1
|
Duan X, Tong W, Tao B, Yao H, Xiong M, Liu H, Huang S, Li J. Azoxystrobin-Induced Physiological and Biochemical Alterations in Apis mellifera Workers of Different Ages. INSECTS 2025; 16:449. [PMID: 40429163 PMCID: PMC12111993 DOI: 10.3390/insects16050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Fungal diseases of agricultural crops cause severe economic losses to the growers. For the control of these diseases, azoxystrobin is one of the recommended fungicides. This fungicide is systemic in action and is expected to reach the floral part of the treated crop and its residue in the pollen and nectar, the natural food sources of honey bees, which could be collected and fed on by honey bees, thus affecting their health. The purpose of this study was to determine the physiological and chemical changes caused by this fungicide in honey bee workers (Apis mellifera L). Workers of this honey bee at 1, 8, and 21 days old were treated with 125, 167, and 250 mg/L concentrations of azoxystrobin for seven days; their survival rates, activities of carboxylesterase (CarE), glutathione S-transferases (GSTs), cytochrome P450 enzyme (CYP450), catalase (CAT), and superoxide dismutase (SOD) enzymes, and the expression levels of immune (Aba, Api, Def1, and Hym) and nutrition genes (Ilp1, Ilp2, and Vg) were detected. Our findings revealed that azoxystrobin affected the survival of workers, particularly 1- and 21-day-old workers, who responded to azoxystrobin stress with increased activities of detoxification and protective enzymes, which might have physiological costs. Additionally, azoxystrobin affected the expression of immune and nutrition genes, with a decreased expression trend in 21-day-old workers compared to the 1- and 8-day-old workers, leading to reduced resistance to external stressors and increased mortality rates. These findings provide important insights into the adverse effects of azoxystrobin on workers of different ages and emphasize the potential risks of this chemical to colony stability and individual health. This study recommends an urgent ban on such a harmful fungicide being used for fungi control in agriculture, especially during plant flowering.
Collapse
Affiliation(s)
- Xinle Duan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Wenlong Tong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
| | - Bingfang Tao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
| | - Huanjing Yao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
| | - Manqiong Xiong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
| | - Huiping Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
- Fujian Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (B.T.); (H.Y.); (M.X.); (S.H.); (J.L.)
- Fujian Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
2
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
3
|
Wueppenhorst K, Alkassab AT, Beims H, Ernst U, Friedrich E, Illies I, Janke M, Kirchner WH, Seidel K, Steinert M, Yurkov A, Erler S, Odemer R. Honey bee colonies can buffer short-term stressor effects of pollen restriction and fungicide exposure on colony development and the microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116723. [PMID: 39024947 DOI: 10.1016/j.ecoenv.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany.
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| | - Hannes Beims
- Fachberatung für Imkerei, Bezirk Oberbayern, Prinzregentenstraße 14, München 80538, Germany; Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Ulrich Ernst
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim, Stuttgart, Germany
| | - Elsa Friedrich
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, Veitshöchheim 97209, Germany
| | - Martina Janke
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Wolfgang H Kirchner
- Behavioral Biology and Biology Education, Ruhr-University-Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Kim Seidel
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Michael Steinert
- Institute for Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Andrey Yurkov
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz Institute, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany
| | - Richard Odemer
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| |
Collapse
|
4
|
Rondeau S, Raine NE. Size-dependent responses of colony-founding bumblebee (Bombus impatiens) queens to exposure to pesticide residues in soil during hibernation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174852. [PMID: 39029756 DOI: 10.1016/j.scitotenv.2024.174852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period. We found that exposure to boscalid residues in soil doubled the likelihood of queens surviving through the colony initiation period (after successful hibernation) and laying eggs. Our data also revealed complex interactions between pesticide exposure and queen body mass on aspects of colony founding. Among others, exposure to cyantraniliprole led to lethal and sublethal post-hibernation effects that were dependent on queen size, with larger queens showing higher mortality rates, delayed emergence of their first brood, and producing smaller workers. Our results show that effects of pesticide exposure depend on intrinsic traits of bumblebee queen physiology and challenge our understanding of how bees respond to pesticides under environmentally realistic exposure scenarios.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Duan X, Wang L, Wang R, Xiong M, Qin G, Huang S, Li J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115754. [PMID: 38043416 DOI: 10.1016/j.ecoenv.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.
Collapse
Affiliation(s)
- Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
6
|
Bischoff K, Moiseff J. The role of the veterinary diagnostic toxicologist in apiary health. J Vet Diagn Invest 2023; 35:597-616. [PMID: 37815239 PMCID: PMC10621547 DOI: 10.1177/10406387231203965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Susceptibility of individuals and groups to toxicants depends on complex interactions involving the host, environment, and other exposures. Apiary diagnostic investigation and honey bee health are truly population medicine: the colony is the patient. Here we provide basic information on the application of toxicology to the testing of domestic honey bees, and, in light of recent research, expand on some of the challenges of interpreting analytical chemistry findings as they pertain to hive health. The hive is an efficiently organized system of wax cells used to store brood, honey, and bee bread, and is protected by the bee-procured antimicrobial compound propolis. Toxicants can affect individual workers outside or inside the hive, with disease processes that range from acute to chronic and subclinical to lethal. Toxicants can impact brood and contaminate honey, bee bread, and structural wax. We provide an overview of important natural and synthetic toxicants to which honey bees are exposed; behavioral, husbandry, and external environmental factors influencing exposure; short- and long-term impacts of toxicant exposure on individual bee and colony health; and the convergent impacts of stress, nutrition, infectious disease, and toxicant exposures on colony health. Current and potential future toxicology testing options are included. Common contaminants in apiary products consumed or used by humans (honey, wax, pollen), their sources, and the potential need for product testing are also noted.
Collapse
Affiliation(s)
- Karyn Bischoff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer Moiseff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Duarte Hospital C, Tête A, Debizet K, Imler J, Tomkiewicz-Raulet C, Blanc EB, Barouki R, Coumoul X, Bortoli S. SDHi fungicides: An example of mitotoxic pesticides targeting the succinate dehydrogenase complex. ENVIRONMENT INTERNATIONAL 2023; 180:108219. [PMID: 37778286 DOI: 10.1016/j.envint.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/15/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHi) are fungicides used to control the proliferation of pathogenic fungi in crops. Their mode of action is based on blocking the activity of succinate dehydrogenase (SDH), a universal enzyme expressed by all species harboring mitochondria. The SDH is involved in two interconnected metabolic processes for energy production: the transfer of electrons in the mitochondrial respiratory chain and the oxidation of succinate to fumarate in the Krebs cycle. In humans, inherited SDH deficiencies may cause major pathologies including encephalopathies and cancers. The cellular and molecular mechanisms related to such genetic inactivation have been well described in neuroendocrine tumors, in which it induces an oxidative stress, a pseudohypoxic phenotype, a metabolic, epigenetic and transcriptomic remodeling, and alterations in the migration and invasion capacities of cancer cells, in connection with the accumulation of succinate, an oncometabolite, substrate of the SDH. We will discuss recent studies reporting toxic effects of SDHi in non-target organisms and their implications for risk assessment of pesticides. Recent data show that the SDH structure is highly conserved during evolution and that SDHi can inhibit SDH activity in mitochondria of non-target species, including humans. These observations suggest that SDHi are not specific inhibitors of fungal SDH. We hypothesize that SDHi could have toxic effects in other species, including humans. Moreover, the analysis of regulatory assessment reports shows that most SDHi induce tumors in animals without evidence of genotoxicity. Thus, these substances could have a non-genotoxic mechanism of carcinogenicity that still needs to be fully characterized and that could be related to SDH inhibition. The use of pesticides targeting mitochondrial enzymes encoded by tumor suppressor genes raises questions on the risk assessment framework of mitotoxic pesticides. The issue of SDHi fungicides is therefore a textbook case that highlights the urgent need for changes in regulatory assessment.
Collapse
Affiliation(s)
| | - Arnaud Tête
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris
| | - Kloé Debizet
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris
| | - Jules Imler
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris
| | | | - Etienne B Blanc
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris
| | - Robert Barouki
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris
| | - Xavier Coumoul
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris.
| | - Sylvie Bortoli
- Université Paris Cité, INSERM UMR-S 1124, T3S, 45 rue des Saints-Pères, 75006 Paris.
| |
Collapse
|
8
|
Wang K, Cai M, Sun J, Chen H, Lin Z, Wang Z, Niu Q, Ji T. Atrazine exposure can dysregulate the immune system and increase the susceptibility against pathogens in honeybees in a dose-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131179. [PMID: 36948121 DOI: 10.1016/j.jhazmat.2023.131179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Recently, concerns regarding the impact of agrochemical pesticides on non-target organisms have increased. The effect of atrazine, the second-most widely used herbicide in commercial farming globally, on honeybees remains poorly understood. Here, we evaluated how atrazine impacts the survival of honeybees and pollen and sucrose consumption, investigating the morphology and mRNA expression levels of midgut tissue, along with bacterial composition (relative abundance) and load (absolute abundance) in the whole gut. Atrazine did not affect mortality, but high exposure (37.3 mg/L) reduced pollen and sucrose consumption, resulting in peritrophic membrane dysplasia. Sodium channels and chitin synthesis were considered potential atrazine targets, with the expression of various genes related to lipid metabolism, detoxification, immunity, and chemosensory activity being inhibited after atrazine exposure. Importantly, 37.3 mg/L atrazine exposure substantially altered the composition and size of the gut microbial community, clearly reducing both the absolute and relative abundance of three core gram-positive taxa, Lactobacillus Firm-5, Lactobacillus Firm-4, and Bifidobacterium asteroides. With altered microbiome composition and a weakened immune system following atrazine exposure, honeybees became more susceptible to infection by the opportunistic pathogen Serratia marcescens. Thus, considering its scale of use, atrazine could negatively impact honeybee populations worldwide, which may adversely affect global food security.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Jie Sun
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Heng Chen
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China.
| |
Collapse
|
9
|
Huang M, Dong J, Yang S, Xiao M, Guo H, Zhang J, Wang D. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161637. [PMID: 36649770 DOI: 10.1016/j.scitotenv.2023.161637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD50) for 10 days. This study revealed that the LD50 values of azoxystrobin, pyraclostrobin and boscalid for adult Eastern honeybees were 12.7 μg/bee, 36.6 μg/bee, and >119 μg/bee, respectively. Midgut epithelial cells revealed that fungicide exposure caused increased intercellular spaces and varying degrees of vacuolization. Exposure to these three fungicides and their binary mixtures significantly affected glycerophospholipid, alanine, aspartate, and glutamate metabolism in Eastern honeybee midguts. Additionally, the relative composition of Lactobacillus, the dominant functional genus in Eastern honeybee guts decreased and microbial balance was disrupted. All fungicides and their mixtures induced strong transcriptional upregulation of genes associated with the immune response and encoding enzymes related to oxidative phosphorylation and metabolism, including abaecin, apidaecin, hymenotaecin, cyp4c3, cyp6a2 and hbg3. Our study provides important insight for understanding the effects of commonly used fungicides on nontarget pollinator and contributes to a more comprehensive assessment of fungicide effects on ecological and environmental safety.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Shuyuan Yang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
10
|
DeVetter LW, Chabert S, Milbrath MO, Mallinger RE, Walters J, Isaacs R, Galinato SP, Kogan C, Brouwer K, Melathopoulos A, Eeraerts M. Toward evidence-based decision support systems to optimize pollination and yields in highbush blueberry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highbush blueberry (Vaccinium spp.) is a globally important fruit crop that depends on insect-mediated pollination to produce quality fruit and commercially viable yields. Pollination success in blueberry is complex and impacted by multiple interacting factors including flower density, bee diversity and abundance, and weather conditions. Other factors, including floral traits, bee traits, and economics also contribute to pollination success at the farm level but are less well understood. As blueberry production continues to expand globally, decision-aid technologies are needed to optimize and enhance the sustainability of pollination strategies. The objective of this review is to highlight our current knowledge about blueberry pollination, where current research efforts are focused, and where future research should be directed to successfully implement a comprehensive blueberry pollination decision-making framework for modern production systems. Important knowledge gaps remain, including how to integrate wild and managed pollinators to optimize pollination, and how to provide predictable and stable crop pollination across variable environmental conditions. In addition, continued advances in pesticide stewardship are required to optimize pollinator health and crop outcomes. Integration of on- and off-farm data, statistical models, and software tools could distill complex scientific information into decision-aid systems that support sustainable, evidence-based pollination decisions at the farm level. Utility of these tools will require multi-disciplinary research and strategic deployment through effective extension and information-sharing networks of growers, beekeepers, and extension/crop advisors.
Collapse
|
11
|
Fisher Ii A, Glass JR, Ozturk C, DesJardins N, Raka Y, DeGrandi-Hoffman G, Smith BH, Fewell JH, Harrison JF. Seasonal variability in physiology and behavior affect the impact of fungicide exposure on honey bee (Apis mellifera) health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120010. [PMID: 36002100 DOI: 10.1016/j.envpol.2022.120010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide.
Collapse
Affiliation(s)
- Adrian Fisher Ii
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
| | - Jordan R Glass
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Nicole DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Yash Raka
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Gloria DeGrandi-Hoffman
- United States Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E Allen Rd., Tucson, AZ, 85719, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
12
|
Wang K, Chen H, Fan RL, Lin ZG, Niu QS, Wang Z, Ji T. Effect of carbendazim on honey bee health: Assessment of survival, pollen consumption, and gut microbiome composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113648. [PMID: 35605324 DOI: 10.1016/j.ecoenv.2022.113648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Gut microbiota and nutrition play major roles in honey bee health. Recent reports have shown that pesticides can disrupt the gut microbiota and cause malnutrition in honey bees. Carbendazim is the most commonly used fungicide in China, but it is not clear whether carbendazim negatively affects the gut microbes and nutrient intake levels in honey bees. To address this research gap, we assessed the effects of carbendazim on the survival, pollen consumption, and sequenced 16 S rRNA gene to determine the bacterial composition in the midgut and hindgut. Our results suggest that carbendazim exposure does not cause acute death in honey bees even at high concentrations (5000 mg/L), which are extremely unlikely to exist under field conditions. Carbendazim does not disturb the microbiome composition in the gut of young worker bees during gut microbial colonization and adult worker bees with established gut communities in the mid and hindgut. However, carbendazim exposure significantly decreases pollen consumption in honey bees. Thus, exposure of bees to carbendazim can perturb their beneficial nutrition homeostasis, potentially reducing honey bee immunity and increasing their susceptibility to infection by pathogens, which influence effectiveness as pollinators, even colony health.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Heng Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Rong-Li Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhe-Guang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qing-Sheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province 132108, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province 132108, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
13
|
Pang C, Dong K, Guo Y, Ding G, Lu Y, Guo Z, Wu J, Huang J. Effects of Three Types of Pollen on the Growth and Development of Honey Bee Larvae (Hymenoptera, Apidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.870081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pollen serves as an essential protein source for honey bee larvae. The nutrients in pollen greatly influence larval growth and development. Here, the survival, prepupal weight, developmental stage, pollen digestibility and midgut cells in honey bee (Apis mellifera L.) larvae were evaluated by performing in vitro and 5-ethynyl-2′-deoxyuridine (EdU) assays on larvae reared on three single pollens (Brassica napus L., Armeniaca sibirica L., and Pyrus bretschneideri Rehd.) and a pollen mixture (mixture of the three pollens in equal proportions). The results showed that the survival rate of larvae fed 10 mg of rape pollen was lowest (P < 0.05), but there were no notable differences in the survival rate among the groups receiving the other types and doses of pollen (P > 0.05). The prepupal weight of larvae fed apricot pollen was significantly lower than those of the other groups (P < 0.05). The digestibility of rape pollen and the pollen mixture were dramatically higher than those of apricot and pear pollen (P < 0.05). Pear and mixed pollen exerted negative effects on the nuclear area of midgut cells in the early larval stage (P < 0.05). In conclusion, detection of larval midgut cells using the EdU assay might be an effective method to assess the pollen nutritive value in honey bees. Compared to apricot and pear pollen, rape pollen was more beneficial in larval honey bee growth and development.
Collapse
|