1
|
Guo Y, Gu S, Tanentzap AJ, Wang P, Li Q, Wu K, He P, Liu X, Yu J, Qiu D, Wu J, Zhang Y, Bai G, Lee SMY, Wu Z, Zhou Q. Submerged macrophyte restoration enhanced microbial carbon utilization in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173357. [PMID: 38772483 DOI: 10.1016/j.scitotenv.2024.173357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.
Collapse
Affiliation(s)
- Yao Guo
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 10085, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Pei Wang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qianzheng Li
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaixuan Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiangfen Liu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junmei Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhenbin Wu
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Qiaohong Zhou
- Key laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Liang X, Zhu Y, Liu H, Xie Z, Li G, Li D, Liang Y, Peng C. Nitrogen-fixing cyanobacteria enhance microbial carbon utilization by modulating the microbial community composition in paddy soils of the Mollisols region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172609. [PMID: 38663623 DOI: 10.1016/j.scitotenv.2024.172609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.
Collapse
Affiliation(s)
- Xiao Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yu Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiyao Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
3
|
Zhang K, Fang B, Zhang Z, Liu T, Liu K. Exploring future ecosystem service changes and key contributing factors from a "past-future-action" perspective: A case study of the Yellow River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171630. [PMID: 38508260 DOI: 10.1016/j.scitotenv.2024.171630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Understanding the impacts of climate change and human activities on ecosystem services (ESs) and taking actions to adapt to and mitigate their negative impacts are of great benefit to sustainable regional development. In this paper, we integrate the System Dynamics Model (SD), the Future Land Use Simulation (FLUS) model, the Integrated Valuation and Trade-offs of ESs (InVEST) model, and the Structural Equation Model (SEM). We select three scenarios, SSP1-1.9, SSP2-4.5, and SSP5-8.5, from the Coupled Model Intercomparison Project 6 (CMIP6) to forecast future changes under these scenarios in the Yellow River Basin (YRB) by 2030. We predict future changes in water yield (WY), carbon storage (CS), soil retention (SR), and habitat quality (HQ) in the YRB. The results show that: (1) Under the SSP1-1.9 scenario, ecological land types such as forests, grasslands, and water bodies are protected and restored to a certain extent; under the SSP2-4.5 scenario, the degree of land spatial development occupies an intermediate state among the three scenarios; and under the SSP5-8.5 scenario, there is an obvious increase in the artificialization of the watershed's land use. (2) Under scenario SSP1-1.9, there is a comprehensive approach to sustainable development that significantly improves all ESs in the watershed, while the SSP5-8.5 and SSP2-4.5 scenarios demonstrate an increase in trade-offs between WY, HQ, and CS, especially in the downstream area. (3) Anthropogenic factors having more significant impacts in the SSP5-8.5 scenario. In this paper, we not only summarize the differences in trade-offs among various ESs but also provide an in-depth analysis of the key factors affecting future ESs, providing new ideas and insights for the sustainable development of ES in the future. In summary, we propose a prioritized development pathway for the future, a reduction of trade-offs between ESs, and an improved capacity to respond to challenges.
Collapse
Affiliation(s)
- Kaili Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Bin Fang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Research Center of New Urbanization and Land Problem, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Geographic Information Resources Development and Utilization Cooperative Innovation Center, Nanjing 210023, China.
| | - Zhicheng Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Tan Liu
- School of Economics and Management, Northwest University, Xi'an 710127, China
| | - Kang Liu
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
4
|
Ren J, Zhu L, Zhang X, Luo Y, Zhong X, Li B, Wang Y, Zhang K. Variation characteristics of acid rain in Zhuzhou, Central China over the period 2011-2020. J Environ Sci (China) 2024; 138:496-505. [PMID: 38135415 DOI: 10.1016/j.jes.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 12/24/2023]
Abstract
Zhuzhou was one of the most polluted cities in China with the serious acid rain. Due to the implementation of air pollution control measures from 2016 to 2018, the acid rain pollution in this city has reduced. In order to understand the recent situation, a comprehensive study on the acid rain was carried out from January 2011 to December 2020. The pH values during the study period varied from 3.3 to 7.5, with a volume-weighted mean value of 4.7. The predominant acidic components of the precipitation were SO42- and NO3-, accounting for 89.3% of the total anions. The ratio of non-sea-salt SO42- to NO3- showed a decreasing trend, revealing that the pollution type of acid rain changed from sulfuric acid type to sulfuric acid and nitric acid compound type. The correlation analysis (p < 0.05) showed that SO42- was positively correlated with NH4+, Ca2+, and Mg2+; hence, it predominated in precipitation as (NH4)2SO4, NH4HSO4, CaSO4, and MgSO4. Significant positive correlation of Ca2+ with Mg2+ shows that they may originated mainly from crust. Significant positive correlation between SO42- and F- and Cl- indicate that their source may be related to the non-ferrous metal smelting industry in Zhuzhou. Further correlation analysis shows that emissions from the non-ferrous metal smelting industry in the area have a large significant on SO42- and F- in precipitation, while Cl- may still be emitted from other anthropogenic sources.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liquan Zhu
- Zhuzhou Environment Monitoring Center, Zhuzhou 412000, China
| | - Xi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yuqian Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuecai Zhong
- Zhuzhou Environment Monitoring Center, Zhuzhou 412000, China
| | - Bowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuwen Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Wang Y, Long C, Yin L, Liu R, Liao Y, He G, Liu Z. Effects of simulated acid rain on hydrochemical factors and microbial community structure in red soil aquifers. RSC Adv 2024; 14:4482-4491. [PMID: 38312729 PMCID: PMC10835706 DOI: 10.1039/d3ra08820k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Acid rain can lower the pH of groundwater and affect its hydrogeochemistry and microbial ecology. However, the effects of acid rain on the hydrogeochemistry and microbial ecology of red soil groundwater systems in southern China are poorly understood. Previous research had mainly investigated the sources and patterns of groundwater acidification, but not the microbial mechanisms that contribute to this process and their associations with hydrochemical factors. To address this knowledge gap, we conducted a soil column experiment to simulate the infiltration of acid rain through various filter materials (coarse, medium, and fine sand) and to examine the hydrochemical and microbial features of the infiltrate, which can reveal how simulated acid rain (pH 3.5-7.0) alters the hydrochemistry and microbial community composition in red soil aquifers. The results showed that the pH of the leachate decreased due to simulated acid rain, and that the leaching efficiency of nitrogen and metal ions was influenced by the particle size of the filter media. Illumina 16S rRNA gene sequencing revealed that the leachate was dominated by Proteobacteria, Patescibacteria, Actinobacteria, and Acidobacteria, with Proteobacteria accounting for 67.04-74.69% of the bacterial community and containing a high proportion of nitrifying and denitrifying bacteria. Additionally, several genera with heavy metal tolerance, such as Burkholderia-Caballeronia-Paraburkholderia, Delftia, Methylversatilis, Aquicella, and Ralstonia, were widely distributed in the leachate, indicating the strong adaptive capacity of the microbial population. A correlation analysis between the hydrochemical factors and the microbial community structure revealed that pH was the most influential factor, followed by NO2--N, Fe, Al, Cu, Mn, and others. These results indicate that acidification modifies the hydrochemical conditions of the aquifer, creating an environment that is unfavorable for microbial growth and survival. However, some microorganisms may acquire resistance genes to cope with environmental changes.
Collapse
Affiliation(s)
- Yian Wang
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Chao Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
| | - Li Yin
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Renlu Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Yonghui Liao
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Genhe He
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Zuwen Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
- School of Hydraulic & Ecological Engineering, Nanchang Institute of Technology Nanchang China
| |
Collapse
|
6
|
Liu Q, Qiao J, Li M, Huang M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168486. [PMID: 37952663 DOI: 10.1016/j.scitotenv.2023.168486] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Accurately understanding ecosystem service (ES) interactions and an analysis of the complex, multiscale driving mechanisms are foundational prerequisites for implementing effective multiscale ES management. This study dives into the spatial and temporal variations of ES interactions in the Yellow River Basin across four spatial scales. The eXtreme Gradient Boosting (XGBoost) model is later deployed to pinpoint the key drivers of ecosystem services and their indirect pathways to ESs are illuminated utilizing Partial Least Squares-Structural Equation Modeling (PLS-SEM). The results indicate that (1) The synergistic effect between ES pairs in the Yellow River Basin surpasses that of trade-offs. Various types of ecosystem service bundles have transformed into each other from 2000 to 2020, and the spatial patterns of ES interactions bear resemblances at different scales. (2) The factors driving habitat quality (HQ), carbon sequestration (CS), and landscape aesthetics (LA) are mainly the landscape configuration and biophysical conditions. The factor driving food production (FP) is mainly the level of urbanization, whereas soil conservation (SC) and water yield (WY) are mainly subject to climate. (3) When biophysical conditions and level of urbanization serve as mediating variables in pathways, driving factors invariably have negative indirect effects on ESs. When landscape configuration serves as a mediating variable, biophysical conditions positively influence HQ and CS, and negatively impact FP, WY, and LA. Conversely, the level of urbanization negatively affects all ESs. (4) The combination of XGBoost and PLS-SEM offers a comprehensive and innovative lens for analyzing ESs driving mechanisms. Based on our findings, scientific management of ESs should account not only for the direct impacts of driving elements but also for their scale and indirect effects.
Collapse
Affiliation(s)
- Qi Liu
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Jiajun Qiao
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Mengjuan Li
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Mengjiao Huang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Guo Y, Gu S, Wu K, Tanentzap AJ, Yu J, Liu X, Li Q, He P, Qiu D, Deng Y, Wang P, Wu Z, Zhou Q. Temperature-mediated microbial carbon utilization in China's lakes. GLOBAL CHANGE BIOLOGY 2023; 29:5044-5061. [PMID: 37427534 DOI: 10.1111/gcb.16840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Songsong Gu
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Kaixuan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Junqi Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Xiangfen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Qianzheng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Li J, Tan J, Li W, Singh BP, Yang X, Bolan N, Chen X, Xu S, Bao Y, Lv D, Peng A, Zhou Y, Wang H. An overview of the direct and indirect effects of acid rain on plants: Relationships among acid rain, soil, microorganisms, and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162388. [PMID: 36842576 DOI: 10.1016/j.scitotenv.2023.162388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Acid rain (AR) causes numerous environmental problems and complex negative effects on plants globally. Many studies have previously reported on direct effects of AR or its depositional substances on plant injury and performance. However, few studies have addressed the indirect effects of AR on plants as mediated by soil microorganisms and the abiotic environment of the soil rhizosphere. The indirect effects (e.g., AR → soil microorganisms→plants) need greater attention, because acidic deposition not only affects the distribution, composition, abundance, function, and activity of plant-associated microorganisms, but also influences the dynamics of some substances in the soil in a way that may be harmful to plants. Therefore, this review not only focused on the direct effects of AR on plant performance, growth, and biomass allocations from a whole-plant perspective, but also addressed the pathway of AR-soil chemical characteristics-plants, which explains how soil solute leaching and acidification by AR will reduce the availability of essential nutrients and increase the availability of heavy metals for plants, affecting carbon and nitrogen cycles. Mainly, we evaluated the AR-soil microorganisms-plants pathway by: 1) synthesizing the potential roles of soil microbes in alleviating soil acidic stress on plants and the adverse effects of AR on plant-associated soil microorganisms; 2) exploring how plant mycorrhizal types affect the detection of AR effect on plants. The meta-analysis showed that the effects of AR-induced pH on leaf chlorophyll content, plant height, and plant root biomass were dependent on plant mycorrhizal types. Some possible reasons for different synergy between mycorrhizal symbiotic types and plants were discussed. Future research relating to the effects of AR on plants should focus on the combined direct and indirect effects to evaluate how AR affects plant performance comprehensively.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jiahong Li
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Junyan Tan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Wenbin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Bhupinder Pal Singh
- University of New England, School of Environmental and Rural Science, Armidale, NSW 2351, Australia
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Song Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Daofei Lv
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yanbo Zhou
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Zhou M, Hu H, Wang J, Wang X, Tian Z, Deng W, Wu C, Zhu L, Lu Q, Feng Y. Effects of nitric acid rain stress on soil nitrogen fractions and fungal communities in a northern subtropical forest, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158904. [PMID: 36261955 DOI: 10.1016/j.scitotenv.2022.158904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Acid rain has severely negatively impacted terrestrial ecosystems and biogeochemical cycles. However, the potential impacts of nitric acid rain (NAR) on soil nitrogen (N) fractions and fungal community diversity in northern subtropical forest soils remain largely unevaluated. In this study, treatments of NAR at pH = 4.5 (AR4.5), pH = 3.5 (AR3.5), and pH = 2.5 (AR2.5) were randomly sprayed in a typical Quercus acutissima Carruth. stand in northern subtropical China. The soil N fractions and soil fungal communities were analyzed after a 12-month experimental period. The results revealed that compared to the control, the soil total N (TN), microbial biomass N (MBN), hydrolysable ammonium N (HAN), amino-sugar N (ASN) and amino-acid N (AAN) contents decreased significantly by 19.61-13.07 %, 20.10-9.04 %, 60.41-28.87 %, 74.10-62.25 %, and 65.69-45.64 % under stronger acidity inputs (i.e., AR2.5 and AR3.5), respectively. Besides, the AR2.5 and AR3.5 treatments increased the α-diversity indices of soil fungal communities and altered the soil fungal community structure. Moreover, the NAR treatments represented an increase in the relative abundance of Ascomycota and Mortierellomycota and a decrease in that of Basidiomycota. Mortierella, Penicillium, and Tomentella can be used as indicator genera for changes in soil fungal community structures under NAR stress. Furthermore, AAN was the main environmental factor affecting soil fungal community at the phylum and genus levels. Cumulatively, findings from this research provide valuable insight into NAR's effects on N cycling and microbial communities in forest soils.
Collapse
Affiliation(s)
- Meijia Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Haibo Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Jinlong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Xia Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Ziwei Tian
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Wenbing Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Chaoming Wu
- Wuxi branch, Bureau of investigation on hydrologic water resources, Wuxi, Jiangsu 214100, China
| | - Li Zhu
- Wuxi branch, Bureau of investigation on hydrologic water resources, Wuxi, Jiangsu 214100, China
| | - Qianwen Lu
- University of Connecticut, Department of Plant Sciences and Landscape Architecture, Storrs, CT 06269, United States of America
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
10
|
Tan L, Yang Q, Peng L, Xie C, Luo K, Zhou L. Molecular engineering-based a dual-responsive fluorescent sensor for sulfur dioxide and nitric oxide detecting in acid rain and its imaging studies in biosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128947. [PMID: 35472539 DOI: 10.1016/j.jhazmat.2022.128947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Sulfur dioxide (SO2) and nitric oxide (NO), known as sulfur oxides and nitrogen oxides, are toxic air pollutants and seriously threaten human health. Herein, for the first time, a robust dual-response fluorescent sensor CGT with two different emission fluorophores and dual well-known response-group for visual bisulphites (HSO3-) and nitrites (NO2-) detection was reported. Specifically, once CGT was incubated with HSO3- firstly, the color of the test solution changed to dark yellow with no-fluorescence emission, following added NO2-, the color of the test solution changed to yellow with a bright cyan emission. However, NO2- was added firstly, the color of the test solution changed to dark purple with a white emission, and then added HSO3-, the color of the test solution changed to yellow with a bright cyan emission. Furthermore, CGT showed high sensitivity and selectivity toward HSO3- and NO2- detecting with good detection limits as low as 20.17 nM and 4.14 nM, respectively. Impressively, CGT showed good detection capability in complex aqueous samples and was successfully used for the detection of HSO3- and NO2- in biosystems. Thus, the experimental results indicated CGT as a powerful novel visual detecting tool for HSO3- and NO2- detecting in complex acid rain and biosystems.
Collapse
Affiliation(s)
- Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longpeng Peng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
11
|
Li J, Wu B, Luo Z, Lei N, Kuang H, Li Z. Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119400. [PMID: 35525516 DOI: 10.1016/j.envpol.2022.119400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.
Collapse
Affiliation(s)
- Jia Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Zhi Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ningfei Lei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Hongjie Kuang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ziqing Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
12
|
Liu Z, Liu Z, Wu L, Li Y, Wang J, Wei H, Zhang J. Effect of polyethylene microplastics and acid rain on the agricultural soil ecosystem in Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119094. [PMID: 35245624 DOI: 10.1016/j.envpol.2022.119094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The increasing microplastics (MPs) pollution and continuous acid rain coincide in many areas of the world. However, how MPs interact with acid rain is still unclear. Herein, we conducted a microcosm experiment to decipher the combined effect of polyethylene (PE) MPs (1%, 5%, and 10%) and acid rain (pH 4.0) on the agricultural soil ecosystem of Southern China, in which edaphic property, microbial community, enzymatic activity and CO2 emission were investigated. The results showed that PE MPs significantly decreased soil water retention and nitrate nitrogen content regardless of acid rain. Soil total nitrogen significantly decreased under the co-exposure of 10% PE MPs and acid rain. However, PE MPs did not alter soil microbial biomass, i.e., the content of microbial biomass carbon, total phospholipid fatty acids, with or without acid rain. 10% PE MPs and acid rain treatment significantly increased the activity of catalase and soil CO2 emission. PE MPs addition did not affect the temperature sensitivity (Q10) of soil CO2 emission regardless of acid rain. These findings suggest that MPs may interact with acid rain to affect soil ecosystems, thus underscoring the necessity to consider the interaction between MPs and ambient environmental factors when exploring the impact of MPs on the soil biodiversity and function.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenxiu Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lizhu Wu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yazheng Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|