitzfeld KL, Schmitt-Jansen M, Kamjunke N, Kaske O, Knillmann S, Krauss M, Küster E, Link M, Lück M, Möder M, Müller A, Paschke A, Schäfer RB, Schneeweiss A, Schreiner VC, Schulze T, Schüürmann G, von Tümpling W, Weitere M, Wogram J, Reemtsma T. Pesticides are the dominant stressors for vulnerable insects in lowland streams. WATER RESEARCH 2021; 201:117262. [PMID: 34118650 DOI: 10.1016/j.watres.2021.117262] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.
Collapse
Affiliation(s)
- Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Liana Liebmann
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Philipp Vormeier
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Oliver Weisner
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Dietrich Borchardt
- Department Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Beate Escher
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Kaarina Foit
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Roman Gunold
- Department Cell Toxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Sebastian Henz
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | | | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Norbert Kamjunke
- Department of River Ecology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Oliver Kaske
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Saskia Knillmann
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Eberhard Küster
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Moritz Link
- Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Maren Lück
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Monika Möder
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Alexandra Müller
- Federal Environmental Agency UBA, Dessau, UFZ, 06844 Dessau-Roßlau, Germany
| | - Albrecht Paschke
- Department of River Ecology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Wolf von Tümpling
- Department of River Ecology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Markus Weitere
- Department of River Ecology, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Jörn Wogram
- Federal Environmental Agency UBA, Dessau, UFZ, 06844 Dessau-Roßlau, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| |
Collapse
|