1
|
Narayanan KB, Bhaskar R, Han SS. Bacteriophages: Natural antimicrobial bioadditives for food preservation in active packaging. Int J Biol Macromol 2024; 276:133945. [PMID: 39029821 DOI: 10.1016/j.ijbiomac.2024.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Developing innovative films and coatings is paramount for extending the shelf life of numerous food products and augmenting the barrier and antimicrobial properties of food packaging materials. Many synthetic chemicals used in active packaging and food storage have the potential to leach into food, posing long-term health risks. It is imperative for active packaging materials to inherently possess biological protective properties to ensure food quality and safety throughout its storage. Bacteriophages, or simply phages, are bacteria-eating viruses that serve as promising natural biocontrol agents and antimicrobial bioadditives in food packaging materials, specifically targeting bacterial foodborne pathogens. These phages are generally recognized as safe (GRAS) by regulatory authorities for food safety applications. They exhibit targeted action against various Gram-positive and -negative foodborne pathogens, including Bacillus spp., Campylobacter spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., and Vibrio spp., associated with foodborne spoilage and illness without affecting the beneficial microbes. Phage cocktails can be applied directly on food surfaces, incorporated into food packaging materials, or utilized during food processing treatments. Unlike chemical agents, phage activity increases proportionally with the rise in pathogenic bacterial populations. Researchers are exploring various packaging materials to deliver phages with broad host range, stability, and viability ensuring their effectiveness in safeguarding various food systems. The effectiveness of phage immobilization or encapsulation on active food packaging materials depends on various factors, including the characteristics of polymers, the choice of solvents, the type of phage, and its loading efficiency. Factors such as the orientation of phage immobilization on substrates, pH, temperature, exposure to carbohydrates and amino acids, exopolysaccharides, lipopolysaccharides, and metals can also influence phage activity. In this review, we comprehensively discuss the various active packaging systems utilizing bacteriophages as natural biocontrols and antimicrobial bioadditives to reduce the incidence of foodborne illness and enhance consumer confidence in the safety of food products.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
2
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Tabare E, Dauchot T, Cochez C, Glonti T, Antoine C, Laforêt F, Pirnay JP, Delcenserie V, Thiry D, Goole J. Eudragit ® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration. Pharmaceutics 2023; 15:1602. [PMID: 37376051 DOI: 10.3390/pharmaceutics15061602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Phage therapy is recognized to be a promising alternative to fight antibiotic-resistant infections. In the quest for oral dosage forms containing bacteriophages, the utilization of colonic-release Eudragit® derivatives has shown potential in shielding bacteriophages from the challenges encountered within the gastrointestinal tract, such as fluctuating pH levels and the presence of digestive enzymes. Consequently, this study aimed to develop targeted oral delivery systems for bacteriophages, specifically focusing on colon delivery and employing Eudragit® FS30D as the excipient. The bacteriophage model used was LUZ19. An optimized formulation was established to not only preserve the activity of LUZ19 during the manufacturing process but also ensure its protection from highly acidic conditions. Flowability assessments were conducted for both capsule filling and tableting processes. Furthermore, the viability of the bacteriophages remained unaffected by the tableting process. Additionally, the release of LUZ19 from the developed system was evaluated using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model. Finally, stability studies demonstrated that the powder remained stable for at least 6 months when stored at +5 °C.
Collapse
Affiliation(s)
- Emilie Tabare
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussel, Belgium
| | - Tiffany Dauchot
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussel, Belgium
| | - Christel Cochez
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Céline Antoine
- Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Fanny Laforêt
- Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Véronique Delcenserie
- Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussel, Belgium
| |
Collapse
|
4
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
5
|
Roque-Borda CA, Souza Saraiva MDM, Monte DFM, Rodrigues Alves LB, de Almeida AM, Ferreira TS, de Lima TS, Benevides VP, Cabrera JM, Claire S, Meneguin AB, Chorilli M, Pavan FR, Junior AB, Vicente EF. HPMCAS-Coated Alginate Microparticles Loaded with Ctx(Ile 21)-Ha as a Promising Antimicrobial Agent against Salmonella Enteritidis in a Chicken Infection Model. ACS Infect Dis 2022; 8:472-481. [PMID: 35230825 DOI: 10.1021/acsinfecdis.1c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in poultry is most often transmitted by the fecal-oral route, which can be attributed to high population density. Upon encountering the innate immune response in a host, the pathogen triggers a stress response and virulence factors to help it survive in the host. The aim of this study was to evaluate the effect of hypromellose acetate/succinate (HPMCAS)-coated alginate microparticles containing the Ctx(Ile21)-Ha antimicrobial peptide (AMP) on both intestinal colonization and systemic infection of laying hens challenged with S. Enteritidis. The applied AMP microsystem reduced the bacterial load of S. Enteritidis in the liver, with a statistical significance between groups A (control, no Ctx(Ile21)-Ha peptide) and B (2.5 mg of Ctx(Ile21)-Ha/kg) at 2 days postinfection (dpi), potentially indicating the effectiveness of Ctx(Ile21)-Ha in the first stage of infection by S. Enteritidis. In addition, the results showed a significant decrease in the S. Enteritidis counts in the spleen and cecal content at 5 dpi; remarkably, no S. Enteritidis counts were observed in livers at 5, 7, and 14 dpi, regardless of the Ctx(Ile21)-Ha dosage (p-value <0.0001). Using the Chi-square test, the effect of AMP microparticles on S. Enteritidis fecal excretion was also evaluated, and a significantly lower bacterial excretion was observed over 21 days in groups B and C, in comparison with the untreated control (p-value <0.05). In summary, the use of HPMCAS-Ctx(Ile21)-Ha peptide microcapsules in laying hens drastically reduced the systemic infection of S. Enteritidis, mainly in the liver, indicating a potential for application as a feed additive against this pathogen.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
- Universidad Católica de Santa María, Vicerrectorado de Investigación, Arequipa, Peru 04013
| | - Mauro de Mesquita Souza Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Daniel F. M. Monte
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Lucas Bocchini Rodrigues Alves
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Adriana Maria de Almeida
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Taísa Santiago Ferreira
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Túlio Spina de Lima
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Valdinete Pereira Benevides
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Julia Memrava Cabrera
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Sunil Claire
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, United Kingdom B15 2TT
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil 14801-902
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil 14884-900
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, Brazil 17602-496
| |
Collapse
|
6
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|
7
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
8
|
Ponce B, Urtuvia V, Maturana N, Peña C, Díaz-Barrera A. Increases in alginate production and transcription levels of alginate lyase (alyA1) by control of the oxygen transfer rate in Azotobacter vinelandii cultures under diazotrophic conditions. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Roque-Borda CA, Pereira LP, Guastalli EAL, Soares NM, Mac-Lean PAB, Salgado DD, Meneguin AB, Chorilli M, Vicente EF. HPMCP-Coated Microcapsules Containing the Ctx(Ile 21)-Ha Antimicrobial Peptide Reduce the Mortality Rate Caused by Resistant Salmonella Enteritidis in Laying Hens. Antibiotics (Basel) 2021; 10:616. [PMID: 34064051 PMCID: PMC8224044 DOI: 10.3390/antibiotics10060616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constant use of synthetic antibiotics as growth promoters can cause bacterial resistance in chicks. Consequently, the use of these drugs has been restricted in different countries. In recent years, antimicrobial peptides have gained relevance due to their minimal capacity for bacterial resistance and does not generate toxic residues that harm the environment and human health. In this study, a Ctx(Ile21)-Ha antimicrobial peptide was employed, due to its previously reported great antimicrobial potential, to evaluate its application effects in laying chicks challenged with Salmonella Enteritidis, resistant to nalidixic acid and spectinomycin. For this, Ctx(Ile21)-Ha was synthesized, microencapsulated and coated with hypromellose phthalate (HPMCP) to be released in the intestine. Two different doses (20 and 40 mg of Ctx(Ile21)-Ha per kg of isoproteic and isoenergetic poultry feed) were included in the chick's food and administered for 28 days. Antimicrobial activity, effect and response as treatment were evaluated. Statistical results were analyzed in detail and indicate that the formulated Ctx(Ile21)-Ha peptide had a positive and significant effect in relation to the reduction of chick mortality in the first days of life. However, there was moderate evidence (p = 0.07), not considered statistically significant, in the differences in laying chick weight between the control and microencapsulation treatment groups as a function of time. Therefore, the microencapsulated Ctx(Ile21)-Ha antimicrobial peptide can be an interesting and promising option in the substitution of conventional antibiotics.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil;
| | - Larissa Pires Pereira
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | | | - Nilce Maria Soares
- Poultry Health Specialized Laboratory, Biological Institute, Bastos, São Paulo 17690-000, Brazil; (E.A.L.G.); (N.M.S.)
| | - Priscilla Ayleen Bustos Mac-Lean
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Douglas D’Alessandro Salgado
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| |
Collapse
|
10
|
Silva Batalha L, Pardini Gontijo MT, Vianna Novaes de Carvalho Teixeira A, Meireles Gouvêa Boggione D, Soto Lopez ME, Renon Eller M, Santos Mendonça RC. Encapsulation in alginate-polymers improves stability and allows controlled release of the UFV-AREG1 bacteriophage. Food Res Int 2020; 139:109947. [PMID: 33509500 DOI: 10.1016/j.foodres.2020.109947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
The bacteriophage UFV-AREG1 was used as a model organism to evaluate the encapsulation via extrusion using different hydrocolloids. Pure alginate [0.75%, 1.0%, 1.5% and 2.0% (m/v)] and mixtures of alginate [0.75% or 1.0% (m/v)] with carrageenan [1.25% (m/v)], chitosan [0.5% (m/v)], or whey protein [1.5% (m/v)] were used to produce bacteriophage-loaded beads. The encapsulating solutions presented flow behavior of non-Newtonian pseudoplastic fluids and the concentration of hydrocolloid did not influence (p > 0.05) the morphology of the beads, except for alginate-chitosan solutions, which presented the higher flow consistency index (K) and the lower flow behavior index (n). The encapsulation efficiency was about 99% and the confocal photomicrography of the encapsulated bacteriophages labeled with fluorescein isothiocyanate showed homogenous distribution of the viral particles within the beads. The phages remained viable in the beads of alginate-whey protein even when submitted to pH 2.5 for 2 h. Beads incubated directly in simulated intestinal fluid (pH 6.8) resulted in a minimal of 50% release of the UFV-AREG1 phages after 5 min, even when previously submitted to the simulated gastric fluid (pH 2.5). Encapsulation enabled phages to remain viable under refrigeration for five months. Encapsulated UFV-AREG1 phages were sensitive to dehydration, suggesting the need for protective agents. In this study, for the first-time bacteriophages were encapsulated in alginate-carrageenan beads, as well as alginate-chitosan as a bead-forming hydrocolloid. In addition, a novel procedure for encapsulating bacteriophages in alginate-whey protein was proposed. The assembled system showed efficiency in the encapsulation of UFV-AREG1 bacteriophages using different hydrocolloids and has potential to be used for the entrapment of a variety of bioactive compounds.
Collapse
Affiliation(s)
- Laís Silva Batalha
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil; Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, São Paulo, Brazil
| | | | | | - Maryoris Elisa Soto Lopez
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil; Department of Food Engineering, Universidad de Córdoba (UNICORDOBA), Montería 230002, Colombia
| | - Monique Renon Eller
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil.
| | | |
Collapse
|
11
|
Bao H, Zhang H, Zhou Y, Zhu S, Pang M, Shahin K, Olaniran A, Schmidt S, Wang R. Transient carriage and low-level colonization of orally administrated lytic and temperate phages in the gut of mice. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020; 2:14. [DOI: 10.1186/s43014-020-00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022]
Abstract
Abstract
Many studies have shown the efficacy of phage therapy in reducing gastrointestinal pathogens. However, it is unclear whether phages can successfully colonize the gut when administered in an adequate amount for a long time. About 1 × 108 PFU/mL of purified lytic phage PA13076 or temperate phage BP96115 were fed daily to mice via drinking water over 31 days, to elucidate the distribution of phages in the gastrointestinal tract. At day 16 and 31, six different segments of the gastrointestinal tract with their contents, including stomach, duodenum, jejunum, ileum, cecum, colon, and fresh feces, were aseptically collected. The phage titers were determined using the double-layered plate method with S. Enteritidis ATCC 13076 or S. Pullorum SPu-109 used as host cells. The results indicated that a small portion of administered phages survived exposure to gastric acid and entered the intestinal tract. The prevalence of phages in the gastrointestinal tract was lower than 1% of the primary phage count. Highest phage titers were detected in the cecum with 104 ~ 105 PFU/g, and most of the phages were eliminated from the body via feces with 106 PFU/g. On day 16 and day 31, the same level of phage titers in different segments of the gastrointestinal tract indicated that the colonization of phages had reached saturation at day 16. These results demonstrate transient phage carriage and low-level colonization of orally administrated lytic and temperate gut phages in mice.
Graphical abstract
Collapse
|
12
|
Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2020; 338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Costa
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
14
|
Acar Soykut E, Tayyarcan EK, Evran Ş, Boyacı İH, Çakır İ, Khaaladi M, Fattouch S. Microencapsulation of phages to analyze their demeanor in physiological conditions. Folia Microbiol (Praha) 2019; 64:751-763. [DOI: 10.1007/s12223-019-00688-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023]
|
15
|
Dutournié P, Bruneau M, Brendlé J, Limousy L, Pluchon S. Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest. CR CHIM 2019. [DOI: 10.1016/j.crci.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
High precision microfluidic microencapsulation of bacteriophages for enteric delivery. Res Microbiol 2018; 169:522-530. [DOI: 10.1016/j.resmic.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
|
17
|
LeLièvre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M. Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol 2018; 78:89-98. [PMID: 30497612 DOI: 10.1016/j.fm.2018.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
Abstract
Controlling the presence of pathogenic bacteria, such as Salmonella sp., in dairy products production is a burning issue since contamination with Salmonella can occur at any stage of the production chain. The use of Salmonella-phages applied as control agents has gained considerable interest. Nonetheless, Salmonella-phage applications specifically intended for ensuring the safety of dairy products are scarce. This review identifies recent advances in the use of Salmonella-phages that are or could be applied along the dairy food chain, in a farm-to-fork approach. Salmonella-phages can be promising tools to reduce the shedding of Salmonella in cattle, and to reduce and control Salmonella occurrence in postharvest food (such as food additives), and in food processing facilities (such as biosanitizing agents). These control measures, combined with existing methods and other biocontrol agents, constitute new opportunities to reduce Salmonella occurrence along the dairy food production, and consequently to alleviate the risk of Salmonella contamination in dairy products.
Collapse
|
18
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
19
|
Cooper CJ, Koonjan S, Nilsson AS. Enhancing Whole Phage Therapy and Their Derived Antimicrobial Enzymes through Complex Formulation. Pharmaceuticals (Basel) 2018; 11:ph11020034. [PMID: 29671806 PMCID: PMC6027540 DOI: 10.3390/ph11020034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
The resurgence of research into phage biology and therapy is, in part, due to the increasing need for novel agents to treat multidrug-resistant infections. Despite a long clinical history in Eastern Europe and initial success within the food industry, commercialized phage products have yet to enter other sectors. This relative lack of success is, in part, due to the inherent biological limitations of whole phages. These include (but are not limited to) reaching target sites at sufficiently high concentrations to establish an infection which produces enough progeny phages to reduce the bacterial population in a clinically meaningful manner and the limited host range of some phages. Conversely, parallels can be drawn between antimicrobial enzymes derived from phages and conventional antibiotics. In the current article the biological limitations of whole phage-based therapeutics and their derived antimicrobial enzymes will be discussed. In addition, the ability of more complex formulations to address these issues, in the context of medical and non-medical applications, will also be included.
Collapse
Affiliation(s)
- Callum J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Anders S Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|