1
|
Shen Y, Lin S, Song L, Sun P, Nakamura Y, Tang Y. Advanced characterization of fish skin gelatin-proanthocyanidins covalent and non-covalent composite emulsions for benzyl isothiocyanate delivery. Int J Biol Macromol 2025; 290:139071. [PMID: 39716701 DOI: 10.1016/j.ijbiomac.2024.139071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
This research endeavored to engineer robust delivery matrices for bioactives, specifically benzyl isothiocyanate (BITC), by harnessing the synergistic covalent and non-covalent interactions between fish skin gelatin (FSG) and proanthocyanidins (PC) to synthesize novel composite emulsions. The objective was to delineate the influence of these molecular interactions on the emulsion's structural integrity and stability, which are pivotal for the efficacious encapsulation and controlled release of BITC. Employing a suite of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and contact angle measurements, the study delineated the predominant molecular forces at play within the FSG-PC complex, identifying electrostatic and hydrophobic interactions as the cornerstones of this interaction. An assessment of the emulsions' physicochemical properties, encompassing chromaticity, antioxidant efficacy, microstructural attributes, particle dimensions, zeta potential, and BITC retention, was undertaken to discern the optimal encapsulation strategy. The data unequivocally indicated that emulsions enriched with 0.06 wt% PC, in non-covalent synergy with FSG, afforded the most pronounced stability and retention of BITC. This work paves the way for future studies and the translational application of FSG-PC composite emulsions in the realm of bioactive substance delivery, offering a promising avenue for innovation in pharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
- Yuhang Shen
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Peng Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yue Tang
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China.
| |
Collapse
|
2
|
Zolotarjova V, Remmel T, Kännaste A, Kaasik R, Niinemets Ü, Veromann E. Pollen beetle offspring is more parasitized under moderate nitrogen fertilization of oilseed rape due to more attractive volatile signal. Sci Rep 2022; 12:14294. [PMID: 35995937 PMCID: PMC9395338 DOI: 10.1038/s41598-022-18030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022] Open
Abstract
Biocontrol providing parasitoids can orientate according to volatile organic compounds (VOCs) of their host's plants, the emission of which is potentially dependent on the availability of soil nitrogen (N). This paper aimed at finding the optimal N fertilization rate for oilseed rape (Brassica napus L.) to favor parasitism of pollen beetles (Brassicogethes aeneus Fab. syn. Meligethes aeneus Fab.) in a controlled environment. Pollen beetles preferred to oviposit into buds of plants growing under higher N fertilization, whereas their parasitoids favored moderate N fertilization. As a part of induced defense, the proportion of volatile products of glucosinolate pathway in the total oilseed rape VOC emission blend was increased. Our results suggest that the natural biological control of pollen beetle herbivory is best supported by moderate N fertilization rates.
Collapse
Affiliation(s)
- Valentina Zolotarjova
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Triinu Remmel
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Astrid Kännaste
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Riina Kaasik
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ülo Niinemets
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Eve Veromann
- grid.16697.3f0000 0001 0671 1127Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
3
|
Tie Y, Zhu W, Zhang C, Yin L, Zhang Y, Liu L, Yuan H. Identification of Two Myrosinases from a Leclercia adecarboxylata Strain and Investigation of Its Tolerance Mechanism to Glucosinolate Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14151-14164. [PMID: 34806371 DOI: 10.1021/acs.jafc.1c05285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GSLs), secondary metabolites synthesized by cruciferous plants, can be hydrolyzed by myrosinase into compounds, such as isothiocyanates (ITCs), with various bioactivities. Thus, myrosinase plays an important role in the utilization of GSLs. We isolated a bacterial strain, which was identified as Leclercia adecarboxylata, from the rhizosphere soil of rape seedlings and identified two myrosinase genes and an ITC hydrolase gene. Both myrosinases are intracellular and have 658 amino acid residues. Via molecular docking and chemical modification assays investigating the active sites of the myrosinases, arginine was found to be essential for their catalytic activity. Transcriptomic analysis of the response to sinigrin revealed significant up-regulation of some genes involved in allyl-ITC detoxification, with metallo-β-lactamase 3836 having the highest fold change. Thus, we discovered two myrosinases from L. adecarboxylata and demonstrated that the mechanism of tolerance of the bacterium to allyl-ITC likely involved metallo-β-lactamase activity.
Collapse
Affiliation(s)
- Yu Tie
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Wenyou Zhu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Chao Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Liguo Yin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Yalin Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Huawei Yuan
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| |
Collapse
|
4
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
5
|
Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis. Funct Integr Genomics 2016; 16:619-639. [PMID: 27586658 DOI: 10.1007/s10142-016-0517-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
Abstract
In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.
Collapse
|