1
|
Senthamizh R, Vishwakarma P, Sinharoy A, Sinha R, Sharma S, Mal J. Biogenic nanoparticles and its application in crop protection against abiotic stress: A new dimension in agri-nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177884. [PMID: 39647194 DOI: 10.1016/j.scitotenv.2024.177884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The food demand to support the growing population worldwide is expected to increase up to 60 % by 2050. But, various abiotic stress including heat, drought, salinity, and heavy metal stress are becoming more prevalent due to global warming and seriously affecting the crop productivity. Nanotechnology has a great potential to solve this issue, as various nanoparticles (NPs) with their unique physical and chemical characteristics, have shown promising ability to enhance the stress tolerance and subsequently, improving the plant growth and development. Although NPs can be synthesized either via physically or chemically or biologically, application of biogenic NPs in agriculture are gaining strong attention due to their economic, environmental friendly, and sustainable benefits. The implementations of biogenic NPs have been reported to be enhancing both the quantitative and qualitative properties of crop production significantly by mitigating abiotic stress. Hence, this review paper critically discussed the application of biogenic NPs, synthesized using various biological methods i.e. bacteria, fungi, algae, and plant-based, in enhancing the abiotic stress resilience and crop production. Adverse effects of the major abiotic stresses on crops have also been highlighted in the paper. The paper also focused on the mechanistic insights of plant-NPs interactions, uptake, translocation and NPs-induced biochemical and molecular changes in plants to help mitigating the abiotic stress. The potential challenges and environmental implications of extensive use of biogenic NPs in agriculture compared to the chemogenic NPs has also been critically assessed. Future research direction is provided to delve into the potential of biogenic NPs as promising tools for mitigating abiotic stress, and improving plant growth and development for a sustainable agriculture via nanotechnology.
Collapse
Affiliation(s)
- R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arindam Sinharoy
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
4
|
Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, Al-Hashimi A. Biosynthesis of copper nanoparticles using Solenostemma argel and their effect on enhancing salt tolerance in barley plants. Sci Rep 2024; 14:12701. [PMID: 38831069 PMCID: PMC11148141 DOI: 10.1038/s41598-024-63641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.
Collapse
Affiliation(s)
- Hassan O Shaikhaldein
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdalrhaman M Salih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Chan TH, Ariyawansa HA, Rho H. Thermotolerant plant growth-promoting bacteria enhance growth and nutrient uptake of lettuce under heat stress conditions by altering stomatal movement and chlorophyll fluorescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:969-984. [PMID: 38974362 PMCID: PMC11222360 DOI: 10.1007/s12298-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
This study investigates the effects of selected PGPB on lettuce growth performance under heat-stress conditions. Bacterial plant growth-promoting potentials have been characterized and identified successfully in ongoing studies. Based on in vitro plant growth-promoting potential, the top five bacteria were ranked and identified as Acinetobacter sp. GRB12, Bacillus sp. GFB04, Klebsiella sp. LFB06, Klebsiella sp. GRB10, and Klebsiella sp. GRB04. They were mixed to inoculate on lettuce (Lactuca sativa L.) in temperature-controlled greenhouses. Another in-vivo chamber experiment was conducted by using Bacillus sp. GFB04 and Klebsiella sp. GFB10. Plant physiological traits (chlorophyll fluorescence and transpiration) and nutrient contents were measured at harvest, along with growth, development, and yield component analyses. Uninoculated plants under heat-stress condition showed poor growth performance. In contrast, plants with PGPB inoculation showed improved growth under heat-stress conditions, as the uptake of nutrients was facilitated by the symbionts. Inoculation also improved lettuce photosystem II efficiency and decreased total water use under heat stress. In conclusion, the current study suggests that PGPB inoculation successfully enhances lettuce heat-tolerance. PGPB application could potentially help improve sustainable production of lettuce with less fertilization under increasing temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01470-5.
Collapse
Affiliation(s)
- Tsz Hei Chan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 10617 Taiwan
| | - Hiran Anjana Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617 Taiwan
| | - Hyungmin Rho
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 10617 Taiwan
| |
Collapse
|
6
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
7
|
Noman M, Ahmed T, Shahid M, Nazir MM, Azizullah, Li D, Song F. Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon. J Adv Res 2024; 59:19-33. [PMID: 37385342 PMCID: PMC11081969 DOI: 10.1016/j.jare.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION Chemo- and bio-genic metallic nanoparticles (NPs), as a novel nano-enabled strategy, have demonstrated a great potential in crop health management. OBJECTIVE The current study aimed to explore the efficacy of advanced nanocomposites (NCs), integrating biogenic (bio) metallic NPs and plant immunity-regulating hormones, in crop disease control. METHODS Iron (Fe) NPs were biosynthesized using cell-free supernatant of a Fe-resistant strains, Bacillus marisflavi ZJ-4. Further, salicylic acid-coated bio-FeNPs (SI) NCs were prepared via co-precipitation method under alkaline conditions. Both bio-FeNPs and SINCs were characterized using basic analytical techniques, including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, and scanning/transmission electron microscopy. RESULTS Bio-FeNPs and SINCs had variable shapes with average sizes of 72.35 nm and 65.87 nm, respectively. Under greenhouse conditions, bio-FeNPs and SINCs improved the agronomic traits of the watermelon plants, and SINCs outperformed bio-FeNPs, providing the maximum growth promotion of 32.5%. Soil-drenching with bio-FeNPs and SINCs suppressed Fusarium oxysporum f. sp. niveum-caused Fusarium wilt in watermelon, and SINCs provided better protection than bio-FeNPs, through inhibiting the fungal invasive growth within host plants. SINCs improved the antioxidative capacity and primed a systemic acquired resistance (SAR) response via activating the salicylic acid signaling pathway genes. These findings indicate that SINCs can reduce the severity of Fusarium wilt in watermelon by modulating antioxidative capacity and potentiating SAR to restrict in planta fungal invasive growth. CONCLUSION This study provides new insights into the potential of bio-FeNPs and SINCs as biostimulants and bioprotectants for growth promotion and Fusarium wilt suppression, ensuring sustainable watermelon production.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | | | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Chai S, Yang Z, Deng X, Wang L, Jiang Y, Liao J, Yang R, Wang X, Zhang L. ZnO quantum dots alleviate salt stress in Salvia miltiorrhiza by enhancing growth, scavenging reactive oxygen species, and modulating stress-responsive genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123363. [PMID: 38242309 DOI: 10.1016/j.envpol.2024.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Experiments were conducted to investigate the alleviating effects of ZnO quantum dots (ZnO QDs) on salt stress in Salvia miltiorrhiza by comparing them with conventional ZnO nanoparticles (ZnO NPs). The results demonstrated that compared with salt stress alone, foliar application of ZnO QDs significantly improved the biomass as well as the total chlorophyll and carotenoids contents under salt stress. ZnO QDs reduced H2O2 and MDA levels, decreased non-enzymatic antioxidant (ASA and GSH) content, and improved antioxidant enzyme (POD, SOD, CAT, PAL, and PPO) activity under salt stress. Metal elemental analysis further demonstrated that the ZnO QDs markedly increased Zn and K contents while decreasing Na content, resulting in a lower Na/K ratio compared to salt stress alone. Finally, RNA sequencing results indicated that ZnO QDs primarily regulated genes associated with stress-responsive pathways, including plant hormone signal transduction, the MAPK signaling pathway, and metabolic-related pathways, thereby alleviating the adverse effects of salt stress. In comparison, ZnO NPs did not exhibit similar effects in terms of improving plant growth, enhancing the antioxidant system, or regulating stress-responsive genes under salt stress. These findings highlight the distinct advantages of ZnO QDs and suggest their potential as a valuable tool for mitigating salt stress in plants.
Collapse
Affiliation(s)
- Songyue Chai
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ziya Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
9
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
10
|
Pudake RN, Pallavi. Novel application of bio-based nanomaterials for the alleviation of abiotic stress in crop plants. NANOTECHNOLOGY FOR ABIOTIC STRESS TOLERANCE AND MANAGEMENT IN CROP PLANTS 2024:181-201. [DOI: 10.1016/b978-0-443-18500-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Noman M, Ahmed T, White JC, Nazir MM, Li D, Song F. Bacillus altitudinis-Stabilized Multifarious Copper Nanoparticles Prevent Bacterial Fruit Blotch in Watermelon (Citrullus lanatus L.): Direct Pathogen Inhibition, In Planta Particles Accumulation, and Host Stomatal Immunity Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207136. [PMID: 36599658 DOI: 10.1002/smll.202207136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The nano-enabled crop protecting agents have been emerging as a cost-effective, eco-friendly, and sustainable alternative to conventional chemical pesticides. Here, the antibacterial activity and disease-suppressive potential of biogenic copper nanoparticles (bio-CuNPs) against bacterial fruit blotch (BFB), caused by Acidovorax citrulli (Ac), in watermelon (Citrullus lanatus L.) is discussed. CuNPs are extracellularly biosynthesized using a locally isolated bacterial strain Bacillus altitudinis WM-2/2, and have spherical shapes of 29.11-78.56 nm. Various metabolites, such as alcoholic compounds, carboxylic acids, alkenes, aromatic amines, and halo compounds, stabilize bio-CuNPs. Foliar application of bio-CuNPs increases the Cu accumulation in shoots/roots (66%/27%), and promotes the growth performance of watermelon plants by improving fresh/dry weight (36%/39%), through triggering various imperative physiological and biochemical processes. Importantly, bio-CuNPs at 100 µg mL-1 significantly suppress watermelon BFB through balancing reactive oxygen species system, improving photosynthesis capacity, and modulating stomatal immunity. Bio-CuNPs show obvious antibacterial activity against Ac by inducing oxidative stress, biofilm inhibition, and cellular integrity disruption. These findings demonstrate that bio-CuNPs can suppress watermelon BFB through direct antibacterial activity and induction of active immune response in watermelon plants, and highlight the value of this approach as a powerful tool to increase agricultural production and alleviate food insecurity.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Giri VP, Shukla P, Tripathi A, Verma P, Kumar N, Pandey S, Dimkpa CO, Mishra A. A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:815. [PMID: 36840163 PMCID: PMC9967242 DOI: 10.3390/plants12040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Tripathi
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Verma
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christian O. Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Zia-Ur-Rehman M, Anayatullah S, Irfan E, Hussain SM, Rizwan M, Sohail MI, Jafir M, Ahmad T, Usman M, Alharby HF. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. CHEMOSPHERE 2023; 314:137649. [PMID: 36587917 DOI: 10.1016/j.chemosphere.2022.137649] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global biomass production from agricultural farmlands is facing severe constraints from abiotic stresses like soil salinization. Salinity-mediated stress triggered the overproduction of reactive oxygen species (ROS) that may result in oxidative burst in cell organelles and cause cell death in plants. ROS production is regulated by the redox homeostasis that helps in the readjustment of the cellular redox and energy state in plants. All these cellular redox related functions may play a decisive role in adaptation and acclimation to salinity stress in plants. The use of nanotechnology like nanoparticles (NPs) in plant physiology has become the new area of interest as they have potential to trigger the various enzymatic and non-enzymatic antioxidant capabilities of plants under varying salinity levels. Moreover, NPs application under salinity is also being favored due to their unique characteristics compared to traditional phytohormones, amino acids, nutrients, and organic osmolytes. Therefore, this article emphasized the core response of plants to acclimate the challenges of salt stress through auxiliary functions of ROS, antioxidant defense system and redox homeostasis. Furthermore, the role of different types of NPs mediated changes in biochemical, proteomic, and genetic expressions of plants under salt stress have been discussed. This article also discussed the potential limitations of NPs adoption in crop production especially under environmental stresses.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Effa Irfan
- Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan; Department of Environmental Sciences, Faculty of Life Sciences, University of Okara, 56300, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad Pakistan, 38040, Pakistan
| | - Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture Multan, 60000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
Noman M, Ahmed T, Ijaz U, Shahid M, Nazir MM, White JC, Li D, Song F. Bio-Functionalized Manganese Nanoparticles Suppress Fusarium Wilt in Watermelon (Citrullus lanatus L.) by Infection Disruption, Host Defense Response Potentiation, and Soil Microbial Community Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205687. [PMID: 36382544 DOI: 10.1002/smll.202205687] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The use of nanofabricated materials is being explored for the potential in crop disease management. Chemically synthesized micronutrient nanoparticles (NPs) have been shown to reduce crop diseases; however, the potential of biogenic manganese NPs (bio-MnNPs) in disease control is unknown. Here, the potential and mechanism of bio-MnNPs in suppression of watermelon Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon) are reported. Bio-MnNPs are synthesized by cell-free cultural filtrate of a waterrmelon rhizosphere bacterial strain Bacillus megaterium NOM14, and are found spherical in shape with a size range of 27.0-65.7 nm. Application of bio-MnNPs at 100 µg mL-1 increases Mn content in watermelon roots/shoots and improves growth performance through enhancing multiple physiological processes, including antioxidative capacity. Bio-MnNPs at 100 µg mL-1 suppress Fusarium wilt through inhibiting colonization and invasive growth of Fon in watermelon roots/stems, and inhibit Fon vegetative growth, conidiation, conidial morphology, and cellular integrity. Bio-MnNPs potentiate watermelon systemic acquired resistance by triggering the salicylic acid signaling upon Fon infection, and reshape the soil microbial community by improving fungal diversity. These findings demonstrate that bio-MnNPs suppress watermelon Fusarium wilt by multiple ex planta and in planta mechanisms, and offer a promising nano-enabled strategy for the sustainable management of crop diseases.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, 7250, Australia
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. CHEMOSPHERE 2022; 303:135206. [PMID: 35660052 DOI: 10.1016/j.chemosphere.2022.135206] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal remediation, such as cadmium (Cd2+) by microbial strains is efficient and environment-friendly. In this current study, we exploited the potential of Bacillus strains (Cd2+-tolerant; NMTD17, GBSW22, and LLTC96) to regulate Cd2+ biosorption mechanisms and improve rice seedling growth. The results showed that initial concentration and contact time affected Cd2+ biosorption, and the kinetic models of pseudo orders were effective in the elaborate biosorption process. Mainly, the bacterial cell wall had the potential for Cd2+ biosorption, and we found non-significant biosorption alterations among bacterial strains' inner and outer surfaces of cell membranes. Furthermore, the Fourier transform infrared (FTIR) spectroscopy analysis identified the differences in functional groups, such as C-N, PO2, -SO3, CO, COOH, C-O, C-N, -OH, and -NH that interact in biosorption by Bacillus strains. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) examination revealed that the binding of Cd2+ to microbes was mostly based on ion exchange pathways. Moreover, the Bacillus strains responded to Cd2+ stress in rice under pot experiment at various concentrations (0, 0.25, and 0.50 mg kg-1), and they also influenced the chlorophyll contents and antioxidants activities were studied. The analysis of physio-morphological parameters was observed to be increased, which indicated that all Bacillus strains showed significant effects on rice growth under Cd2+ stress. These results revealed that the selected strains had the capability for additional use in the development of Cd2+ bioremediation methods. These strains also provided plant growth-promoting (PGP) traits that can alleviate the harmful effects of Cd2+ in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Ahmed T, Noman M, Rizwan M, Ali S, Ijaz U, Nazir MM, ALHaithloul HAS, Alghanem SM, Abdulmajeed AM. Green molybdenum nanoparticles-mediated bio-stimulation of Bacillus sp. strain ZH16 improved the wheat growth by managing in planta nutrients supply, ionic homeostasis and arsenic accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127024. [PMID: 34481401 DOI: 10.1016/j.jhazmat.2021.127024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 08/22/2021] [Indexed: 05/13/2023]
Abstract
The present work mechanistically addressed the problem of arsenic (As) contamination in agricultural soils by using locally isolated Bacillus sp. strain ZH16 and biogenic molybdenum nanoparticles (MoNPs) simultaneously for the first time. The interactions of MoNPs with strain ZH16 and ZH16-inoculated wheat plants were examined under As non-spiked and spiked conditions. The biogenic MoNPs showed efficient biocompatibility with strain ZH16 by promoting indole-3-acetic acid synthesis, phosphate solubilization and ACC deaminase activity without and with As stress. The results from greenhouse experiment revealed that co-application of biogenic MoNPs and bacterial strain ZH16 significantly promoted the morphological parameters, nutrients content and ionic balance of wheat plants under normal and As spiked conditions. Furthermore, combining the bacterial strain ZH16 with biogenic MoNPs dramatically reduced As translocation in plants (30.3%) as compared to ZH16-inoculated wheat plants. Conclusively, our results elucidate the importance of synergistic application of plant growth promoting rhizobacteria (PGPR) and biogenic MoNPs to counteract global food safety issues in a sustainable manner. The biogenic NPs could serve as stabilizing agent for PGPR by facilitating their colonization in plant holobiont regardless of environmental conditions. These novel advancements will provide new insights into nano-oriented PGPR research in the agricultural sector.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Mudassir Nazir
- Department of agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj, 46429 Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Banerjee A, Roychoudhury A. Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. CHEMOSPHERE 2022; 286:131827. [PMID: 34403897 DOI: 10.1016/j.chemosphere.2021.131827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Precision farming using nanoparticles is a cutting-edge technology for safe cultivation of crop plants in marginal areas afflicted with environmental/climatic stresses like salinity, drought, extremes of temperature, ultraviolet B stress or polluted with xenobiotics like toxic heavy metals and fluoride. Major cereal crops like rice, wheat, maize, barley, sorghum and millets which provide the staple food for the entire global population are mainly glycophytes and are extremely susceptible to abiotic stress-induced oxidative injuries. Nanofertilization/exogenous spraying of beneficial nanoparticles alleviates the oxidative damages in cereals by altering the homeostasis of phytohormones like abscisic acid, gibberellins, cytokinins, auxins, salicylic acid, jasmonic acid and melatonin and by triggering the synthesis of gasotransmitter nitric oxide. Signaling cross-talks of nanoparticles with plant growth regulators enable activation of the defence machinery, comprising of antioxidants, thiol-rich compounds and glyoxalases and restrict xenobiotic mobilization by suppressing the expression of associated transporters. Accelerated nutrient uptake and grain biofortification under the influence of nanoparticles result in optimum crop productivity under sub-optimal conditions. However, over-dosing of even beneficial nanoparticles promotes severe phytotoxicity. Hence, the concentration of nanoparticles and mode of administering need to be thoroughly standardized before large-scale field applications, to ensure sustainable cereal cultivation with minimum ecological imbalance.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
18
|
Ahmed T, Noman M, Manzoor N, Ali S, Rizwan M, Ijaz M, Allemailem KS, BinShaya AS, Alhumaydhi FA, Li B. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106093. [DOI: 10.1016/j.jece.2021.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|