1
|
Am Fulgenzi C, Dalla Pria A, Leone AG, Celsa C, Cabibbo G, Scheiner B, Pinter M, D'Alessio A, Zhao Y, Brau N, Bower M, Pinato DJ. Hepatocellular carcinoma in people living with HIV. J Hepatol 2025:S0168-8278(25)00287-9. [PMID: 40316049 DOI: 10.1016/j.jhep.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
People living with HIV (PLWH) carry a higher risk of developing chronic liver disease and hepatocellular carcinoma (HCC). This relates to shared transmission pathways of HIV and viral hepatitis and a plethora of direct and indirect effects of HIV in the progression of chronic liver disease and HCC. In absence of active cancer treatment, the prognosis of PLWH affected by HCC is worse compared to matched controls without HIV. Evolving evidence suggests that PLWH may receive curative therapies including liver transplantation, loco-regional and systemic anti-cancer therapy for HCC with comparable benefit than people without HIV, underscoring that well controlled HIV infection should not be a barrier to the delivery of cancer care. Nevertheless, PLWH have historically been excluded from interventional clinical trials, and most of the evidence supporting clinical decision making in this population comes from small retrospective studies, adding further challenges to the management of PLWH affected by HCC. Furthermore, whether the biology of the tumour and its microenvironment is influenced by HIV and affects response to treatment is incompletely understood. In this review we summarise the current understanding of pathophysiology, screening and management of HCC in PLWH and discuss the persisting challenges and disparities in care which may contribute to clinical outcome in PLWH.
Collapse
Affiliation(s)
- Claudia Am Fulgenzi
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Alessia Dalla Pria
- National Centre for HIV Oncology, Chelsea Westminster Hospital, London, UK; Section of Virology, Department of Infectious disease, Imperial College London, UK
| | - Alberto Giovanni Leone
- National Centre for HIV Oncology, Chelsea Westminster Hospital, London, UK; Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ciro Celsa
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK; Gastroenterology & Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Cabibbo
- Gastroenterology & Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, University of Palermo, Palermo, Italy
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Yiran Zhao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Norbert Brau
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Bower
- National Centre for HIV Oncology, Chelsea Westminster Hospital, London, UK
| | - David James Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK; Department of Translational Medicine, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara, NO, Italy.
| |
Collapse
|
2
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
3
|
Jiang Y, Chai L, Wang H, Shen X, Fasae MB, Jiao J, Yu Y, Ju J, Liu B, Bai Y. HIV Tat Protein Induces Myocardial Fibrosis Through TGF-β1-CTGF Signaling Cascade: A Potential Mechanism of HIV Infection-Related Cardiac Manifestations. Cardiovasc Toxicol 2021; 21:965-972. [PMID: 34519946 DOI: 10.1007/s12012-021-09687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus (HIV) infection is a risk factor of cardiovascular diseases (CVDs). HIV-infected patients exhibit cardiac dysfunction coupled with cardiac fibrosis. However, the reason why HIV could induce cardiac fibrosis remains largely unexplored. HIV-1 trans-activator of transcription (Tat) protein is a regulatory protein, which plays a critical role in the pathogenesis of various HIV-related complications. In the present study, recombinant Tat was administered to mouse myocardium or neonatal mouse cardiac fibroblasts in different doses. Hematoxylin-eosin and Masson's trichrome staining were performed to observe the histological changes of mice myocardial tissues. EdU staining and MTS assay were used to evaluate the proliferation and viability of neonatal mouse cardiac fibroblasts, respectively. Real-time PCR and western blot analysis were used to detect CTGF, TGF-β1, and collagen I mRNA and protein expression levels, respectively. The results showed that Tat promoted the occurrence of myocardial fibrosis in mice. Also, we found that Tat increased the proliferative ability and the viability of neonatal mouse cardiac fibroblasts. The protein and mRNA expression levels of TGF-β1 and CTGF were significantly upregulated both in Tat-treated mouse myocardium and neonatal mouse cardiac fibroblasts. However, co-administration of TGF-β inhibitor abrogated the enhanced expression of collagen I induced by Tat in neonatal mouse cardiac fibroblasts. In conclusion, Tat contributes to HIV-related cardiac fibrosis through enhanced TGF-β1-CTGF signaling cascade.
Collapse
Affiliation(s)
- Yannan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Lu Chai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Department of Pharmacy, Inner Mongolia Cancer Hospital, Huhhot, 010000, People's Republic of China
| | - Hongguang Wang
- School of Civil Engineering, Northeast Forestry University, Harbin, 150040, People's Republic of China
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), School of Material Science and Engineering, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jinfeng Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jiaming Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Bing Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China.
| |
Collapse
|
4
|
Zhao JZ, Ye Q, Wang L, Lee SC. Centrosome amplification in cancer and cancer-associated human diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188566. [PMID: 33992724 DOI: 10.1016/j.bbcan.2021.188566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/07/2022]
Abstract
Accumulated evidence from genetically modified cell and animal models indicates that centrosome amplification (CA) can initiate tumorigenesis with metastatic potential and enhance cell invasion. Multiple human diseases are associated with CA and carcinogenesis as well as metastasis, including infection with oncogenic viruses, type 2 diabetes, toxicosis by environmental pollution and inflammatory disease. In this review, we summarize (1) the evidence for the roles of CA in tumorigenesis and tumor cell invasion; (2) the association between diseases and carcinogenesis as well as metastasis; (3) the current knowledge of CA in the diseases; and (4) the signaling pathways of CA. We then give our own thinking and discuss perspectives relevant to CA in carcinogenesis and cancer metastasis in human diseases. In conclusion, investigations in this area might not only identify CA as a biological link between these diseases and the development of cancer but also prove the causal role of CA in cancer and progression under pathophysiological conditions, potentially taking cancer research into a new era.
Collapse
Affiliation(s)
- Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qin Ye
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
5
|
Gorbacheva MA, Tikhomirova MA, Potashnikova DM, Akbay B, Sheval EV, Musinova YR. Production of Stable Cell Lines on the Basis of the Cultured RPMI 8866 B-Cells with Constant and Inducible Expression of the Human Immunodeficiency Virus Tat Protein. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419050060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jiang Y, Chai L, Fasae MB, Bai Y. The role of HIV Tat protein in HIV-related cardiovascular diseases. J Transl Med 2018; 16:121. [PMID: 29739413 PMCID: PMC5941636 DOI: 10.1186/s12967-018-1500-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus (HIV) is a major global public health issue. HIV-related cardiovascular disease remains a leading cause of morbidity and mortality in HIV positive patients. HIV Tat is a regulatory protein encoded by tat gene of HIV-1, which not only promotes the transcription of HIV, but it is also involved in the pathogenesis of HIV-related complications. This review is aimed at summarizing the current understanding of Tat in HIV-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Lu Chai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
7
|
Musinova YR, Sheval EV, Dib C, Germini D, Vassetzky YS. Functional roles of HIV-1 Tat protein in the nucleus. Cell Mol Life Sci 2016; 73:589-601. [PMID: 26507246 PMCID: PMC11108392 DOI: 10.1007/s00018-015-2077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Carla Dib
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Diego Germini
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
8
|
Kawabata S, Heredia A, Gills J, Redfield RR, Dennis PA, Bryant J. Impact of HIV on lung tumorigenesis in an animal model. AIDS 2015; 29:633-5. [PMID: 25611150 DOI: 10.1097/qad.0000000000000588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many HIV patients on antiretroviral therapy have controlled viremia and restored (albeit partially) immunity. Yet, they have high rates of lung cancer, even after controlling for smoking. We tested the hypothesis that HIV proteins accelerate development/progression of lung cancer in an immunocompetent HIV transgenic mouse model. The expression of HIV proteins did not enhance lung tumorigenesis caused by two different tobacco carcinogens, suggesting that incompletely restored immunity and/or inflammation, which persist(s) in most HIV patients despite controlled viremia, underlie(s) excess risk of lung cancer. Adjuvant therapies that restore immunity and lower inflammation may decrease lung cancer mortality in HIV patients.
Collapse
|
9
|
Vaccher E, Serraino D, Carbone A, De Paoli P. The evolving scenario of non-AIDS-defining cancers: challenges and opportunities of care. Oncologist 2014; 19:860-7. [PMID: 24969164 PMCID: PMC4122480 DOI: 10.1634/theoncologist.2014-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The impact of highly active antiretroviral therapies (HAART) on the risk of non-AIDS-defining cancers (NADCs) and the role of biological and clinical factors in their pathogenesis are debated issues. The purpose of this review is to examine the epidemiology, etiology, and not-yet-defined pathogenic characteristics of NADCs and discuss topics such as treatment strategies, comorbidity, and multidrug interactions. Four types of NADCs that deserve special attention are examined: anal cancer, Hodgkin lymphoma (HL), hepatocellular carcinoma, and lung cancer. METHODS The PubMed database and the Cochrane Library were searched by focusing on NADCs and on the association among NADCs, HAART, aging, and/or chronic inflammation. All articles were reviewed to identify those reporting variables of interest. RESULTS NADC incidence is twofold higher in patients with HIV/AIDS than in the corresponding general population, and this elevated risk persists despite the use of HAART. The mechanisms that HIV may use to promote the development of NADCs are presently unclear; immunological mechanisms, either immunodeficiency and/or immunoactivation, may play a role. CONCLUSION Recent clinical studies have suggested that equivalent antineoplastic treatment is feasible and outcome can be similar in HIV-infected patients on HAART compared with uninfected patients for the treatment of HL and anal and lung cancers. However, patients with advanced HIV disease and/or aging-related comorbidities are likely to experience worse outcomes and have poorer tolerance of therapy compared with those with less advanced HIV disease.
Collapse
Affiliation(s)
- Emanuela Vaccher
- Division of Medical Oncology, Unit of Epidemiology and Biostatistics, Division of Pathology, Scientific Directorate, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Diego Serraino
- Division of Medical Oncology, Unit of Epidemiology and Biostatistics, Division of Pathology, Scientific Directorate, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Antonino Carbone
- Division of Medical Oncology, Unit of Epidemiology and Biostatistics, Division of Pathology, Scientific Directorate, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Paolo De Paoli
- Division of Medical Oncology, Unit of Epidemiology and Biostatistics, Division of Pathology, Scientific Directorate, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| |
Collapse
|
10
|
Deeken JF, Tjen-A-Looi A, Rudek MA, Okuliar C, Young M, Little RF, Dezube BJ. The rising challenge of non-AIDS-defining cancers in HIV-infected patients. Clin Infect Dis 2012; 55:1228-35. [PMID: 22776851 DOI: 10.1093/cid/cis613] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the advent of HAART, patients with HIV infection have seen a significant improvement in their morbidity, mortality, and life expectancy. The incidence of AIDS-defining illnesses, including AIDS-defining malignancies, has been on the decline. However, deaths due to non-AIDS-defining illnesses have been on the rise. These so-called non-AIDS-defining cancers (NADCs) include cancers of the lung, liver, kidney, anus, head and neck, and skin, as well as Hodgkin's lymphoma. It is poorly understood why this higher rate of NADCs is occurring. The key challenge facing oncologists is how to administer chemotherapy effectively and safely to patients on antiretroviral therapy. The challenge to clinicians caring for HIV-infected patients is to develop and implement effective means to screen, treat, and prevent NADCs in the future. This review presents data on the epidemiology and etiology of NADCs, as well as ongoing research into this evolving aspect of the HIV epidemic.
Collapse
Affiliation(s)
- John F Deeken
- Division of Hematology/Oncology, Georgetown University Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Bettaccini AA, Baj A, Accolla RS, Basolo F, Toniolo AQ. Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: expression profile of pathogenetically relevant genes. BMC Microbiol 2005; 5:20. [PMID: 15857508 PMCID: PMC1090582 DOI: 10.1186/1471-2180-5-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/27/2005] [Indexed: 02/04/2023] Open
Abstract
Background Tat is being tested as a component of HIV vaccines. Tat activity has been mainly investigated on cells of lymphoid/hematopoietic lineages. HIV-1, however, is known to infect many different cells of both solid organs and mucosal surfaces. The activity of two-exon (aa 1–101) and synthetic (aa 1–86) Tat was studied on mammary and amniotic epithelial cells cultured under low serum conditions. Results small concentrations of Tat (100 ng/ml) stimulated cell proliferation. Tat antibodies neutralized the mitogenic Tat activity. Changes of gene expression in Tat-treated cells were evaluated by RT-PCR and gene-array methods. Within 4 hours of treatment, exposure to Tat is followed by up-regulation of some cell cycle-associated genes (transcription factors, cyclin/cdk complexes, genes of apoptotic pathways) and of genes relevant to HIV pathogenesis [chemokine receptors (CXCR4, CCR3), chemotactic cytokines (SDF-1, RANTES, SCYC1, SCYE1), IL6 family cytokines, inflammatory cytokines, factors of the TGF-beta family (TGFb, BMP-1, BMP-2)]. Up-regulation of anti-inflammatory cytokines (IL-10, IL-19, IL-20), a hallmark of other persistent viral infections, was a remarkable feature of Tat-treated epithelial cell lines. Conclusion extracellular Tat is mitogenic for mammary and amniotic epithelial cells and stimulates the expression of genes of pathogenetic interest in HIV infection. These effects may favor virus replication and may facilitate the mother-to-child transmission of virus.
Collapse
Affiliation(s)
- Alessia A Bettaccini
- Dipartimento di Scienze Cliniche e Biologiche, Università dell' Insubria, Varese, Italy
| | - Andreina Baj
- Dipartimento di Scienze Cliniche e Biologiche, Università dell' Insubria, Varese, Italy
| | - Roberto S Accolla
- Dipartimento di Scienze Cliniche e Biologiche, Università dell' Insubria, Varese, Italy
| | - Fulvio Basolo
- Dipartimento di Oncologia, Università di Pisa, Pisa, Italy
| | - Antonio Q Toniolo
- Dipartimento di Scienze Cliniche e Biologiche, Università dell' Insubria, Varese, Italy
| |
Collapse
|