1
|
Wu W, Lv X, Feng Y, Yang M, Yang G, Zhao D, Yan C, Lin P. Mitochondrial dysfunction is driven by imbalanced fission and fusion of mitochondria in myofibrillar myopathy type 5. Hum Mol Genet 2025:ddaf051. [PMID: 40244302 DOI: 10.1093/hmg/ddaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Myofibrillar myopathy type 5 (MFM5) is a dominantly inherited myopathy caused by mutations in the FLNC gene. The underlying pathogenic mechanisms of MFM5 remain unclear, and there are currently no effective treatments available. This study hypothesizes that mitochondrial dysfunction plays a key role in the pathogenesis of MFM5, on the basis of the COX-negative fibres observed in MFM5 patients. To test this hypothesis, a zebrafish model was developed to explore the impact of filamin-C on mitochondrial dynamics. These results demonstrated that defects in filamin-C disrupt mitochondrial fission, leading to mitochondrial dysfunction and mitophagy. This hypothesis was further validated through the analysis of skeletal muscle samples from MFM5 patients. These findings suggest that mitochondrial dysfunction caused by imbalanced fission and fusion of mitochondria and mitophagy contributes to MFM5 pathology. Importantly, this study identified potential therapeutic targets for MFM5 treatment, opening avenues for future research aimed at developing targeted interventions.
Collapse
Affiliation(s)
- Wenjing Wu
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Xiaoqing Lv
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Yifei Feng
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Mengqi Yang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Guiguan Yang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Dandan Zhao
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao 266000, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
- Brain Science Research Institute, Shandong University, Wenhua Xi Road 44, Jinan, Shandong 250000, China
| | - Pengfei Lin
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Wu Y, Fan F, Zhou L, Shen Y, Wang A, Qin Y, Wang J, Yao W. ADB-FUBINACA-induced developmental toxicity, neurotoxicity, and cardiotoxicity in embryonic zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2025; 276:121517. [PMID: 40180266 DOI: 10.1016/j.envres.2025.121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
As an emerging pollutant, the synthetic cannabinoid N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (ADB-FUBINACA) is widely abused and frequently detected in metropolitan wastewater. However, its effect on aquatic organisms remains unexplored. In this study, embryonic and larval zebrafish were exposed to sublethal concentrations of ADB-FUBINACA to assess its toxic effects via behavioral, biochemical, and metabolomic analyses. The observed morphological defects included reduced heartbeat, shorter body length, spinal deformation, and pericardial edema. Transgenic zebrafish exhibited cardiac developmental defects and apoptosis, indicating that cardiotoxicity is associated with dysregulated gene expression. Impaired motor activity and disrupted neuronal development suggested neurotoxicity. Elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels indicate oxidative stress, whereas transcriptional changes in immune-related genes reflect a dysregulated inflammatory response. Metabolomic analyses revealed disruptions in pathways related to alanine, purine, and pyrimidine metabolism, and arginine biosynthesis, which correlated with oxidative damage, cardiotoxicity, and neurodevelopmental effects. In conclusion, ADB-FUBINACA induces developmental toxicity in zebrafish embryos via oxidative stress and metabolic disruption, highlighting the potential environmental risks posed by this emerging pollutant.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Fengjun Fan
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Lu Zhou
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yihang Shen
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yazhou Qin
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
3
|
Coelho MM, Ribeiro O, Carvalho AR, Pérez-Pereira A, Ribeiro C, Fernandes C, Remião F, Carrola JS, Tiritan ME. Enantioselective ecotoxicity of promethazine in two freshwater organisms: daphnia (Daphnia magna) and zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:184-196. [PMID: 39887278 DOI: 10.1093/etojnl/vgae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 02/01/2025]
Abstract
Chiral pharmaceuticals, racemic or enantiomerically pure forms and their metabolites, can reach aquatic ecosystems via wastewater effluents (inefficient treatment operations) or by direct human disposal. They may negatively affect nontarget organisms even at low environmental concentrations. To make an accurate risk evaluation, the (eco)toxicity of both enantiomers needs to be assessed. Promethazine (PMZ) is a chiral antihistamine that has been detected in aquatic ecosystems owing to its high consumption. Promethazine undergoes metabolism in the liver, producing chiral metabolites such as promethazine sulfoxide (PMZSO) and N-desmethylpromethazine (DMPMZ) that reach water bodies. However, knowledge regarding the enantioselective toxicity of PMZ and its metabolites on aquatic organisms is missing. This study aimed to explore the potential enantioselective toxicity of PMZ and its metabolites on two relevant freshwater organisms, daphniid and fish, representing different trophic levels. The half maximal effect concentrations (EC50s) in Daphnia magna of PMZ, DMPMZ, and PMZSO were 2.33, 2.31, > 4 mg L-1, respectively, > 4 and 2.50 mg L-1 for (R) and (S)-PMZ, respectively, and > 4 mg L-1 for the enantiomers of DMPMZ and PMZSO. In studies involving zebrafish, Danio rerio, (R, S)-PMZ showed a median lethal concentration (LC50) of .72 mg L-1, and specific assays revealed that (R)-PMZ exhibited more pronounced adverse effects on larvae at the embryonic, morphological, and biochemical level than the racemate and (S)-PMZ. Toxicity and potential bioaccumulation of these compounds in daphniids and fish were also conducted using in silico tests through proprietary software. The results revealed a concordance between the experimental and predicted EC50 and LC50 values in both species.
Collapse
Affiliation(s)
- Maria Miguel Coelho
- Laboratory of Organic Chemistry and Pharmaceuticals, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research University of Porto, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Ana Rita Carvalho
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Gandra, Portugal
| | - Ariana Pérez-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Gandra, Portugal
| | - Cláudia Ribeiro
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Gandra, Portugal
| | - Carla Fernandes
- Laboratory of Organic Chemistry and Pharmaceuticals, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research University of Porto, Matosinhos, Portugal
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB-Insitute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic Chemistry and Pharmaceuticals, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research University of Porto, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
4
|
Ribeiro O, Félix L, Ribeiro C, Torres-Ruiz M, Tiritan ME, Gonçalves VMF, Langa I, Carrola JS. Unveil the toxicity induced on early life stages of zebrafish (Danio rerio) exposed to 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176906. [PMID: 39423890 DOI: 10.1016/j.scitotenv.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The increased detection of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) in aquatic ecosystems, has raised concern worldwide about its possible negative impacts on wildlife. MDMA is produced as racemate but its enantioselective effects on non-target organisms are poorly understood. Therefore, this study aimed to provide a comprehensive study of the toxicity of MDMA and its enantiomers in the early life stages of zebrafish (Danio rerio). Zebrafish embryos (≈3 h post fertilization) were exposed to different concentrations (0.02, 0.2, 2, 20, and 200 μg/L) of (R,S)-MDMA and both pure enantiomers. Both enantiomers induced effects on embryonic development, DNA integrity, and behaviour and enantioselective effects were noted. (S)-MDMA exhibits higher toxic effects on embryonic development level with increased mortality and severity of teratogenic effects, and behavioural abnormalities in acoustic startle-habituation response. (R)-MDMA affected general activity and avoidance behaviour, showing greater inhibitory effects on behavioural activity. Additionally, (R,S)-MDMA induced higher genotoxic effects than the two isolated enantiomers. These results are of concern at populational levels since effects on mortality, development, and behaviour were observed even at environmentally relevant concentrations, which can cause a reduction of larval viability and in the number of individuals in each generation, and an increase in the risk of predation of the organisms. Yet, the bioaccumulation studies showed that MDMA is not accumulated in zebrafish. Therefore, this work demonstrated for the first time the occurrence of MDMA enantiotoxicity in the early life stages of zebrafish, which should be considered in further environmental risk assessments involving fish species or other non-target aquatic organisms.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Cláudia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Monica Torres-Ruiz
- Toxicology Department, National Centre for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Maria Elizabeth Tiritan
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Virgínia M F Gonçalves
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Ivan Langa
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal.
| |
Collapse
|
5
|
Ivantsova E, Martyniuk CJ. Environmental presence and toxicological outcomes of the herbicide pendimethalin in teleost fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:531-545. [PMID: 38896413 DOI: 10.1007/s10646-024-02767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Herbicides are often detected in aquatic ecosystems due to residential and agricultural applications and can harm aquatic organisms once deposited into water systems. Pendimethalin is part of the dinitroaniline chemical family and is applied to crops like corn, legumes, potatoes, and soybeans. The potential toxicity of pendimethalin to aquatic species is understudied compared to other widely studied herbicides, like atrazine and glyphosate. The objectives of this review were to (1) collate information on sub-lethal responses to pendimethalin exposure in fish, (2) evaluate how exposure studies relate to environmental concentrations, and (3) identify putative bioindicators for exposure studies. Overall, studies reporting pendimethalin in water systems worldwide indicate a range of 100-300 ng/L, but levels have been reported as high as ~15 µg/g in sediment. In teleost fish, studies demonstrate developmental toxicity, immunotoxicity, and behavioral disruptions. The strongest evidence for pendimethalin-induced toxicity involves oxidative stress, although studies often test toxicity at higher concentrations than environmentally relevant levels. Using the Comparative Toxicogenomics Database, pathway analysis reveals linkages to neurotoxicity and mechanisms of neurodegeneration like "Ubiquitin Dependent Protein Degradation", "Microtubule Cytoskeleton", "Protein Oxidation and Aggregation in Aging", and "Parkinson's Disease". Other prominent pathways included those related to mTOR signaling and reproduction. Thus, two potential mechanisms underlying pendimethalin-induced toxicity in fish include the neural and reproductive systems. This review synthesizes current data regarding environmental fate and ecotoxicology of pendimethalin in teleost fish and points to some putative physiological and molecular responses that may be beneficial for assessing toxicity of the herbicide in future investigations.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Wang J, Sun H, Yang H, Yang R, Zhu X, Guo S, Huang Y, Xu Y, Li C, Tu J, Sun C. Dessecting the toxicological profile of polysorbate 80 (PS80): comparative analysis of constituent variability and biological impact using a zebrafish model. Eur J Pharm Sci 2024; 198:106796. [PMID: 38735400 DOI: 10.1016/j.ejps.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Polysorbate 80, commonly abbreviated as PS80, is a widely used pharmaceutical excipient renowned for its role as a solubilizer and stabilizer in drug formulations. Although PS80 is essential for various pharmaceutical applications, particularly in the formulation of injectable drugs, it has been implicated in a range of adverse reactions. However, due to the complexity of the composition of PS80, the differences in the types and contents of the constituents of PS80 from different manufacturers increase the probability or likelihood of their uneven quality. Addressing the complete spectrum of PS80's components is challenging; thus, most studies to date have examined PS80 as a singular entity. This approach, however, carries a degree of uncertainty, as it overlooks the unique composition and concentration of components within the PS80 used in experiments, which may not reflect the actual diversity in commercially available PS80 products. Recognizing the critical need to understand how PS80's composition influences biological effects and toxicity, our study aims to bridge this knowledge gap. By doing so, we can clarify how different PS80 compositions from various manufacturers might affect the quality of pharmaceutical formulations, and also guide excipient manufacturers toward producing higher-quality PS80. Such insights could further facilitate a more targeted application of PS80 in drug development. Building on our previous work, we isolated and prepared two key components of PS80-polyoxyethylene sorbitan monooleate (PSM) and polyoxyethylene isosorbide monooleate (PIM)-and conducted a systematic comparison. We evaluated the acute, hemolytic, and target organ toxicity of two different PS80 samples, as well as PSM and PIM, using a zebrafish model. Our research also delved into the potential mechanisms behind the observed toxicological effects, providing an in-depth understanding of PS80's impact on biological systems.The results show that PS80, PSM, and PIM resulted in developmental anomalies in larval zebrafish. The primary organs of acute toxicity in zebrafish exposed to PS80 and its typical components PSM and PIM include the cardiovascular system, kidneys, intestines, skin, and liver. Notably, PIM further induced severe pericardial edema and erythrocyte hemolysis, thereby affecting blood flow. The samples also instigated oxidative damage by disrupting the redox equilibrium in the larvae. Compared to PS80, both PSM and PIM induced greater oxidative damage, with PIM notably causing significantly higher lipid oxidation, suggesting that oxidative stress may play a crucial role in polysorbate80-induced toxicity. Furthermore, our study found that PS80 could induce alterations in DNA conformation. The findings underscore the necessity for excipient regulators to establish comprehensive quality standards for Polysorbate 80 (PS80). By implementing such standards, it is possible to minimize the clinical risks associated with the variability in PS80 composition, ensuring safer pharmaceutical products for patients.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Quality Control of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Control of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Huiying Yang
- NMPA Key Laboratory for Quality Control of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Rui Yang
- NMPA Key Laboratory for Quality Control of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xiaoyu Zhu
- Hunter Biotechnology Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province 310051, China
| | - Shengya Guo
- Hunter Biotechnology Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province 310051, China
| | - Yanfeng Huang
- Hunter Biotechnology Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province 310051, China
| | - Yiqiao Xu
- Hunter Biotechnology Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province 310051, China
| | - Chunqi Li
- Hunter Biotechnology Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province 310051, China
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
7
|
Chen J, Wei Y, Zhou J, Cao X, Yuan R, Lu Y, Guo Y, Shao X, Sun W, Jia M, Chen X. Tributyltin-induced oxidative stress causes developmental damage in the cardiovascular system of zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 252:118811. [PMID: 38555090 DOI: 10.1016/j.envres.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 μg/L, 1 μg/L, and 2 μg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yaoyajie Lu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xue Shao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weidi Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xiuli Chen
- Ecological Environment College, Baotou Teachers' College, Baotou, 014030, China.
| |
Collapse
|
8
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
9
|
Akgöl J, Kanat Pektaş M. Investigation of the Relationship between Spontaneous Abortion, Serum Pesticides, and Polychlorinated Biphenyl Levels. TOXICS 2023; 11:884. [PMID: 37999536 PMCID: PMC10675613 DOI: 10.3390/toxics11110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Occupational and environmental chemical exposure have been associated with adverse reproductive consequences. This study investigates the relationship between spontaneous abortion and blood pesticide and polychlorinated biphenyl (PCB) levels. A survey was conducted, and blood samples were collected from 200 patients, consisting of 100 cases with spontaneous abortion and 100 cases with normal deliveries. A total of 150 different pesticides, including organophosphates, organochlorines, carbamates, and pyrethroids, were screened in the collected blood samples and analyzed quantitatively using Tandem mass spectrometry-specifically in combination with liquid chromatography and gas chromatography-tandem mass spectrometry methods. Eight types of PCBs were analyzed with the gas chromatography-tandem mass spectrometry method. The groups were compared based on these analyses. The mean age of the participants was 28.09 ± 4.94 years. In 59% of the spontaneous abortion group, 5.05 ± 1.97 chemicals were detected in different amounts. (p < 0.05). Analysis of the samples identified the presence of β-Hexachlorocyclohexane (β-HCH), delta-hexachlorocyclohexane (δ HCH), Hexachlorobenzene (HCB), Pentachlorobiphenyl-28 (PCB-28), Pentachlorobiphenyl-52 (PCB-52), o,p'-Dichlorodiphenyldichloroethylene (o,p'-DDE), p,p'-Dichlorodiphenyldichloroethylene (p,p'DDE), o,p'-Dichlorodiphenyldichloroethane (o,p'-DDD), p,p'-Dichlorodiphenyldichloroethane (p,p'-DDD), Pentachlorobiphenyl-118 (PCB-118), Pentachlorobiphenyl-101 (PCB-101), Pentachlorobiphenyl-153 (PCB-153), Pentachlorobiphenyl-138 (PCB-138), Pentachlorobiphenyl-202 (PCB-202), Pentachlorobiphenyl-180 (PCB-180) as well as Fibronil, Buprimate, Acetoclor, Acemiprid, Pentimanthalin, and Triflokystrobin. The spontaneous abortion group had significantly higher exposure to PCB-101, PCB-52, PCB-138, and δ-HCH (p < 0.05). Women included in the study had high pesticide and PCB exposure rates. Many of the blood samples contained multiple pesticides with endocrine-disrupting effects. Higher exposure to organochlorine compounds in the serum was identified in the group with spontaneous abortions.
Collapse
Affiliation(s)
- Jale Akgöl
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Mine Kanat Pektaş
- Department of Obstetrics and Gynecology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| |
Collapse
|
10
|
Luo Q, Ai L, Tang S, Zhang H, Ma J, Xiao X, Zhong K, Tian G, Cheng B, Xiong C, Chen X, Lu H. Developmental and cardiac toxicity assessment of Ethyl 3-(N-butylacetamido) propanoate (EBAAP) in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106572. [PMID: 37307698 DOI: 10.1016/j.aquatox.2023.106572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Ethyl 3-(N-butylacetamido) propanoate (EBAAP) is one of the most widely used mosquito repellents worldwide, and is also commonly used to produce cosmetics. Residues have recently been detected in surface and groundwater in many countries, and their potential to harm the environment is unknown. Therefore, more studies are needed to fully assess the toxicity of EBAAP. This is the first investigation into the developmental toxicity and cardiotoxicity of EBAAP on zebrafish embryos. EBAAP was toxic to zebrafish, with a lethal concentration 50 (LC50) of 140 mg/L at 72 hours post fertilization (hpf). EBAAP exposure also reduced body length, slowed the yolk absorption rate, induced spinal curvature and pericardial edema, decreased heart rate, promoted linear lengthening of the heart, and diminished cardiac pumping ability. The expression of heart developmental-related genes (nkx2.5, myh6, tbx5a, vmhc, gata4, tbx2b) was dysregulated, intracellular oxidative stress increased significantly, the activities of catalase (CAT) and superoxide dismutase (SOD) decreased, and malondialdehyde (MDA) content increased significantly. The expression of apoptosis-related genes (bax/bcl2, p53, caspase9, caspase3) was significantly upregulated. In conclusion, EBAAP induced abnormal morphology and heart defects during the early stages of zebrafish embryo development by potentially inducing the generation and accumulation of reactive oxygen species (ROS) in vivo and activating the oxidative stress response. These events dysregulate the expression of several genes and activate endogenous apoptosis pathways, eventually leading to developmental disorders and heart defects.
Collapse
Affiliation(s)
- Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Liping Ai
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuqiong Tang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hua Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
11
|
Fang C, Fang L, Di S, Yu Y, Wang X, Wang C, Jin Y. Characterization of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-induced cardiotoxicity in larval zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163595. [PMID: 37094682 DOI: 10.1016/j.scitotenv.2023.163595] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 μg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 μg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 μg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 μg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 μg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liya Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
12
|
Lv Y, Lin Z, Chen J, Jiang K, Wang A, Wang B, Wu Y, Xu Z, Wang J, Yao W. Hyoscyamine induces developmental toxicity by disrupting metabolism in zebrafish embryo (Danio rerio). Food Chem Toxicol 2023:113860. [PMID: 37263572 DOI: 10.1016/j.fct.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Hyoscyamine is a kind of tropane alkaloids, which exists in several plants of the family Solanaceae. However, the mechanism underlying such hyoscyamine toxic effects during early development remains unclear. In this study, an untargeted metabolomics approach was used to investigate the toxic mechanisms of hyoscyamine in zebrafish embryos. The LC10 and MNLC of hyoscyamine in zebrafish embryos were determined to be 350 and 313 μg/mL, respectively. Moreover, hyoscyamine exposure increased the accumulation of ROS and MDA, and altered the activity of antioxidant enzymes (CAT, SOD, and GSH) in zebrafish embryos. After exposure, the embryos were extracted, derivatized and analyzed by UHPLC-Q-Orbitrap-HRMS for 3551 metabolites to identify 38 significantly changed metabolites based on the VIP, p value, and fold change results. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 5.0 as follows: pyrimidine metabolism, purine metabolism, histidine metabolism, beta-Alanine metabolism, and glutathione metabolism. These results suggested that hyoscyamine exposure to zebrafish embryos exhibited marked metabolic disturbance. Such significant perturbations of important metabolites within crucial biochemical pathways may have biologically hazardous effects on zebrafish embryos induced by hyoscyamine.
Collapse
Affiliation(s)
- Yinni Lv
- School of Forensic Science and Technology, Criminal Investigation Police University of China, Shenyang, Liaoning, China
| | - Zhanyu Lin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jingpei Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Kecheng Jiang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Anli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Wang B, Wang A, Xu C, Tong Z, Wang Y, Zhuo X, Fu L, Yao W, Wang J, Wu Y. Molecular, morphological and behavioral alterations of zebrafish (Danio rerio) embryos/larvae after clorprenaline hydrochloride exposure. Food Chem Toxicol 2023; 176:113776. [PMID: 37059383 DOI: 10.1016/j.fct.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Chlorprenaline hydrochloride (CLOR) is a typical representative of β-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chengrui Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Xiaocong Zhuo
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Lixiang Fu
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
14
|
Paniagua-López M, Jiménez-Pelayo C, Gómez-Fernández GO, Herrera-Cervera JA, López-Gómez M. Reduction in the Use of Some Herbicides Favors Nitrogen Fixation Efficiency in Phaseolus vulgaris and Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1608. [PMID: 37111831 PMCID: PMC10144682 DOI: 10.3390/plants12081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, the quality of agricultural soils has been seriously affected by the excessive application of pesticides, with herbicides being one of the most abundant. Continuous use of herbicides alters the soil microbial community and beneficial interactions between plants and bacteria such as legume-rhizobia spp. symbiosis, causing a decrease in the biological nitrogen fixation, which is essential for soil fertility. Therefore, the aim of this work was to study the effect of two commonly used herbicides (pendimethalin and clethodim) on the legume-rhizobia spp. symbiosis to improve the effectiveness of this process. Phaseolus vulgaris plants grown in pots with a mixture of soil:perlite (3:1 v/v), showed a 44% inhibition of nitrogen fixation rate with pendimethalin. However, clethodim, specifically used against monocots, did not induce significant differences. Additionally, we analyzed the effect of herbicides on root exudate composition, detecting alterations that might be interfering with the symbiosis establishment. In order to assess the effect of the herbicides at the early nodulation steps, nodulation kinetics in Medicago sativa plants inoculated with Sinorhizobium meliloti were performed. Clethodim caused a 30% reduction in nodulation while pendimethalin totally inhibited nodulation, producing a reduction in bacterial growth and motility as well. In conclusion, pendimethalin and clethodim application reduced the capacity of Phaseolus vulgaris and Medicago sativa to fix nitrogen by inhibiting root growth and modifying root exudate composition as well as bacterial fitness. Thus, a reduction in the use of these herbicides in these crops should be addressed to favor a state of natural fertilization of the soil through greater efficiency of leguminous crops.
Collapse
|
15
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
16
|
Pendimethalin induces apoptotic cell death through activating ER stress-mediated mitochondrial dysfunction in human umbilical vein endothelial cells. Food Chem Toxicol 2022; 168:113370. [PMID: 35985363 DOI: 10.1016/j.fct.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
Pendimethalin is globally registered for control of a wide range of weeds in agriculture and home landscaping. Human exposure to pendimethalin can occur by the oral route through food and other sources. Endothelial function is vital to numerous biological processes, and endothelial dysfunction and poor vascular health is associated with increased atherosclerotic events; however, no study has yet investigated the potential effect of pendimethalin on endothelial function and vasculature formation. The objective of the current study is to investigate if pendimethalin may affect the viability and function of vascular endothelial cells. We observed that pendimethalin significantly repressed viability of human endothelial cells, inducing G1 cell cycle arrest and apoptotic/necrotic cell death. Pendimethalin treatment also activated ER stress and autophagy, leading to loss of mitochondrial membrane potential. In addition, pendimethalin impaired the tube forming and migratory abilities of endothelial cells. This study provides previously unrecognized adverse effects of pendimethalin in vascular endothelial cells, mediated by ER stress-induced mitochondrial dysfunction.
Collapse
|
17
|
Wang S, Lopez S, El Ahmadie N, Wengrovitz AS, Ganter J, Zhao YH, Souders CL, Martyniuk CJ. Assessing sub-lethal effects of the dinitroaniline herbicide pendimethalin in zebrafish embryos/larvae (Danio rerio). Neurotoxicol Teratol 2021; 89:107051. [PMID: 34813896 DOI: 10.1016/j.ntt.2021.107051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
Pendimethalin is a dinitroaniline herbicide used to control broadleaf weeds by inhibiting the formation of microtubules during cell division. Its use on a variety of crops leads to its potential entry into aquatic environments, but little is known about its sub-lethal toxicity to early developmental stages of aquatic vertebrates. To address this knowledge gap, we assessed the toxicity of pendimethalin to zebrafish embryos and larvae by measuring mortality, developmental abnormalities, oxidative respiration, reactive oxygen species, gene expression, and locomotor activity following exposure to the herbicide throughout early development. Embryos at ~6 h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), embryo rearing medium (ERM), or one dose of either 1, 2.5, 5, or 25 μM pendimethalin for up to 7-days post fertilization depending on the bioassay. Exposure to 25 μM pendimethalin resulted in high prevalence of spinal curvature, tail malformations, pericardial edema, and yolk sac edema at 4 dpf, while exposure to 5 μM pendimethalin induced pericardial edema and lordosis in the fish exposed over 7 dpf. Exposure to pendimethalin up to 5 μM did not negatively impact oxidative respiration (e.g., basal respiration, oligomycin-induced ATP production) in embryos following a 24-h exposure. Pendimethalin did not induce reactive oxygen species at concentrations of 1-5 μM. Levels of transcripts associated with oxidative respiration and damage response were altered in 7d-larvae; cox1 mRNA was increased in larvae fish exposed to 1 μM while cox5a1 and sod2 mRNA were decreased with 2.5 μM exposure. The Visual Motor Response (VMR) test for light-dark response revealed that larval activity in the dark period was reduced for zebrafish exposed to >1 μM pendimethalin compared to ERM and DMSO solvent control groups. These data inform on the sub-lethal toxicity of pendimethalin to early stages of fish embryos and larvae.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Sofia Lopez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|