1
|
Mi Q, Sun H, Wang H, Li Q, Yin P, Wang Q, Tong J, Liu S, Bi Y, Yu L. Ginsenoside Rg5 inhibits the proliferation of HeLa cell through cell cycle pathway. Food Sci Biotechnol 2025; 34:2011-2024. [PMID: 40196332 PMCID: PMC11972262 DOI: 10.1007/s10068-025-01817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 04/09/2025] Open
Abstract
The issue of Cervical cancer has received considerable critical attention. It was the leading cause of death in female cancer patients. Ginsenoside Rg5 has been implicated in the growth of human cancer cells, but the lack of research to determine the influence mechanism has been a significant challenge for many years. In this study, ginsenoside Rg5 was used to treat HeLa cells, and RT-qPCR, Western Blotting and RNA-seq were used to analyze the differentially expressed genes in HeLa cells to study the preliminary mechanism of ginsenoside Rg5 on cervical cancer. The results of RT-qPCR and Western Blotting were in agreement with RNA-seq analysis, which showed a down-regulation of proteins in the cell cycle pathway. These results all indicate that the expression of Minichromosome Maintenance Complex Component 6 (MCM6), Cyclin A2 (CCNA2), Cyclin-dependent kinase 6 (CDK6) and Cell division cycle 6 (CDC6) in HeLa cells treated with ginsenoside Rg5 is significantly reduced, with MCM6 exhibiting the most significant inhibitory effect, making it a potential target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Hang Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Heyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Qiuyang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Qiannan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Jian Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Shuang Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
2
|
Molina-Castillo G, Monroy-García A, García-Rocha R, Weiss-Steider B, Montesinos-Montesinos JJ, Hernández-Montes J, Don-López CA, Castro-Manrreza ME, Escobar-Sánchez ML, Mora-García MDL. TGF-β Induces the Secretion of Extracellular Vesicles Enriched with CD39 and CD73 from Cervical Cancer Cells. Int J Mol Sci 2025; 26:2413. [PMID: 40141056 PMCID: PMC11942456 DOI: 10.3390/ijms26062413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The presence of TGF-β in the tumor microenvironment of cervical cancer (CC) is important for tumor progression. In this study, we analyzed the effect of TGF-β on the expression of the ectonucleotidases CD39 and CD73, which are involved in the generation of adenosine (Ado), in CC cells and in extracellular vesicles (EVs) secreted by these cells. Treatment of HeLa and CaSki cells for 72 h with recombinant human TGF-β increased the expression of CD39 and CD73 by 20 and 30% and by 40 and 100%, respectively. The addition of SB505124, an inhibitor of the TGF-β1 receptor, or GW4869, an inhibitor of exosome formation and release, reduced the expression and release of both ectonucleotidases in CC cells. Furthermore, TGF-β promoted the secretion of medium-large EVs (>130 nm) in HeLa cells (HeLa + TGF-β/EVs) and CaSki cells (CaSki + TGF-β/EVs), which increased the expression of CD39 (>20%) and CD73 (>60%), and EVs obtained from cells treated with TGF-β had a greater capacity to generate Ado than did EVs obtained from cells cultured in the absence of this factor (HeLa/EVs and CaSki/EVs). These findings suggest that the production of TGF-β in the CC TME can promote neoplastic progression through the secretion of EVs enriched with CD39 and CD73. Therefore, the inhibition of CD39+ CD73+ EVs could be a strategy for the treatment of CC.
Collapse
Affiliation(s)
- Gabriela Molina-Castillo
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
- Programa de Posgrado en Ciencias Biológicas, UNAM, Ciudad de México 09230, Mexico
| | - Alberto Monroy-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico;
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
| | - Marta Elena Castro-Manrreza
- Laboratorio de Inmunología y Células Madre, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, FES Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico;
| | - María Luisa Escobar-Sánchez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer-UMIEZ, FES-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (G.M.-C.); (R.G.-R.); (B.W.-S.); (J.H.-M.); (C.A.D.-L.)
| |
Collapse
|
3
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
4
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
6
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
7
|
Maitra S, Mukerjee N, Alharbi HM, Ghosh A, Alexiou A, Thorat ND. Targeted therapies for HPV-associated cervical cancer: Harnessing the potential of exosome-based chipsets in combating leukemia and HPV-mediated cervical cancer. J Med Virol 2024; 96:e29596. [PMID: 38590017 DOI: 10.1002/jmv.29596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Exosomes play a crucial role in intercellular communication and have emerged as significant vehicles for transporting disease-specific biomarkers. This feature provides profound insights into the progression of diseases and the responses of patients to treatments. For example, in leukemia, exosomes convey critical information through the carriage of specific proteins and nucleic acids. In the case of human papillomavirus (HPV)-mediated cervical cancer, exosomes are particularly useful for noninvasive detection as they transport high-risk HPV DNA and specific biomolecules, which can be indicators of the disease. Despite their vast potential, there are several challenges associated with the use of exosomes in medical diagnostics. These include their inherent heterogeneity, the need for enhanced sensitivity in detection methods, the establishment of standardization protocols, and the requirement for cost-effective scalability in their application. Addressing these challenges is crucial for the effective implementation of exosome-based diagnostics. Future research and development are geared towards overcoming these obstacles. Efforts are concentrated on refining the processes of biomarker discovery, establishing comprehensive regulatory frameworks, developing convenient point-of-care devices, exploring methods for multimodal detection, and conducting extensive clinical trials. The ultimate goal of these efforts is to inaugurate a new era of precision diagnostics within healthcare. This would significantly improve patient outcomes and reduce the burden of diseases such as leukemia and HPV-mediated cervical cancer. The integration of exosomes with cutting-edge technology holds the promise of significantly reinforcing the foundations of healthcare, leading to enhanced diagnostic accuracy, better disease monitoring, and more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, India
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arabinda Ghosh
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP, Med, Wein, Austria
| | - Nanasaheb D Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
8
|
Ghouneimy A, Ali Z, Aman R, Jiang W, Aouida M, Mahfouz M. CRISPR-Based Multiplex Detection of Human Papillomaviruses for One-Pot Point-of-Care Diagnostics. ACS Synth Biol 2024; 13:837-850. [PMID: 38349963 PMCID: PMC10949237 DOI: 10.1021/acssynbio.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
The World Health Organization's global initiative toward eliminating high-risk Human Papillomavirus (hrHPV)-related cancers recommends DNA testing over visual inspection in all settings for primary cancer screening and HPV eradication by 2100. However, multiple hrHPV types cause different types of cancers, and there is a pressing need for an easy-to-use, multiplex point-of-care diagnostic platform for detecting different hrHPV types. Recently, CRISPR-Cas systems have been repurposed for point-of-care detection. Here, we established a CRISPR-Cas multiplexed diagnostic assay (CRISPRD) to detect cervical cancer-causing hrHPVs in one reaction (one-pot assay). We harnessed the compatibility of thermostable AapCas12b, TccCas13a, and HheCas13a nucleases with isothermal amplification and successfully detected HPV16 and HPV18, along with an internal control in a single-pot assay with a limit of detection of 10 copies and 100% specificity. This platform offers a rapid and practical solution for the multiplex detection of hrHPVs, which may facilitate large-scale hrHPV point-of-care screening. Furthermore, the CRISPRD platform programmability enables it to be adapted for the multiplex detection of any two nucleic acid biomarkers as well as internal control.
Collapse
Affiliation(s)
- Ahmed Ghouneimy
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Wenjun Jiang
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mustapha Aouida
- Division
of Biological and Biomedical Sciences, College of Health and Life
Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, P.O. Box: 34110 Doha, Qatar
| | - Magdy Mahfouz
- Laboratory
for Genome Engineering and Synthetic Biology, Division of Biological
Sciences, 4700 King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
10
|
Dong S, Zhang Y, Wang Y. Role of extracellular vesicle in human papillomavirus-associated cervical cancer. J Cancer Res Clin Oncol 2023; 149:16203-16212. [PMID: 37668793 DOI: 10.1007/s00432-023-05374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cervical cancer is a gynecological malignant tumor and a serious threat to women's health. Although human papillomavirus (HPV) infection and the occurrence of cervical cancer are known to be closely related, the underlying carcinogenic mechanism of HPV is not fully understood. Extracellular vesicles (EVs) are found in a variety of body fluids and play an important role in both intercellular communication and cancer progression. Furthermore, the presence of EVs makes liquid biopsy of cervical cancer possible. The study of EVs in cervical cancer can provide clinical ideas for the diagnosis and treatment of the disease. OBJECTIVES The purpose of this article is to summarizes the role of EV contents in HPV-associated cervical cancer and discusses the possible clinical application of EVs in cervical cancer treatment. METHODS The search terms included the following: HPV with cervical cancer and extracellular vesicles. The initial literature search ended on March 1, 2023. CONCLUSIONS In HPV-positive cervical cancer, EV contents are changed due to the presence of HPV. HPV-positive cervical cancer affects the cell microenvironment and other surrounding cells through the secretion of EVs.
Collapse
Affiliation(s)
- Shixiang Dong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Yankui Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China.
| |
Collapse
|
11
|
Li Q, Sun H, Liu S, Tang J, Liu S, Yin P, Mi Q, Liu J, yu L, Bi Y. Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway. J Ginseng Res 2023; 47:645-653. [PMID: 37720575 PMCID: PMC10499649 DOI: 10.1016/j.jgr.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.
Collapse
Affiliation(s)
| | | | - Shiwei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jinxin Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Shengnan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lei yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Gameiro SF, Flondra KM. Human Papillomavirus-Associated Tumor Extracellular Vesicles in HPV + Tumor Microenvironments. J Clin Med 2023; 12:5668. [PMID: 37685735 PMCID: PMC10488665 DOI: 10.3390/jcm12175668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Most infections with human papillomaviruses (HPVs) are self-resolving and asymptomatic. However, some infections can lead to the development of cancer at different mucosal sites, such as the cervix and the head and neck. Head and neck cancers (HNCs) are dichotomized into HPV-positive (HPV+) or HPV-negative (HPV-) based on their respective etiologies. Notably, the tumor microenvironment (TME) of the HPV+ subtype has an immune landscape characterized with increased immune infiltration, higher levels of T cell activation, and higher levels of immunoregulatory stimuli compared to their HPV- counterparts. Both enveloped and nonenveloped viruses hijack the extracellular vesicle (EV) biogenesis pathway to deploy a "trojan horse" strategy with a pseudoviral envelope to enhance infectivity and evade inflammation. EVs derived from HPV-infected tumor cells could allow for the stealth transport of viral cargo to neighboring nonmalignant cellular populations or infiltrating immune cells within the TME. Furthermore, viral cargo or altered cellular cargo from HPV-associated tumor EVs (HPV-TEVs) could alter the functional state or biological responses of the recipient cellular populations, which could shape the distinctive HPV+ TME. This review will cover the impact of EVs released from HPV-infected cells on HPV-induced carcinogenesis, their role in shaping the distinctive HPV+ tumor microenvironment, and current efforts to develop a painless EV-based liquid biopsy for HPV+ cancers.
Collapse
Affiliation(s)
- Steven F. Gameiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kaitlyn M. Flondra
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada;
| |
Collapse
|
13
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
14
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
15
|
Detection of HPV RNA in Extracellular Vesicles from Neuroendocrine Cervical Cancer Cells. Viruses 2022; 14:v14102226. [PMID: 36298781 PMCID: PMC9606890 DOI: 10.3390/v14102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Neuroendocrine carcinoma of the cervix (NECC) is an aggressive and rare type of cervical cancer. The five-year overall survival is low at 30% and there is no standardized therapy based on controlled trials for this type of tumour. Most are locally advanced or metastasized at the time of the diagnosis. Extracellular vesicles (EVs) could be a carrier of viral DNA/RNA, given their vital role in cellular communication. The content of EV derived from NECC cells has not been investigated due to the lack of cell line, and it is not known whether they contain human papillomaviruses (HPV) DNA/RNA or not. Methods: The presence of viral E7 DNA/RNA in EVs purified from a culture of a recently established NECC cell line, GUMC-395, was evaluated by using droplet digital polymerase chain reaction (ddPCR). These EVs were characterized using nanoparticle tracking analysis (NTA) for size distribution, transmission electron microscopy (TEM) for morphology, Western blot for CD63, and bioanalyser for RNA quantity and quality. Results: HPV16 viral-RNA, but not DNA, was detected in EVs from GUMC-395 using ddPCR. NTA identified EVs with a mean diameter of 105.0 nm, TEM confirmed normal morphological shape and size, and Western blot analysis confirmed the presence of EV-associated proteins CD63. The EVs were found to be enriched with small RNAs using a bioanalyser. Conclusions: HPV16 RNA is found in EVs from a neuroendocrine cervical cancer and could be involved in the pathogenesis of the disease and used as a diagnostic biomarker.
Collapse
|
16
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
17
|
Alcántara-Quintana LE, González-Pérez ME, Loyola-Leyva A, Terán-Figueroa Y. Effect of Exosomes from Patients with Grade One Cervical Intraepithelial Neoplasia on Cell Cultures: A Preliminary Study. Cancer Manag Res 2022; 14:2225-2233. [PMID: 35903647 PMCID: PMC9314757 DOI: 10.2147/cmar.s355689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Exosomes are extracellular membrane vesicles. Their content directly reflects the metabolic state of the cells from which they originate and play an important role in cellular functions and pathological states, for example, cancer. The aim was to establish the effect of exosomes from patients diagnosed with CIN1 (grade one cervical intraepithelial neoplasia) on the viability of HeLa cells in culture. It had not been documented, nor had the vesicles obtained by cervicovaginal samples taken by the patients themselves (self-taken vaginal). Patients and Methods Exosomes were obtained from self-taken vaginal by patients diagnosed with CIN1 and healthy. The exosomes were characterized by determining the AChE (acetylcholinesterase) activity, obtaining a protein profile, and obtaining images of these by STEM. The effect on cell viability was made in HeLa and HaCaT cells in culture. Results Vesicles between 185 nm and 415 nm were observed by STEM. Exosomes show a "protective" effect when those patients without injury are confronted with HeLa cells. On the other hand, exosomes promote viability when they come from injured patients in the presence of the same cells. Conclusion Exosomes can be used to identify ideal biomarkers for the early diagnosis of CC (cervical cancer), follow-up of patients, and even treatment given the effects observed on cell cultures.
Collapse
Affiliation(s)
- Luz Eugenia Alcántara-Quintana
- Coordination for Innovation and Application of Science and Technology, Autonomous University of San Luis Potosí, San Luis Potosí, SLP., Mexico
| | | | - Alejandra Loyola-Leyva
- Coordination for Innovation and Application of Science and Technology, Autonomous University of San Luis Potosí, San Luis Potosí, SLP., Mexico
| | - Yolanda Terán-Figueroa
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí, SLP., Mexico
| |
Collapse
|
18
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
19
|
Yang L, Li J, Li S, Dang W, Xin S, Long S, Zhang W, Cao P, Lu J. Extracellular Vesicles Regulated by Viruses and Antiviral Strategies. Front Cell Dev Biol 2021; 9:722020. [PMID: 34746122 PMCID: PMC8566986 DOI: 10.3389/fcell.2021.722020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles, mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs are increasingly recognized as a tool to mediate the intercellular communication and are closely related to human health. Viral infection is associated with various diseases, including respiratory diseases, neurological diseases, and cancers. Accumulating studies have shown that viruses could modulate their infection ability and pathogenicity through regulating the component and function of EVs. Non-coding RNA (ncRNA) molecules are often targets of viruses and also serve as the main functional cargo of virus-related EVs, which have an important role in the epigenetic regulation of target cells. In this review, we summarize the research progress of EVs under the regulation of viruses, highlighting the content alteration and function of virus-regulated EVs, emphasizing their isolation methods in the context of virus infection, and potential antiviral strategies based on their use. This review would promote the understanding of the viral pathogenesis and the development of antiviral research.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
20
|
Extracellular Vesicles in Cervical Cancer and HPV Infection. MEMBRANES 2021; 11:membranes11060453. [PMID: 34202942 PMCID: PMC8235012 DOI: 10.3390/membranes11060453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Since their description, extracellular vesicles (EVs) have shown growing relevance in cancer progression. These cell structures contain and transfer molecules such as nucleic acids (including DNA and RNA), proteins, and lipids. Despite the rising information about EVs’ relationship with cancer, there is still scarce evidence about their content and function in cervical cancer. Interestingly, the composition and purposes of some cellular molecules and the expression of oncogenic proteins packaged in EVs seem modified in HPV-infected cells; and, although only the E6 oncogenic protein has been detected in exosomes from HPV-positive cells, both E6/E7 oncogenes mRNA has been identified in EVs; however, their role still needs to be clarified. Given that EVs internalizing into adjacent or distant cells could modify their cellular behavior or promote cancer-associated events like apoptosis, proliferation, migration, or angiogenesis in receptor cells, their comprehensive study will reveal EV-associated mechanisms in cervical cancer. This review summarizes the current knowledge in composition and functions of cervical cancer and HPV Infection-derived EVs.
Collapse
|
21
|
Shrivastava S, Morris KV. The Multifunctionality of Exosomes; from the Garbage Bin of the Cell to a Next Generation Gene and Cellular Therapy. Genes (Basel) 2021; 12:genes12020173. [PMID: 33513776 PMCID: PMC7912150 DOI: 10.3390/genes12020173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are packaged with a variety of cellular cargo including RNA, DNA, lipids and proteins. For several decades now there has been ongoing debate as to what extent exosomes are the garbage bin of the cell or if these entities function as a distributer of cellular cargo which acts in a meaningful mechanistic way on target cells. Are the contents of exosomes unwanted excess cellular produce or are they selective nucleic acid packaged nanoparticles used to communicate in a paracrine fashion? Overexpressed RNAs and fragments of DNA have been shown to collect into exosomes which are jettisoned from cells in response to particular stimuli to maintain homeostasis suggesting exosomes are functional trash bins of the cell. Other studies however have deciphered selective packaging of particular nucleic acids into exosomes. Nucleic acids packaged into exosomes are increasingly reported to exert transcriptional control on recipient cells, supporting the notion that exosomes may provide a role in signaling and intracellular communication. We survey the literature and conclude that exosomes are multifunctional entities, with a plethora of roles that can each be taken advantage to functionally modulate cells. We also note that the potential utility of developing exosomes as a next generation genetic therapy may in future transform cellular therapies. We also depict three models of methodologies which can be adopted by researchers intending to package nucleic acid in exosomes for developing gene and cell therapy.
Collapse
Affiliation(s)
- Surya Shrivastava
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
- School of Medical Science, Gold Coast Campus, Griffith University, Southport 4222, Australia
- Correspondence:
| |
Collapse
|
22
|
Zhao C, Zhang G, Liu J, Zhang C, Yao Y, Liao W. Exosomal cargoes in OSCC: current findings and potential functions. PeerJ 2020; 8:e10062. [PMID: 33194377 PMCID: PMC7646305 DOI: 10.7717/peerj.10062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 2020; 15:1701-1714. [PMID: 32767659 PMCID: PMC8169445 DOI: 10.1002/1878-0261.12777] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.
Collapse
Affiliation(s)
- Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christine Semira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
24
|
Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: Clinical implications, applications and challenges. Int J Cancer 2019; 146:2946-2959. [PMID: 31671207 DOI: 10.1002/ijc.32762] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
The exosome is a small functional vesicle enriched in selected proteins, lipids and nucleic acids, displaying distinct molecular heterogeneity. Exosomes released can transform the extracellular matrix microenvironments, transmit signals and molecules to recipient cells and trigger changes in their pathophysiological functions. Tumor-derived exosomes mediate the interactions of tumor cells and microenvironment significantly, and they stimulate tumor growth and development through specific signaling pathways related to metastasis, therapeutic resistance and immunosuppression. Exosome biogenesis from tumors often represents abundant biological information, and novel and efficient isolation and detection methods of exosomes provide a promising approach for tumor diagnosis and prognosis estimation. Moreover, exosome can even be developed as therapeutic agents for multiple disease models based on effective material transport characteristics and biofilm specificity. This review reports the clinical implications and challenges of exosomes in cancer progression, therapy resistance, metastasis and immune escape, and underlying cancerogenic pathological phenotypes including fibrosis and viral infection.
Collapse
Affiliation(s)
- Zhenye Tang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Dongpei Li
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Jones LB, Kumar S, Curry AJ, Price JS, Krendelchtchikov A, Crenshaw BJ, Bell CR, Williams SD, Tolliver TA, Saldanha SN, Sims B, Matthews QL. Alcohol Exposure Impacts the Composition of HeLa-Derived Extracellular Vesicles. Biomedicines 2019; 7:biomedicines7040078. [PMID: 31574936 PMCID: PMC6966524 DOI: 10.3390/biomedicines7040078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are nanosized vesicles that are under intense investigation for their role in intercellular communication. Extracellular vesicles have begun to be examined for their role in disease protection and their role as disease biomarkers and/or vaccine agents. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of extracellular vesicles derived from the cervical cancer line, HeLa. The HeLa cells were cultured in exosome-free media and were either mock-treated (control) or treated with 50 mM or 100 mM of alcohol for 24 h and 48 h. Our results demonstrated that alcohol significantly impacts HeLa cell viability and exosome biogenesis/composition. Importantly, our studies demonstrate the critical role of alcohol on HeLa cells, as well as HeLa-derived extracellular vesicle biogenesis and composition. Specifically, these results indicate that alcohol alters extracellular vesicles’ packaging of heat shock proteins and apoptotic proteins. Extracellular vesicles serve as communicators for HeLa cells, as well as biomarkers for the initiation and progression of disease.
Collapse
Affiliation(s)
- Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aliyah J Curry
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Jayde S Price
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Alexandre Krendelchtchikov
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sparkle D Williams
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Tambre A Tolliver
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sabita N Saldanha
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|