1
|
Yin L, Shi K, Yin Y, Zhang Y, Xu L, An J, Peng C, Wang C, He H, Yang S, Ni L, Li S. Long-term suppression of Microcystis aeruginosa by tannic acid: Risks of microcystin pollution and proteomic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137205. [PMID: 39818060 DOI: 10.1016/j.jhazmat.2025.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M. aeruginosa) exposed to TA, revealing underlying mechanisms through proteomic analysis. High TA doses effectively inhibited M. aeruginosa growth and microcystin-leucine-arginine (MC-LR) production. However, at a specific TA concentration, M. aeruginosa produced and released more MCs, with extracellular MC-LR levels peaking at 1.91 times the control on day 15. Proteomic analysis indicated upregulation of proteins related to the tricarboxylic acid (TCA) cycle, glycolysis, and leucine and arginine biosynthesis, suggesting a compensatory response in M. aeruginosa under TA stress that enhanced cellular energy supply and MC-LR biosynthesis. In addition, TA exposure significantly downregulated proteins involved in ion and metal-cluster binding, disrupting electron transfer and photosynthesis. This study provides new insights into TA-induced MC-pollution risks and TA's mechanisms in algae suppression, offering guidance for its application in algal bloom control.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Kaipian Shi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Chunqing Peng
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Conghui Wang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhou C, Jia Y, Zhang Q, Huang W, Yan J, Ying X, Zhang H. A systematic study of Pseudobulbus Cremastrae seu Pleiones: Characteristics, Origin, chemical composition and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118923. [PMID: 39389394 DOI: 10.1016/j.jep.2024.118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudobulbus Cremastrae seu Pleiones (PCSP) is a multi-source traditional Chinese medicine (TCM) with diverse chemical compositions and toxicity levels. The authenticity identification and safety evaluation of PCSP have attracted widespread attention in clinical applications. AIM OF THIS STUDY The objective of this study was to evaluate the authenticity and safety of commercially available PCSP. MATERIALS AND METHODS Morphological and microscopic identification, HPLC chromatogram, UPLC-Q-TOF-MS/MS with molecular networking were applied to the authenticity identification of PCSP. The safety of different PCSPs was evaluated by acute toxicity in zebrafish at maximum non-lethal concentration (MNLC) and 10% lethal concentration (LC10). Intestinal toxicity of PCSP was assessed through histological staining, intestinal goblet cells, neutrophils, and intestinal opacity. RESULTS Four sources of PCSP varied in size, epidermal longitudinal grooves, and microscopic features. GNPS analysis identified 61, 47, 44, and 56 chemical compounds in Cremastra appendiculate (CA), Oreorchis patens (Lindl.) Lindl. (OPL), Iphigenia indica A. Gray (IIG), and Tulipa edulis (Miq.) Baker (TEB). Colchicine and militarine, were discovered as distinguishing markers. Acute toxicity in zebrafish ranked as follows: IIG > OPL > CA > TEB. Further studies on the intestinal toxicity of the authentic PCSP (CA, OPL) showed that CA induced less damage with a smaller lumen area, fewer neutrophils and goblet cells, and reduced peristalsis inhibition compared to OPL, indicating greater safety. CONCLUSION Four different sources of PCSP were accurately distinguished based on three dimensions: character, components, and toxicity. OPL and CA were considered as genuine products, while CA with lower toxicity was more suitable for clinical applications.
Collapse
Affiliation(s)
- Conghui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Yuwei Jia
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Qi Zhang
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China
| | - Wenhua Huang
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Xuhui Ying
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China.
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
4
|
Proshkina E, Koval L, Platonova E, Golubev D, Ulyasheva N, Babak T, Shaposhnikov M, Moskalev A. Polyphenols as Potential Geroprotectors. Antioxid Redox Signal 2024; 40:564-593. [PMID: 38251662 DOI: 10.1089/ars.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Significance: Currently, a large amount of evidence of beneficial effects of diets enriched with polyphenols on various aspects of health has been accumulated. These phytochemicals have a geroprotective potential slowing down the pathological processes associated with aging and ensuring longevity. In this study, a comprehensive analysis was conducted to determine the adherence of individual polyphenols to geroprotector criteria. Data from experimental models, clinical trials, and epidemiological studies were analyzed. Recent Advances: Sixty-two polyphenols have been described to increase the life span and improve biomarkers of aging in animal models. They act via evolutionarily conserved molecular mechanisms, including hormesis and maintenance of redox homeostasis, epigenetic regulation, response to cellular damage, metabolic control, and anti-inflammatory and senolytic activity. Epidemiological and clinical studies suggest that certain polyphenols have a potential for prevention and treatment of various diseases, including cancer, metabolic disorders, and cardiovascular conditions in humans. Critical Issues: Among the reviewed phytochemicals, chlorogenic acid, quercetin, epicatechin, genistein, resveratrol, and curcumin were identified as compounds with the highest geroprotective potential. However, there is a lack of unambiguous information on the effectiveness and safety of polyphenols for increasing health span, preventing and treating aging-associated diseases in humans. Future Directions: Further research is needed to fully understand the effects of polyphenols considering their long-term consumption, metabolic modification and bioavailability, complex interactions between different groups of polyphenols and with other phytochemicals, as well as their effects on individuals with different health status. Antioxid. Redox Signal. 40, 564-593.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Denis Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Hamed M, Said REM, Soliman HAM, Osman AGM, Martyniuk CJ. Immunotoxicological, histopathological, and ultrastructural effects of waterborne pyrogallol exposure on African catfish (Clariasgariepinus). CHEMOSPHERE 2024; 349:140792. [PMID: 38016523 DOI: 10.1016/j.chemosphere.2023.140792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Pyrogallol is a naturally occurring polyphenol derived from natural plants, such as Acer rubrum and Eucalyptus sp. The current study was designed to evaluated pyrogallol-mediated toxicity at sublethal levels (1, 5, and 10 mg/L), derived from 96 h-LC50 values previously determined for African catfish (Clarias gariepinus). Immunotoxicological indices, histological, histochemical, and ultrastructural alterations in C. gariepinus were evaluated following a 15-day pyrogallol exposure. Pyrogallol decreased immune parameters [lysozyme activity (LYZ), immunoglobulin M (IgM), and phagocytic activity] and increased pro-inflammatory cytokines, interleukin-1 beta (IL-1β), interleukin-6 (IL-6) in the serum of C. gariepinus. In addition, histopathology analysis demonstrated that exposure to pyrogallol induced injury in the liver and spleen of fish. Cellular changes in the liver include hepatocyte hydropic degeneration, melanomacrophage, vacuolated hepatocytes, congested blood, severe structural deformation, and hemorrhage. In the spleen, ellipsoid structures, melanomacrophage centers, and infiltration of inflammatory cells were evident. Together, a high frequency of histopathological lesions was scored in both the liver and spleen of C. gariepinus, which showed a dose-dependent relationship between pyrogallol exposure and histopathological indices. Our data suggest that dysfunction in the immune system may be mediated by pyrogallol-induced changes in cytokines.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt.
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Zhu Y, Li Y, Wei Y, Norgbey E, Chen Y, Li R, Wang C, Cheng Y, Bofah-Buoh R. Impact of Eucalyptus residue leaching on iron distribution in reservoir sediments assessed by high-resolution DGT technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125718-125730. [PMID: 38001297 DOI: 10.1007/s11356-023-31116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Blackwater occurs every winter in reservoirs with Eucalyptus plantations. The complexation reaction between ferric iron (Fe3+) and Eucalyptus leachate tannic acid from logging residues (especially leaves) is the vital cause of water blackness. However, the effect of Eucalyptus leaf leaching on the dynamic of iron in sediments and its contribution to reservoir blackwater remain unclear. In this study, two experiments were conducted to simulate the early decomposition processes of exotic Eucalyptus and native Pinus massoniana leaves in water (LW) and water-sediment (LWS) systems. In LW, high concentrations of tannic acid (>45.25 mg/L) rapidly leached from the Eucalyptus leaves to the water column, exceeding those of Pinus massoniana leaves (<1.80 mg/L). The chrominance increased from 5~10 to 80~140, and the water body finally appeared brown instead of black after the leaching of Eucalyptus leaves. The chrominance positively correlated with tannic acid concentrations (R=0.970, p<0.01), indicating that tannic acid was vital for the water column's brown color. Different in LWS, blackwater initially emerged near the sediment-water interface (SWI) and extended upward to the entire water column as Eucalyptus leaves leached. Dissolved oxygen (DO) and transmission values in the overlying water declined simultaneously (R>0.77, p<0.05) and were finally below 2.29 mg/L and 10%, respectively. During the leaching of Eucalyptus leaves, the DGT-labile Fe2+ in sediments migrated from deep to surface layers, and the diffusive fluxes of Fe2+ at the SWI increased from 12.42~19.93 to 18.98~26.28 mg/(m2·day), suggesting that sediment released abundant Fe3+ into the aerobic overlying water. Fe3+ was exposed to high concentrations of tannic acid at the SWI and immediately generated the black Fe-tannic acid complex. The results indicated that the supplement of dissolved Fe3+ from sediments is a critical factor for the periodic blackwater in the reservoirs with Eucalyptus plantations. Reducing the cultivation of Eucalyptus in the reservoir catchment is one of the effective ways to alleviate the reservoir blackwater.
Collapse
Affiliation(s)
- Ya Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yao Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yu Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ronghui Li
- Key Laboratory of Disaster Prevention and Structural Safety, Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning, 530000, China
| | - Can Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Robert Bofah-Buoh
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Pino-Otín MR, Lorca G, Val J, Ferrando N, Ballestero D, Langa E. Ecotoxicological Study of Tannic Acid on Soil and Water Non-Target Indicators and Its Impact on Fluvial and Edaphic Communities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4041. [PMID: 38068678 PMCID: PMC10708037 DOI: 10.3390/plants12234041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/07/2024]
Abstract
Tannic acid (TA) is a key tannin extensively used in the leather industry, contributing to around 90% of global leather production. This practice leads to the generation of highly polluting effluents, causing environmental harm to aquatic ecosystems. Additionally, tannins like TA degrade slowly under natural conditions. Despite efforts to reduce pollutant effluents, limited attention has been devoted to the direct environmental impact of tannins. Moreover, TA has garnered increased attention mainly due to its applications as an antibacterial agent and anti-carcinogenic compound. However, our understanding of its ecotoxicological effects remains incomplete. This study addresses this knowledge gap by assessing the ecotoxicity of TA on non-target indicator organisms in both water (Vibrio fischeri, Daphnia magna) and soil environments (Eisenia foetida, Allium cepa), as well as natural fluvial and edaphic communities, including periphyton. Our findings offer valuable insights into TA's ecotoxicological impact across various trophic levels, underscoring the need for more comprehensive investigations in complex ecosystems. Our results demonstrate that TA exhibits ecotoxicity towards specific non-target aquatic organisms, particularly V. fischeri and D. magna, and phytotoxicity on A. cepa. The severity of these effects varies, with V. fischeri being the most sensitive, followed by D. magna and A. cepa. However, the soil-dwelling invertebrate E. foetida shows resistance to the tested TA concentrations. Furthermore, our research reveals that substantial TA concentrations are required to reduce the growth of river microbial communities. Metabolic changes, particularly in amino acid and amine metabolism, are observed at lower concentrations. Notably, the photosynthetic yield of river periphyton remains unaffected, even at higher concentrations. In contrast, soil microbial communities exhibit greater sensitivity, with significant alterations in population growth and metabolic profiles at a very low concentration of 0.2 mg/L for all metabolites. In summary, this study offers valuable insights into the ecotoxicological effects of TA on both aquatic and terrestrial environments. It underscores the importance of considering a variety of non-target organisms and complex communities when assessing the environmental implications of this compound.
Collapse
|
8
|
Stachurski P, Świątkowski W, Ciszewski A, Sarna-Boś K, Michalak A. A Short Review of the Toxicity of Dentifrices-Zebrafish Model as a Useful Tool in Ecotoxicological Studies. Int J Mol Sci 2023; 24:14339. [PMID: 37762640 PMCID: PMC10531698 DOI: 10.3390/ijms241814339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review aims to summarize the literature data regarding the effects of different toothpaste compounds in the zebrafish model. Danio rerio provides an insight into the mechanisms of the ecotoxicity of chemicals as well as an assessment of their fate in the environment to determine long-term environmental impact. The regular use of adequate toothpaste with safe active ingredients possessing anti-bacterial, anti-inflammatory, anti-oxidant, and regenerative properties is one of the most effective strategies for oral healthcare. In addition to water, a typical toothpaste consists of a variety of components, among which three are of predominant importance, i.e., abrasive substances, fluoride, and detergents. These ingredients provide healthy teeth, but their environmental impact on living organisms are often not well-known. Each of them can influence a higher level of organization: subcellular, cellular, tissue, organ, individual, and population. Therefore, it is very important that the properties of a chemical are detected before it is released into the environment to minimize damage. An important part of a chemical risk assessment is the estimation of the ecotoxicity of a compound. The zebrafish model has unique advantages in environmental ecotoxicity research and has been used to study vertebrate developmental biology. Among others, the advantages of this model include its external, visually accessible development, which allows for providing many experimental manipulations. The zebrafish has a significant genetic similarity with other vertebrates. Nevertheless, translating findings from zebrafish studies to human risk assessment requires careful consideration of these differences.
Collapse
Affiliation(s)
- Piotr Stachurski
- Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Wojciech Świątkowski
- Department of Oral Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Andrzej Ciszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
9
|
Hamed M, Martyniuk CJ, Said REM, Soliman HAM, Badrey AEA, Hassan EA, Abdelhamid HN, Osman AGM, Sayed AEDH. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (Clarias gariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122074. [PMID: 37331582 DOI: 10.1016/j.envpol.2023.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Elhagag A Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Hani N Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assuit University, Assuit, 71515, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
10
|
Xie L, Ma Z, Yang G, Huang Y, Wen T, Deng Y, Sun J, Zheng S, Wu F, Huang K, Shao J. Study on the inhibition mechanism of eucalyptus tannins against Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114452. [PMID: 38321671 DOI: 10.1016/j.ecoenv.2022.114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Microcystis aeruginosa is the competitively dominant algal species in eutrophic waters and poses a serious threat to the aquatic ecological environment. To investigate the effects of eucalyptus tannins (TFL) and black water in eucalyptus plantations on M. aeruginosa, this study exposed M. aeruginosa to different concentrations (0 (control), 20, 50, 80, 110, and 140 mg L-1) of tannic acid (TA; hydrolyzed tannins, HT; reagent tannin), epigallocatechin gallate (EGCG; condensed tannins, CT; reagent tannin), eucalyptus tannins (TFL, complex tannin) and mixed TFL + Fe3+ solution (tannin: Fe3+ molar ratio = 1:10). The cell density, chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, malondialdehyde (MDA) and soluble protein (SP) contents of algae under tannin stress were determined, and the algal cell density treated with under the combination of TFL and Fe3+ was determined. The results showed a reduction in the Chl-a content of algal cells, which inhibited photosynthesis; leading to membrane lipid peroxidation; and the complexation of soluble proteins resulting in blocked protein synthesis were the main mechanisms by which tannins inhibited the growth of M. aeruginosa. TFL achieved the same inhibition of algal cells as the tannin reagent at the same concentration. At 4 d, TFL at 80 mg L-1 and above could achieve more than 54.87 % algal density inhibition. The inhibition rate of 80 mg L-1 and above TFL + Fe3+ on algal density was more than 75 %, indicating that TFL + Fe3+ had a stronger inhibitory effect on algal density. The results may facilitate the resource utilization of eucalyptus harvesting residues, explorations of the potential application of eucalyptus tannins in the control of M. aeruginosa, and provide new ideas for ecological algal inhibition in eucalyptus plantations.
Collapse
Affiliation(s)
- Liujun Xie
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhengxin Ma
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Gairen Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| | - Yuhan Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Tianyi Wen
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yusong Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jingchao Sun
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Siyu Zheng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Fangfang Wu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures Nanning, 530023, China
| | - Jinhua Shao
- China Guangxi Hydraulic Research Institute, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures Nanning, 530023, China
| |
Collapse
|
11
|
Anifowoshe AT, Roy D, Dutta S, Nongthomba U. Evaluation of cytogenotoxic potential and embryotoxicity of KRS-Cauvery River water in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113320. [PMID: 35183813 DOI: 10.1016/j.ecoenv.2022.113320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In the Cauvery River (CR), indiscriminate discharge of waste causes unexplained skeletal deformity in some fish species present in the water. To investigate this phenomenon, we analyzed the biological, physical, and chemical parameters present in the water and then evaluated the toxicity effects on the zebrafish (Danio rerio) model. The zebrafish were treated with KRS-CR water samples collected from three stations (fast-flowing water [X], slow-flowing [Y], and stagnant [Z] water), before and after filtration. Firstly, we detected microscopic organisms (MO) such as Cyclops, Daphnia, Spirogyra, Spirochaeta, and total coliform (Escherichia coli), which are bioindicators of water pollution present in the samples. All physicochemical parameters analyzed, including heavy metals before and after filtration of the water with Millipore filter paper (0.45 µm), were within the acceptable limits set by standard organizations, except for decreased dissolved oxygen (DO), and increased biochemical oxygen demand (BOD), and chemical oxygen demand (COD), which are indicators of hypoxic water conditions, as well as the presence of microplastics (polybutene (< 15 µm), polyisobutene (≤ 20 µm), and polymethylpentene (≤3 mm)) and cyclohexyl in CR water samples. Zebrafish embryos treated with the water samples, both before and after filtration exerts the same cytogenotoxic effects by inducing increased reactive oxygen species (ROS) production, which triggers subcellular organelle dysfunctions, DNA damage, apoptosis, pericardial edema, skeletal deformities, and increased mortality. As a result, we observed that both water samples and zebrafish larvae had significantly less oxygen using SEM and EDS. Our findings show that KRS-CR water can induce cytogenotoxic and embryotoxic defects in zebrafish due to hypoxic water conditions triggered by the microplastics influx. The present study would provide valuable insights for health hazards evaluation and future river water treatment strategies.
Collapse
Affiliation(s)
- Abass Toba Anifowoshe
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Debasish Roy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Journal of Visualized Experiments (JoVE), 1 Alewife Center Suite 200, Cambridge, MA 02140, USA
| | - Somit Dutta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|