1
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
2
|
Imran M, Junaid M, Shafiq S, Liu S, Chen X, Wang J, Tang X. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134640. [PMID: 38810581 DOI: 10.1016/j.jhazmat.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L-1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L-1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sarfraz Shafiq
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyuan Chen
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Chen Z, Guo Z, Xu N, Cao X, Niu J. Graphene nanoparticles improve alfalfa (Medicago sativa L.) growth through multiple metabolic pathways under salinity-stressed environment. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154092. [PMID: 37716315 DOI: 10.1016/j.jplph.2023.154092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphene, one of the emerging carbon nanomaterials, has many advantages and applications. Salinity stress seriously affects ecology and agroforestry worldwide. The effects of graphene on alfalfa under salinity stress were investigated. The results indicated that graphene promoted alfalfa growth under non-salinity stress but caused some degree of damage to root cells and leaf parameters. Graphene used in salinity stress had a positive effect on growth parameters, chlorophyll, photosynthetic gas parameters, stomatal opening, ion balance, osmotic homeostasis, cell membrane integrity and antioxidant system, while it decreased Na+, lipid peroxidation and reactive oxygen species levels. Correlation analysis revealed that most of the parameters were significantly correlated; and principal component analysis indicated that the first two dimensions (78.1% and 4.1%) explained 82.2% of the total variability, and the majority of them exceeded the average contribution. Additionally, Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis showed that there were numerous differentially expressed genes and pathways to regulate alfalfa responding to salinity stress. Taken together, the findings reveal that graphene does not enter the plant, but improves the properties and adsorption of soil to enhance salt tolerance and seedling growth of alfalfa through morphological, physiological, biochemical, and transcriptomic aspects. Furthermore, this study provides a reference for the application of graphene to improve soil environment and agricultural production.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xinlong Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
5
|
Gao S, Wang Y, Zeng Z, Zhang M, Yi N, Liu B, Wang R, Long S, Gong J, Liu T, Xu Y. Integrated bioinformatic and physiological analyses reveal the pivotal role of hydrogen sulfide in enhancing low-temperature tolerance in alfalfa. PHYSIOLOGIA PLANTARUM 2023; 175:e13885. [PMID: 36852715 DOI: 10.1111/ppl.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2 S) is an important gaseous signal molecule that regulates plant growth and stress resistance. However, research on the H2 S synthase (HSase) genes is still limited in the model legume plant Medicago truncatula Gaertn. In the present study, a total of 40 HSase family members were first identified and analyzed in the M. truncatula genome, and these genes distributed across eight chromosomes and were clustered into five groups (I-V) based on their conserved gene structures and protein motifs. Expression analysis revealed that the MtHSase genes were expressed in all the tested abiotic stresses, albeit with expression level differences. This study also showed that H2 S improves low temperature tolerance of alfalfa seedlings by regulating the antioxidant defense system and enhancing photosynthetic capacity. Thus, the study provides new insights into how the H2 S signal regulates tolerance to low-temperature stress and provides the basis for further gene function and detection.
Collapse
Affiliation(s)
- Shuanghong Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, People's Republic of China
| | - Zhen Zeng
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Menglei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Na Yi
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Ruijia Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Jiongjiong Gong
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
6
|
Jing Q, Hou H, Meng X, Chen A, Wang L, Zhu H, Zheng S, Lv Z, Zhu X. Transcriptome analysis reveals the proline metabolic pathway and its potential regulation TF-hub genes in salt-stressed potato. FRONTIERS IN PLANT SCIENCE 2022; 13:1030138. [PMID: 36325562 PMCID: PMC9619106 DOI: 10.3389/fpls.2022.1030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Potato (Solanum tuberosum) is currently the third most important food crop in the world. However, the production of potato is seriously threatened by salt stress, which often occurs in the facility cultivation environment, and the mining of salt tolerance genes in potato remains to be further studied. In this study, test-tube plantlets of DM potato were treated with 200-mM NaCl to simulate salt stress, and 15 cDNA libraries were constructed for RNA-seq analysis. A total of 8383 DEGs were identified, of which 3961 DEGs were shared among all the salt treatments, and 264 (7.15%) TF-coding genes were identified from these shared DEGs. KEGG enrichment analysis showed that most DEGs identified from the "arginine and proline metabolism" (ko00330) were enriched in the proline metabolic pathway, and their functions almost covered the whole proline metabolic process. Further analysis showed that expression levels of all the 13 structural DEGs in the pathway were significantly up-regulated and proline accumulation was also significantly increased under salt stress, and 13 TF-hub genes were discovered by WGCNA in the lightcyan and tan modules which were highly positively correlated with the proline contents. Correlation analysis revealed that the four TF-hub genes of the lightcyan module and seven structural DEGs of the proline metabolic pathway might be the potential candidate genes, especially the potential and novel regulatory gene StGLK014720. Furthermore, the dual-luciferase reporter assay confirmed that the key protein StGLK014720 could activate the promoters of both structural genes StAST021010 and StAST017480. In conclusion, these results lay the foundation for further study on the salt tolerance mechanism of potato, and provide a theoretical basis and new genetic resources for salt tolerance breeding of potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhaoyan Lv
- *Correspondence: Zhaoyan Lv, ; Xiaobiao Zhu,
| | | |
Collapse
|
7
|
Sun H, Peng Q, Guo J, Zhang H, Bai J, Mao H. Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119817. [PMID: 35872284 DOI: 10.1016/j.envpol.2022.119817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of nanomaterials has increased their levels in soil environments. Therefore, clarifying the process of environmental migration is important for environmental safety and human health. In this study, alfalfa was used to determine the effects of different doses of ZnO nanoparticles (NPs) on the growth of alfalfa and the soil environment. Results showed that the alfalfa biomass was inversely proportional to the exposure concentration of ZnO NPs. The Zn concentration in the alfalfa tissue and the exposure dose presented a significant positive correlation. A high concentration of ZnO NPs decreased the nitrogen-fixing area of root nodules while the number of bacteroids and root nodules, which in turn affected the nitrogen-fixing ability of alfalfa. At the same time, it caused different degrees of damage to the root nodules and root tip cells of alfalfa. A high dose of ZnO NPs decreased the relative abundance and diversity of the soil microorganisms. Therefore, short-term and high-dose exposure of ZnO NPs causes multiple toxicities in plants and soil environments.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingqing Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junrui Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Kareem HA, Hassan MU, Zain M, Irshad A, Shakoor N, Saleem S, Niu J, Skalicky M, Chen Z, Guo Z, Wang Q. Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119069. [PMID: 35276246 DOI: 10.1016/j.envpol.2022.119069] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
Global efforts are in rapid progress to tackle the emerging conundrum of climate change-induced heat stress in grassland ecosystems. Zinc oxide nanoparticles (n-ZnO) are known to play a crucial role in plants' abiotic stress regulation, but its response in alfalfa against heat stress has not been explored. This study aimed at assessing the effects of n-ZnO on alfalfa under heat stress by various morpho-physiological and cellular approaches. Five-week-old alfalfa seedlings were subjected to foliar application of n-ZnO as a pretreatment before the onset of heat stress (BHS) to evaluate its effect on heat tolerance, and as a post-treatment after heat stress (AHS) to evaluate recovery efficiency. In vitro studies on Zn release from n-ZnO by Inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the particle uptake and Zn release were concentration dependent. The uptake and translocation of n-ZnO examined by transmission electron microscope (TEM) reveling showed that n-ZnO was primarily localized in the vacuoles and chloroplasts. TEM images showed that ultrastructural modifications to chloroplast, mitochondria, and cell wall were reversible by highest dose of n-ZnO applied before heat stress, and damages to these organelles were not recoverable when n-ZnO was applied after heat stress. The results further enlightened that 90 mg L-1 n-ZnO better prevented the heat stress-mediated membrane damage, lipid peroxidation and oxidative stress by stimulating antioxidant systems and enhancing osmolyte contents in both BHS and AHS. Although, application of 90 mg L-1 n-ZnO in BHS was more effective in averting heat-induced damages and maintaining better plant growth and morpho-physiological attributes compared to AHS. Conclusively, foliar application of n-ZnO can be encouraged as an effective strategy to protect alfalfa from heat stress damages while minimizing the risk of nanoparticle transmission to environmental compartments, which could happen with soil application.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Zain
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs/Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sana Saleem
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Czech Republic
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
10
|
Liu L, Weng Y, Fang J, Zhao Z, Du S. Understanding the effect of GO on nitrogen assimilation in wheat through transcriptomics and metabolic process analysis. CHEMOSPHERE 2022; 296:134000. [PMID: 35192852 DOI: 10.1016/j.chemosphere.2022.134000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The extensive use of graphene oxide (GO) has resulted in its inevitable entry into the environment. It has been established that GO is detrimental to nitrogen accumulation in plants, as nitrogen is one of the most important nutrient for plant growth. However, its influence on nitrogen assimilation has not yet been investigated comprehensively. Based on the analysis of transcriptomics and nitrogen metabolites, this study showed that 400 mg L-1 GO exposure downregulated most of the genes encoding nitrogen-assimilating enzymes, including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). The activities of the above enzymes in wheat roots were also reduced with GO addition, and the activities of NR and GS, the rate-limiting enzymes of nitrate and ammonium assimilation, were approximately 75% and 76% lower with 400 mg L-1 GO supply, respectively, compared to those upon control treatment. Correspondingly, GO appears to exert a negative effect on multiple nitrogen assimilation products, including nitrous nitrogen, ammonium nitrogen, glutamine, glutamate, and soluble protein. In summary, this study showed that GO has adverse effects on the nitrogen assimilation of plants, and NR and GS are the most affected sites. Our findings would provide deeper insights into the physiological and molecular mechanisms underlying GO phytotoxicity.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention Technology of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yineng Weng
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zijing Zhao
- Key Laboratory of Pollution Exposure and Health Intervention Technology of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention Technology of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
11
|
Parmar S, Kaur H, Singh J, Matharu AS, Ramakrishna S, Bechelany M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1115. [PMID: 35407234 PMCID: PMC9000675 DOI: 10.3390/nano12071115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis methodologies now exist in the literature. Herein, this review evaluates recent advances in biological approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the environment, and human health are briefly discussed. Finally, we also provide a summary of the current state of the research and future challenges on a biologically mediated Ag-nanostructures-based effective platform for alleviating AMR.
Collapse
Affiliation(s)
- Simerjeet Parmar
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Harwinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Avtar Singh Matharu
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology & Sustainability, National University of Singapore, Singapore 117575, Singapore;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
12
|
Chen Z, Guo Z, Niu J, Xu N, Sui X, Kareem HA, Hassan MU, Yan M, Zhang Q, Wang Z, Mi F, Kang J, Cui J, Wang Q. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis. CHEMOSPHERE 2022; 290:133368. [PMID: 34933027 DOI: 10.1016/j.chemosphere.2021.133368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.
Collapse
Affiliation(s)
- Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quan Zhang
- Jiuquan Daye Seed Industry Co. Ltd., Jiefang Road 325#, Suzhouqu, Jiuquan, 735000, Gansu Province, China
| | - Zhaolan Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot, 010010, Inner Mongolia, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100094, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
13
|
Liu C, Sun L, Sun Y, You X, Wan Y, Wu X, Tan M, Wu Q, Bai X, Ye X, Peng L, Zhao G, Xiang D, Zou L. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127443. [PMID: 34653867 DOI: 10.1016/j.jhazmat.2021.127443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing application of nanomaterials, evaluation of the phytotoxicity of nanoparticles has attracted considerable interest. Buckwheat is an economically pseudocereal crop, which is a potential model for investigating the response of plants to hazardous materials. In this study, the response of buckwheat to graphene oxide (GO) was investigated by integrating physiological and transcriptome analysis. GO can penetrate into buckwheat root and stem, and high concentrations of GO inhibited seedlings growth. High concentration of GO improved ROS production and regulated the activities and gene expression of oxidative enzymes, which implying GO may affect plant growth via regulating ROS detoxification. Root and stem exhibit distinct transcriptomic responses to GO, and the GO-responsive genes in stem are more enriched in cell cycle and epigenetic regulation. GO inhibited plant hormone biosynthesis and signaling by analyzing the expression data. Additionally, 97 small secreted peptides (SSPs) encoding genes were found to be involved in GO response. The gene expression of 111 transcription factor (TFs) and 43 receptor-like protein kinases (RLKs) were regulated by GO, and their expression showed high correlation with SSPs. Finally, the TFs-SSPs-RLKs signaling networks in regulating GO response were proposed. This study provides insights into the molecular responses of plants to GO.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| | - Lu Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoqing You
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Maoling Tan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| |
Collapse
|