1
|
Guo P, Ren J, Shi X, Xu A, Zhang P, Guo F, Feng Y, Zhao X, Yu H, Jiang C. Optimized nitrogen application ameliorates the photosynthetic performance and yield potential in peanuts as revealed by OJIP chlorophyll fluorescence kinetics. BMC PLANT BIOLOGY 2024; 24:774. [PMID: 39143533 PMCID: PMC11323456 DOI: 10.1186/s12870-024-05482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Nitrogen (N) is a crucial element for increasing photosynthesis and crop yields. The study aims to evaluate the photosynthetic regulation and yield formation mechanisms of different nodulating peanut varieties with N fertilizer application. METHOD The present work explored the effect of N fertilizer application rates (N0, N45, N105, and N165) on the photosynthetic characteristics, chlorophyll fluorescence characteristics, dry matter, N accumulation, and yield of four peanut varieties. RESULTS The results showed that N application increased the photosynthetic capacity, dry matter, N accumulation, and yield of peanuts. The measurement of chlorophyll a fluorescence revealed that the K-phase, J-phase, and I-phase from the OJIP curve decreased under N105 treatment compared with N0, and WOI, ET0/CSM, RE0/CSM, ET0/RC, RE0/RC, φPo, φEo, φRo, and Ψ0 increased, whereas VJ, VI, WK, ABS/RC, TR0/RC, DI0/RC, and φDo decreased. Meanwhile, the photosystem activity and electron transfer efficiency of nodulating peanut varieties decreased with an increase in N (N165). However, the photosynthetic capacity and yield of the non-nodulating peanut variety, which highly depended on N fertilizer, increased with an increase in N. CONCLUSION Optimized N application (N105) increased the activity of the photosystem II (PSII) reaction center, improved the electron and energy transfer performance in the photosynthetic electron transport chain, and reduced the energy dissipation of leaves in nodulating peanut varieties, which is conducive to improving the yield. Nevertheless, high N (N165) had a positive effect on the photosystem and yield of non-nodulating peanut. The results provide highly valuable guidance for optimizing peanut N management and cultivation measures.
Collapse
Affiliation(s)
- Pei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anning Xu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ping Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Fan Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
- Liaoning Agriculture Vocational and Technical College, Yingkou, China.
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
2
|
Singh A, Schöb C, Iannetta PPM. Nitrogen fixation by common beans in crop mixtures is influenced by growth rate of associated species. BMC PLANT BIOLOGY 2023; 23:253. [PMID: 37183263 PMCID: PMC10184335 DOI: 10.1186/s12870-023-04204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Legumes can fix atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fixation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is influenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. RESULTS We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive effects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. CONCLUSIONS It is generally assumed that legumes benefit their companion plant species. Our study highlights the contrary and shows that the specific benefits of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efficiency of intercrop-based systems.
Collapse
Affiliation(s)
- Akanksha Singh
- Agricultural Ecology Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
- Department of International Cooperation, Research Institute of Organic Agriculture, Frick, Switzerland.
| | - Christian Schöb
- Agricultural Ecology Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Pietro P M Iannetta
- Department of Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
3
|
Merchant A, Smith MR, Windt CW. In situ pod growth rate reveals contrasting diurnal sensitivity to water deficit in Phaseolus vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3774-3786. [PMID: 35323925 PMCID: PMC9162186 DOI: 10.1093/jxb/erac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of reproductive tissues determines plant fecundity and yield. Loading of resources into the developing reproductive tissue is thought to be under the co-limiting effects of source and sink strength. The dynamics of this co-limitation are unknown, largely due to an inability to measure the flux of resources into a developing sink. Here we use nuclear magnetic resonance (NMR) sensors to measure sink strength by quantifying rates of pod dry matter accumulation (pod loading) in Phaseolus vulgaris at 13-min intervals across the diel period. Rates of pod loading showed contrasting variation across light and dark periods during the onset of water deficit. In addition, rates of pod loading appeared decoupled from net photosynthetic rates when adjusted to the plant scale. Combined, these observations illustrate that the rate of pod development varies under water limitation and that continuous, non-invasive methodologies to measure sink strength provide insight into the governing processes that determine the development of reproductive tissues.
Collapse
Affiliation(s)
| | - Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
4
|
Smith MR, Dinglasan E, Veneklaas E, Polania J, Rao IM, Beebe SE, Merchant A. Effect of Drought and Low P on Yield and Nutritional Content in Common Bean. FRONTIERS IN PLANT SCIENCE 2022; 13:814325. [PMID: 35422826 PMCID: PMC9002355 DOI: 10.3389/fpls.2022.814325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Common bean (Phaseolus vulgaris L.) production in the tropics typically occurs in rainfed systems on marginal lands where yields are low, primarily as a consequence of drought and low phosphorus (P) availability in soil. This study aimed to investigate the physiological and chemical responses of 12 bush bean genotypes for adaptation to individual and combined stress factors of drought and low P availability. Water stress and P deficiency, both individually and combined, decreased seed weight and aboveground biomass by ∼80%. Water deficit and P deficiency decreased photosynthesis and stomatal conductance during plant development. Maximum rates of carboxylation, electron transport, and triose phosphate utilization were superior for two common bean genotypes (SEF60 and NCB226) that are better adapted to combined stress conditions of water deficit and low P compared to the commercial check (DOR390). In response to water deficit treatment, carbon isotope fractionation in the leaf tissue decreased at all developmental stages. Within the soluble leaf fraction, combined water deficit and low P, led to significant changes in the concentration of key nutrients and amino acids, whereas no impact was detected in the seed. Our results suggest that common bean genotypes have a degree of resilience in yield development, expressed in traits such as pod harvest index, and conservation of nutritional content in the seed. Further exploration of the chemical and physiological traits identified here will enhance the resilience of common bean production systems in the tropics.
Collapse
Affiliation(s)
- Millicent R. Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, QLD, Australia
| | - Erik Veneklaas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | | | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
6
|
Suárez JC, Urban MO, Contreras AT, Noriega JE, Deva C, Beebe SE, Polanía JA, Casanoves F, Rao IM. Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia. FRONTIERS IN PLANT SCIENCE 2021; 12:644010. [PMID: 34912351 PMCID: PMC8667034 DOI: 10.3389/fpls.2021.644010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Colombia
| | - Milan O Urban
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Amara Tatiana Contreras
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Jhon Eduar Noriega
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Chetan Deva
- Climate Impacts Group, School of Earth and Environment, Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
| | - Stephen E Beebe
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - José A Polanía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fernando Casanoves
- CATIE - Centro Agronómico de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Idupulapati M Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
7
|
Kumar J, Sen Gupta D, Djalovic I, Kumar S, Siddique KHM. Root-omics for drought tolerance in cool-season grain legumes. PHYSIOLOGIA PLANTARUM 2021; 172:629-644. [PMID: 33314181 DOI: 10.1111/ppl.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Root traits can be exploited to increase the physiological efficiency of crop water use under drought. Root length, root hairs, root branching, root diameter, and root proliferation rate are genetically defined traits that can help to improve the water productivity potential of crops. Recently, high-throughput phenotyping techniques/platforms have been used to screen the germplasm of major cool-season grain legumes for root traits and their impact on different physiological processes, including nutrient uptake and yield potential. Advances in omics approaches have led to the dissection of genomic, proteomic, and metabolomic structures of these traits. This knowledge facilitates breeders to improve the water productivity and nutrient uptake of cultivars under limited soil moisture conditions in major cool-season grain legumes that usually face terminal drought. This review discusses the advances in root traits and their potential for developing drought-tolerant cultivars in cool-season grain legumes.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Ivica Djalovic
- Maize Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
9
|
Fenta BA, Beebe SE, Kunert KJ. Role of fixing nitrogen in common bean growth under water deficit conditions. Food Energy Secur 2020. [DOI: 10.1002/fes3.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Berhanu Amsalu Fenta
- Ethiopian Institute of Agricultural Research Melkassa Agricultural Research Centre Adama Ethiopia
| | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT) Cali Colombia
| | - Karl J. Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
10
|
Effect of Water Deficit on Morphoagronomic and Physiological Traits of Common Bean Genotypes with Contrasting Drought Tolerance. WATER 2020. [DOI: 10.3390/w12010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water deficit is considered one of the most limiting factors of the common bean. Understanding the adaptation mechanisms of the crop to this stress is fundamental for the development of drought-tolerant cultivars. In this sense, the objective of this study was to analyze the influence of water deficit on physiological and morphoagronomic traits of common bean genotypes with contrasting drought tolerance, aiming to identify mechanisms associated with tolerance to water deficit. The experiment was carried out in a greenhouse, arranged in a randomized complete block 4 × 2 factorial design, consisting of four common bean genotypes under two water regimes (with and without water stress), with six replications. The morphoagronomic and physiological traits of four cultivars, two drought-tolerant (IAPAR 81 and BAT 477) and two drought-sensitive (IAC Tybatã and BRS Pontal), were measured for 0, 4, 8, and 12 days, under water deficit, initiated in the phenological stage R5. Water-deficit induced physiological changes in the plants, altering the evaluated morphoagronomic traits. The drought tolerance of cultivar BAT 477 is not only a direct result of the low influence of water deficit on its yield components, but also a consequence of the participation of multiple adaptive physiological mechanisms, such as higher intrinsic water use efficiency, net photosynthesis rate, transpiration, carboxylation efficiency, stomatal conductance, and intracellular concentration of CO2 under water deficit conditions. On the other hand, cultivar IAPAR 81 can be considered drought-tolerant for short water-deficit periods only, since after the eighth day of water deficit, the physiological activities decline drastically.
Collapse
|
11
|
Reinprecht Y, Schram L, Marsolais F, Smith TH, Hill B, Pauls KP. Effects of Nitrogen Application on Nitrogen Fixation in Common Bean Production. FRONTIERS IN PLANT SCIENCE 2020; 11:1172. [PMID: 32849727 PMCID: PMC7424037 DOI: 10.3389/fpls.2020.01172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 05/13/2023]
Abstract
The nitrogen fixing ability of common bean (Phaseolus vulgaris L.) in association with rhizobia is often characterized as poor compared to other legumes, and nitrogen fertilizers are commonly used in bean production to achieve high yields, which in general inhibits nitrogen fixation. In addition, plants cannot take up all the nitrogen applied to the soil as a fertilizer leading to runoff and groundwater contamination. The overall objective of this work is to reduce use of nitrogen fertilizer in common bean production. This would be a major advance in profitability for the common bean industry in Canada and would significantly improve the ecological footprint of the crop. In the current work, 22 bean genotypes [including recombinant inbred lines (RILs) from the Mist × Sanilac population and a non-nodulating mutant (R99)] were screened for their capacity to fix atmospheric nitrogen under four nitrogen regimes. The genotypes were evaluated in replicated field trials on N-poor soils over three years for the percent nitrogen derived from atmosphere (%Ndfa), yield, and a number of yield-related traits. Bean genotypes differed for all analyzed traits, and the level of nitrogen significantly affected most of the traits, including %Ndfa and yield in all three years. In contrast, application of rhizobia significantly affected only few traits, and the effect was inconsistent among the years. Nitrogen application reduced symbiotic nitrogen fixation (SNF) to various degrees in different bean genotypes. This variation suggests that SNF in common bean can be improved through breeding and selection for the ability of bean genotypes to fix nitrogen in the presence of reduced fertilizer levels. Moreover, genotypes like RIL_38, RIL_119, and RIL_131, being both high yielding and good nitrogen fixers, have potential for simultaneous improvement of both traits. However, breeding advancement might be slow due to an inconsistent correlation between these traits.
Collapse
Affiliation(s)
- Yarmilla Reinprecht
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- *Correspondence: Yarmilla Reinprecht,
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Brett Hill
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Karl Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Smith MR, Veneklaas E, Polania J, Rao IM, Beebe SE, Merchant A. Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.). PLoS One 2019; 14:e0217099. [PMID: 31170187 PMCID: PMC6553706 DOI: 10.1371/journal.pone.0217099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Drought substantially limits seed yield of common bean (Phaseolus vulgaris L.) in the tropics. Understanding the interaction of drought on yield and the nutrient concentration of the seed is vital in order to supply nutrition to the millions of consumers who rely on common bean as a staple crop. Nevertheless, the impact of drought on common bean for both yield and nutrient concentration has not yet been concurrently investigated in a field environment. Using 10 bred lines developed by CIAT and its partners for their improved adaptation to drought and phosphorus deficiency, this study characterised the impact of drought on yield and nutrient concentration for leaf and seed tissue of common bean grown in the field. Drought significantly reduced leaf area (by ~50%), harvest index (by ~60%), yield (by ~70%), seed weight (by ~25%) and enriched carbon isotope abundance (δ13C) in the seed. Within the soluble leaf fraction, drought significantly decreased the concentration of mineral nutrients and amino acids, whereas no negative effect on the concentration of nutrients and amino acids was detected within the seed. Genotypic variation in nutrient concentration in both the leaf and seed tissue was identified and should be explored further to identify traits that may confer tolerance to abiotic stress.
Collapse
Affiliation(s)
- Millicent R. Smith
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Erik Veneklaas
- School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | | | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | - Andrew Merchant
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Kamfwa K, Cichy KA, Kelly JD. Identification of quantitative trait loci for symbiotic nitrogen fixation in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1375-1387. [PMID: 30671587 DOI: 10.1007/s00122-019-03284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
QTL were identified for symbiotic nitrogen fixation in common bean. These QTL were detected in both greenhouse and field studies, and many overlapped with previously reported QTL in diverse mapping populations. Common bean (Phaseolus vulgaris L.) productivity can be improved through the genetic enhancement of its symbiotic nitrogen fixation (SNF) capacity. This study was aimed at understanding the genetic architecture of SNF through QTL analysis of a recombinant inbred line (RIL) population contrasting for SNF potential. The mapping population consisted of 188 F4:5 RILs derived from a cross of Solwezi and AO-1012-29-3-3A that were evaluated for SNF in the greenhouse and field in Zambia. The population was genotyped with 5398 single-nucleotide polymorphism (SNP) markers. QTL for shoot biomass, nitrogen percentage in shoot biomass, nitrogen percentage in seed, total nitrogen derived from atmosphere (Ndfa) and percentage of nitrogen derived from the atmosphere (%Ndfa) were identified. Three QTL for %Ndfa were identified on chromosomes Pv01, Pv04 and Pv09. Five QTL for Ndfa were identified on Pv04, Pv06, Pv07, Pv09 and Pv11. The QTL Ndfa9.1SA identified in the current study overlapped with a previously reported QTL for SNF. A major QTL Ndfa7.1DB, SA (R2 = 14.9%) was consistently identified in two greenhouse studies and overlapped with previously reported QTL. The QTL Ndfa4.2SA identified from the greenhouse experiment is novel and overlapped with the QTL %NB4.3SA, %NS4.2SA and %Ndfa4.2SA from the field experiment. These QTL identified in both greenhouse and field experiments, which overlap with previously reported QTL, could potentially be deployed by marker-assisted breeding to accelerate development of bean cultivars with enhanced SNF.
Collapse
Affiliation(s)
- Kelvin Kamfwa
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Karen A Cichy
- USDA-ARS, Sugarbeet and Bean Research Unit, Michigan State University, 1066 Bogue St, East Lansing, MI, 48824, USA
| | - James D Kelly
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St, East Lansing, MI, 48824, USA.
| |
Collapse
|
14
|
Parvin S, Uddin S, Bourgault M, Roessner U, Tausz-Posch S, Armstrong R, O'Leary G, Fitzgerald G, Tausz M. Water availability moderates N 2 fixation benefit from elevated [CO 2 ]: A 2-year free-air CO 2 enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem. PLANT, CELL & ENVIRONMENT 2018; 41:2418-2434. [PMID: 29859018 DOI: 10.1111/pce.13360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/09/2023]
Abstract
Increased biomass and yield of plants grown under elevated [CO2 ] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2 ], provided N2 fixation is stimulated by elevated [CO2 ] in line with growth and yield. In Mediterranean-type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2 ] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2 ] (ambient ~400 ppm and elevated ~550 ppm) levels in a free-air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2 ] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2 ] depressed grain [N] (-4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2 ], as a consequence of greater post-flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2 ] is high as long as there is enough soil water to continue N2 fixation during grain filling.
Collapse
Affiliation(s)
- Shahnaj Parvin
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shihab Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Maryse Bourgault
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Northern Agricultural Research Centre, Montana State University, Havre, Montana, USA
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabine Tausz-Posch
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Roger Armstrong
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Garry O'Leary
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
| | - Glenn Fitzgerald
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
15
|
Barbosa N, Portilla E, Buendia HF, Raatz B, Beebe S, Rao I. Genotypic differences in symbiotic nitrogen fixation ability and seed yield of climbing bean. PLANT AND SOIL 2018; 428:223-239. [PMID: 30996486 PMCID: PMC6435206 DOI: 10.1007/s11104-018-3665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/20/2018] [Indexed: 05/26/2023]
Abstract
AIMS Symbiotic nitrogen fixation (SNF) contributes to improve grain yield under nitrogen (N) deficiency. Climbing beans are known to be superior to bush beans in their potential for SNF. The main objectives of this study were to: (i) quantify genotypic differences in SNF ability of climbing beans using 15N natural abundance method; (ii) identify climbing bean genotypes that combine high SNF ability with high yield potential that could serve as parents in the breeding program; and (iii) test whether δ15N in seed can be used instead of δ15N in shoot for estimating SNF ability. METHODS 98 Climbing bean genotypes were evaluated for SNF ability in terms of nitrogen derived from the atmosphere (%Ndfa). Field trials were conducted at two locations in Colombia. RESULTS Significant genotypic differences were observed in SNF ability. Good yielding lines with 4.6 t ha-1 fixed as much as 60% of their N (up to 92 kg of N fixed ha-1) without application of N fertilizer to soil. CONCLUSIONS Based on evaluations from both locations, seven climbing bean lines (ENF 235, ENF 234, ENF 28, ENF 21, MAC 27, CGA 10 and PO07AT49) were identified as promising genotypes. Seed samples can be used to determine SNF ability, to select for genotypes with superior SNF ability.
Collapse
Affiliation(s)
- Norma Barbosa
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Elizabeth Portilla
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Hector Fabio Buendia
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Bodo Raatz
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Stephen Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
| | - Idupulapati Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713 Cali, Colombia
- Present Address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604 USA
| |
Collapse
|
16
|
Zhang T, Chen A, Liu J, Liu H, Lei B, Zhai L, Zhang D, Wang H. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1640-1649. [PMID: 28810521 DOI: 10.1016/j.scitotenv.2017.06.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The accumulation of soil organic carbon (SOC) in agricultural soils is critical to food security and climate change. However, there is still limited information on the dynamic trend of SOC sequestration following changes in cropping systems. Paddy soils, typical of temperate region of southern China, have a large potential for carbon (C) sequestration and nitrogen (N) fixation. It is of great importance to study the impacts of changes in cropping systems on stocks of SOC and total nitrogen (TN) in paddy soils. A six-year field experiment was conducted to clarify the dynamics of SOC and TN stocks in the paddy topsoil (0-20cm) when crop rotation of rice (Oryza sativa L.) -garlic (Allium sativum) (RG) was changed to rice-fava (Vicia faba L.) (RF), and to examine how the dynamics were affected by two N management strategies. The results showed that SOC stocks increased by 24.9% in the no N (control) treatment and by 18.9% in the treatment applied with conventional rate of N (CON), when RG was changed to RF. Correspondingly, TN stocks increased by 8.5% in the control but decreased by 2.6% in the CON. Compared with RG, RF was more conducive to increase the contents of soil microbial biomass C and N. Moreover, changing the cropping system from RG to RF increased the year-round N use efficiency from 21.6% to 34.4% and reduced soil N surplus in the CON treatment from 547kg/ha to 93kg/ha. In conclusion, changes in the cropping system from RG to RF could markedly increase SOC stocks, improve N utilization, reduce soil N surplus, and thus reduce the risk of N loss in the paddy soil. Overall, this study showed the potential of paddy agro-ecological systems to store C and maintain N stocks in the temperate regions.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 10081, PR China
| | - Anqiang Chen
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 65205, PR China
| | - Jian Liu
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 10081, PR China
| | - Baokun Lei
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 65205, PR China
| | - Limei Zhai
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 10081, PR China
| | - Dan Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 10081, PR China
| | - Hongyuan Wang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 10081, PR China.
| |
Collapse
|
17
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
18
|
Chalk PM, Craswell ET. An overview of the role and significance of 15N methodologies in quantifying biological N2 fixation (BNF) and BNF dynamics in agro-ecosystems. Symbiosis 2017. [DOI: 10.1007/s13199-017-0526-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Tarekegn Y, Serawit S. Growth, symbiotic and yield response of N-fertilized and Rhizobium inoculated common bean (Phaseolus vulgaris L.). ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajps2017.1528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Muñoz-Azcarate O, González AM, Santalla M. Natural rhizobial diversity helps to reveal genes and QTLs associated with biological nitrogen fixation in common bean. AIMS Microbiol 2017; 3:435-466. [PMID: 31294170 PMCID: PMC6604995 DOI: 10.3934/microbiol.2017.3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022] Open
Abstract
Common bean is one of the most important crops for human feed, and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean.
Collapse
Affiliation(s)
- Olaya Muñoz-Azcarate
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Ana M González
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Marta Santalla
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| |
Collapse
|
21
|
Polania J, Rao IM, Cajiao C, Grajales M, Rivera M, Velasquez F, Raatz B, Beebe SE. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23-24 × SEA 5 of Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:296. [PMID: 28316609 PMCID: PMC5334335 DOI: 10.3389/fpls.2017.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 05/08/2023]
Abstract
Drought is the major abiotic stress factor limiting yield of common bean (Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23-24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura TropicalCali, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Polania J, Poschenrieder C, Rao I, Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2017; 29:143-154. [PMID: 33552846 PMCID: PMC7797623 DOI: 10.1007/s40626-017-0090-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Drought stress limits growth and yield of crops, particularly under smallholder production systems with minimal use of inputs and edaphic limitations such as nitrogen (N) deficiency. The development of genotypes adapted to these conditions through genetic improvement is an important strategy to address this limitation. The identification of morpho-physiological traits associated with drought resistance contributes to increasing the efficiency of breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool was evaluated. A greenhouse study using soil cylinders was conducted to determine root vigor traits (total root length and fine root production) under drought stress. Two field trials were conducted to determinate grain yield, symbiotic nitrogen fixation (SNF) ability and other shoot traits under drought stress. Field data on grain yield and other shoot traits measured under drought were related with the greenhouse data on root traits under drought conditions to test the relationships between shoot traits and root traits. Response of root vigor to drought stress appeared to be related with ideotypes of water use (water savers and water spenders). The water spender ideotypes presented deeper root system, while the water saver ideotypes showed a relatively shallower root system. Increase in SNF ability under drought stress was associated with greater values of mean root diameter while greater acquisition of N from soil was associated with finer root system. We identified seven common bean lines (SEA 15, NCB 280, SCR 16, SMC 141, BFS 29, BFS 67 and SER 119) that showed greater root vigor under drought stress in the greenhouse and higher values of grain yield under drought stress in the field. These lines could serve as parents for improving drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
- e-mail:
| | - Charlotte Poschenrieder
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Idupulapati Rao
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Stephen Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|