1
|
Goossens JF, Bailly C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy. Pharmacol Ther 2019; 203:107396. [DOI: 10.1016/j.pharmthera.2019.107396] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
|
2
|
Ghaffarzadegan T, Essén S, Verbrugghe P, Marungruang N, Hållenius FF, Nyman M, Sandahl M. Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS. Sci Rep 2019; 9:3800. [PMID: 30846721 PMCID: PMC6405994 DOI: 10.1038/s41598-019-40272-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are known to be involved in cholesterol metabolism but interactions between the diet, BA profiles, gut microbiota and lipid metabolism have not been extensively explored. In the present study, primary and secondary BAs including their glycine and taurine-conjugated forms were quantified in serum of Apoe−/− mice by protein precipitation followed by reversed phase ultra-high-performance liquid chromatography and QTOF mass spectrometry. The mice were fed different lingonberry fractions (whole, insoluble and soluble) in a high-fat setting or cellulose in a high and low-fat setting. Serum concentrations of BAs in mice fed cellulose were higher with the high-fat diet compared to the low-fat diet (20–70%). Among the lingonberry diets, the diet containing whole lingonberries had the highest concentration of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), tauro-ursodeoxycholic acid (T-UDCA), α and ω-muricholic acids (MCA) and tauro-α-MCA (T-α-MCA), and the lowest concentration of tauro-cholic acid (T-CA), deoxycholic acid (DCA) and tauro-deoxycholic acid (T-DCA). The glycine-conjugated BAs were very similar with all diets. CDCA, UDCA and α-MCA correlated positively with Bifidobacterium and Prevotella, and T-UDCA, T-α-MCA and ω-MCA with Bacteroides and Parabacteroides.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden. .,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Phebe Verbrugghe
- Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Nittaya Marungruang
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
3
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
4
|
Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur J Cancer Prev 2018; 25:368-79. [PMID: 26378497 DOI: 10.1097/cej.0000000000000198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.
Collapse
|
5
|
Ghaffarzadegan T, Zhong Y, Fåk Hållenius F, Nyman M. Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 2017; 53:104-110. [PMID: 29202273 DOI: 10.1016/j.jnutbio.2017.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Diet-induced obesity and insulin resistance have been linked to changes in bile acid (BA) profiles, which in turn are highly dependent on the dietary composition and activity of the gut microbiota. The objective of the present study was to investigate whether the type and level of fiber had an effect on cecal BA composition when included in low- and high-fat diets. Groups of rats were fed two barley varieties, which resulted in three test diets containing three levels of β-glucans and two levels of dietary fiber. BAs were preconcentrated using hollow fiber liquid-phase microextraction and quantified by gas chromatography. The amount of the secondary BAs, lithocholic-, deoxycholic- and hyodexycholic acids was generally higher in groups fed high-fat diets compared with corresponding acids in groups fed low-fat diets (P<.05). In contrast, most of the primary and the secondary BAs, ursodeoxycholic acid and β- and ω-muricholic acids, were two to five times higher (P<.05) in groups fed low-fat diets than in groups fed high-fat diets. This was particularly true for groups fed the highest level of β-glucans and in some cases also the medium level. The BA profile in the gut was strongly dependent on the amount and type of dietary fiber in the diet, which may be useful in the prevention/treatment of diseases associated with changes in BA profiles.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Yadong Zhong
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
6
|
Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 2017; 101:47-64. [PMID: 27888332 PMCID: PMC5203956 DOI: 10.1007/s00253-016-8006-6] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
Abstract
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ∼5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations.
Collapse
Affiliation(s)
- Christopher Staley
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexa R Weingarden
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Department of Medicine, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Michael J Sadowsky
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN
| |
Collapse
|
7
|
Golgi phosphoprotein 2 (GOLPH2) is a novel bile acid-responsive modulator of oesophageal cell migration and invasion. Br J Cancer 2015; 113:1332-42. [PMID: 26461057 PMCID: PMC4815786 DOI: 10.1038/bjc.2015.350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The aetiology of Barrett's oesophagus (BO) and oesophageal cancer is poorly understood. We previously demonstrated that Golgi structure and function is altered in oesophageal cancer cells. A Golgi-associated protein, GOLPH2, was previously established as a tissue biomarker for BO. Cellular functions for GOLPH2 are currently unknown, therefore in this study we sought to investigate functional roles for this Golgi-associated protein in oesophageal disease. METHODS Expression, intracellular localisation and secretion of GOLPH2 were identified by immunofluorescence, immunohistochemistry and western blot. GOLPH2 expression constructs and siRNA were used to identify cellular functions for GOLPH2. RESULTS We demonstrate that the structure of the Golgi is fragmented and the intracellular localisation of GOLPH2 is altered in BO and oesophageal adenocarcinoma tissue. GOLPH2 is secreted by oesophageal cancer cells and GOLPH2 expression, cleavage and secretion facilitate cell migration and invasion. Furthermore, exposure of cells to DCA, a bile acid component of gastric refluxate and known tumour promoter for oesophageal cancer, causes disassembly of the Golgi structure into ministacks, resulting in cleavage and secretion of GOLPH2. CONCLUSIONS This study demonstrates that GOLPH2 may be a useful tissue biomarker for oesophageal disease. We provide a novel mechanistic insight into the aetiology of oesophageal cancer and reveal novel functions for GOLPH2 in regulating tumour cell migration and invasion, important functions for the metastatic process in oesophageal cancer.
Collapse
|
8
|
Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci 2015; 35:4614-25. [PMID: 25788678 DOI: 10.1523/jneurosci.1580-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.
Collapse
|
9
|
Centuori SM, Martinez JD. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 2014; 59:2367-80. [PMID: 25027205 PMCID: PMC4163523 DOI: 10.1007/s10620-014-3190-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| | - Jesse D. Martinez
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| |
Collapse
|
10
|
Ghaffarzadegan T, Nyman M, Jönsson J, Sandahl M. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 944:69-74. [DOI: 10.1016/j.jchromb.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
|
11
|
Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1926-37. [PMID: 23590996 DOI: 10.1016/j.bbamem.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.
Collapse
|
12
|
Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 2012; 27:964-77. [PMID: 23274766 DOI: 10.1016/j.tiv.2012.12.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
Bile acids are natural detergents mainly involved in facilitating the absorption of dietary fat in the intestine. In addition to this absorptive function, bile acids are also essential in the maintenance of the intestinal epithelium homeostasis. To accomplish this regulatory function, bile acids may induce programmed cell death fostering the renewal of the epithelium. Here we first discuss on the different molecular pathways of cell death focusing on apoptosis in colon epithelial cells. Bile acids may induce apoptosis in colonocytes through different mechanisms. In contrast to hepatocytes, the extrinsic apoptotic pathway seems to have a low relevance regarding bile acid cytotoxicity in the colon. On the contrary, these molecules mainly trigger apoptosis through direct or indirect mitochondrial perturbations, where oxidative stress plays a key role. In addition, bile acids may also act as regulatory molecules involved in different cell signaling pathways in colon cells. On the other hand, there is increasing evidence that the continuous exposure to certain hydrophobic bile acids, due to a fat-rich diet or pathological conditions, may induce oxidative DNA damage that, in turn, may lead to colorectal carcinogenesis as a consequence of the appearance of cell populations resistant to bile acid-induced apoptosis. Finally, some bile acids, such as UDCA, or low concentrations of hydrophobic bile acids, can protect colon cells against apoptosis induced by high concentrations of cytotoxic bile acids, suggesting a dual behavior of these agents as pro-death or pro-survival molecules.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Saeki T, Yui S, Hirai T, Fujii T, Okada S, Kanamoto R. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation. Nutr Cancer 2012; 64:617-26. [PMID: 22497644 DOI: 10.1080/01635581.2012.669876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.
Collapse
Affiliation(s)
- Tohru Saeki
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Lim SC, Duong HQ, Choi JE, Lee TB, Kang JH, Oh SH, Han SI. Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis 2011; 32:723-731. [PMID: 21362627 DOI: 10.1093/carcin/bgr038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is known as a suppressor of cholestatic liver diseases and colorectal cancer development. Here, we demonstrate that UDCA induces apoptosis without necrotic features in SNU601, SNU638, SNU1 and SNU216 human gastric cancer cells, implying its possible use as an effective chemotherapeutic agent in treatment of gastric cancer. UDCA-induced apoptosis was dominantly mediated by an extrinsic pathway dependent on caspase-8, -6 and -3. UDCA increased expression of death receptor 5 [(DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2], and this DR appeared to be responsible for UDCA-induced apoptosis, as evidenced by DR5 knockdown. UDCA triggered formation of lipid rafts that played crucial roles in UDCA-induced apoptotic actions. Lipid rafts were required not only for provision of a proper site for DR5 action but also for mediation of DR5 expression. In addition, reactive oxygen species (ROS) and protein kinase C (PKC) δ appeared to be implicated in UDCA-induced raft-dependent DR5 expression. Our results indicate that UDCA-induced apoptosis is mediated by DR5 expression, which is regulated by the raft formation/ROS production/PKCδ activation pathway and DR5 localization into lipid rafts in gastric cancer cells. Tumor-suppressive activity of UDCA was confirmed in an in vivo system: UDCA (120 mg/kg/day) significantly decreased tumor growth in gastric cancer xenograft mice. Taken together, our results demonstrate that UDCA can be used as a potent chemotherapeutic agent for treatment of gastric cancer.
Collapse
Affiliation(s)
- Sung-Chul Lim
- Research Center for Resistant Cells, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Goel GA, Kandiel A, Achkar JP, Lashner B. Molecular pathways underlying IBD-associated colorectal neoplasia: therapeutic implications. Am J Gastroenterol 2011; 106:719-30. [PMID: 21386829 DOI: 10.1038/ajg.2011.51] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory diseases, depending upon the duration and severity, are frequently associated with an increased risk of developing cancer. A classic paradigm is the enhanced risk of colorectal cancer (CRC) in patients with inflammatory bowel disease (IBD). Carcinogenesis is a multifactorial process that involves accumulation of genetic defects, protein modification, and cell-matrix interaction. In this review, we discuss aspects of chronic inflammation in IBD that influence the development of CRC and highlight the key molecular mediators involved in this process. Also, we identify potential targets that could facilitate earlier detection of dysplasia. The targeted manipulation of specific molecules or pathways could provide opportunities for the development of therapeutic and chemopreventive interventions, which may prove effective in arresting the progression of colitis-associated cancer (CAC), with clinical implications.
Collapse
Affiliation(s)
- Gati A Goel
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
16
|
Sharma R, Prichard D, Majer F, Byrne AM, Kelleher D, Long A, Gilmer JF. Ursodeoxycholic acid amides as novel glucocorticoid receptor modulators. J Med Chem 2010; 54:122-30. [PMID: 21158453 DOI: 10.1021/jm100860s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ursodeoxycholic acid (UDCA) is used for the treatment of hepatic inflammatory diseases. Recent studies have shown that UDCA's biological effects are partly glucocorticoid receptor (GR) mediated. UDCA derivatives were synthesized and screened for ability to induce GR translocation in a high content analysis assay using the esophageal cancer SKGT-4 cell line. UDCA derivatives induced GR translocation in a time dependent manner with equal efficacy to that of dexamethasone (Dex) and with greatly increased potency relative to UDCA. The cyclopropylamide 1a suppressed TNF-α induced NF-κB activity and it induced GRE transactivation. 1a was unable to displace Dex from the GR ligand binding domain (LBD) in a competition experiment but was capable of coactivator recruitment in a time-resolved fluorescence energy transfer assay (TR-FRET). This represents a novel mechanism of action for a GR modulator. These derivatives could result in a new class of GR modulators.
Collapse
Affiliation(s)
- Ruchika Sharma
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Byrne AM, Foran E, Sharma R, Davies A, Mahon C, O’Sullivan J, O’Donoghue D, Kelleher D, Long A. Bile acids modulate the Golgi membrane fission process via a protein kinase Cη and protein kinase D-dependent pathway in colonic epithelial cells. Carcinogenesis 2010; 31:737-44. [DOI: 10.1093/carcin/bgq011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Abstract
In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.
Collapse
|
19
|
Yui S, Kanamoto R, Saeki T. Biphasic regulation of cell death and survival by hydrophobic bile acids in HCT116 cells. Nutr Cancer 2009; 61:374-80. [PMID: 19373611 DOI: 10.1080/01635580802582744] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A secondary bile acid, namely, deoxycholic acid (DCA), has been known to promote colon tumors; on the other hand, it also induces apoptosis in several human colon cancer cell lines. A hydrophobic primary bile acid, namely, chenodeoxycholic acid (CDCA), exhibits a similar property of apoptosis induction; DCA and CDCA also trigger some specific intracellular signal pathways in the human colon cancer cell line HCT116. In this article, we report that hydrophobic bile acids induce different cellular responses depending on their concentration, that is, a sublethal concentration of hydrophobic bile acids can suppress the apoptosis induced by a higher concentration of DCA. Pretreatment with DCA or CDCA at a concentration of < or = 200 microM for 8 h suppressed the apoptosis induced by 500 microM DCA in HCT116 cells. Under this condition, the association of caspase-9 and Apaf-1 and subsequent activation of caspase-9 were inhibited, but the release of cytochrome c from the mitochondria was not. At 200 microM, DCA and CDCA induced the phosphorylation of Akt and ERK1/2, although these phosphorylations do not appear to be indispensable for the cytoprotection. It is interpreted that prolonged exposure to sublethal concentrations of hydrophobic bile acids induces resistance to apoptosis, leading to promotion of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Satoko Yui
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | |
Collapse
|
20
|
Abstract
The bile salt, deoxycholate (DOC), can harm cells and cause disease. Hence, there is interest in identifying compounds capable of protecting cells against DOC. In HCT-116 colon epithelial cells, DOC increased generation of reactive oxygen species and caused DNA damage and apoptosis. These effects of DOC were inhibited by rottlerin, which is a phenolic compound of plant origin. In elucidating its mechansim, rottlerin prevented the release of cytochrome c from mitochondria into cytosol, and also prevented the cleavage of caspase-3. Yet, rottlerin by itself markedly decreased mitochondrial membrane potential and increased mitochondrial superoxide production, but this did not result in cytochrome c release or in caspase-3 cleavage. At a higher test concentration, two other phenolic phytochemicals, namely, quercetin and resveratrol, were each able to largely prevent the occurrence of apoptosis in cells exposed to DOC. In contrast, epigallocatechin gallate, curcumin, and genistein were ineffective.
Collapse
|
21
|
Abstract
Bile acids (BAs) have a long established role in fat digestion in the intestine by acting as tensioactives, due to their amphipathic characteristics. BAs are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver via transport mechanisms that have been largely elucidated. The transport and synthesis of BAs are tightly regulated in part by specific plasma membrane receptors and nuclear receptors. In addition to their primary effect, BAs have been claimed to play a role in gastrointestinal cancer, intestinal inflammation and intestinal ionic transport. BAs are not equivalent in any of these biological activities, and structural requirements have been generally identified. In particular, some BAs may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease, although further research is necessary in this field. This review covers the most recent developments in these aspects of BA intestinal biology.
Collapse
|
22
|
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20:2180-97. [PMID: 18634871 DOI: 10.1016/j.cellsig.2008.06.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.
Collapse
Affiliation(s)
- Amy Nguyen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
23
|
Mannack G, Graf D, Donner MM, Richter L, Gorg B, Vom Dahl S, Haussinger D, Schliess F. Taurolithocholic acid-3 sulfate impairs insulin signaling in cultured rat hepatocytes and perfused rat liver. Cell Physiol Biochem 2008; 21:137-50. [PMID: 18209481 DOI: 10.1159/000113756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS The role of bile acids for insulin resistance in cholestatic liver disease is unknown. METHODS The effect of taurolithocholic acid-3 sulfate (TLCS) on insulin signaling was studied in cultured rat hepatocytes and perfused rat liver. RESULTS TLCS induced insulin resistance at the level of insulin receptor (IR) beta Tyr(1158) phosphorylation, phosphoinositide (PI) 3-kinase activity and protein kinase (PK)B Ser(473) phosphorylation in cultured hepatocytes. Consistently, the insulin stimulation of the PI 3-kinase-dependent K(+) uptake, hepatocyte swelling and proteolysis inhibition was blunted by TLCS in perfused rat liver. The PKC inhibitor Go6850 and tauroursodeoxycholate (TUDC) counteracted the suppression of insulin-induced IRbeta and PKB phosphorylation by TLCS. Rapamycin and dibutyryl-cAMP, which inhibited basal signaling via mammalian target of rapamycin (mTOR), restored insulin-induced PKB- but not IRbeta phosphorylation. In livers from 7 day bile duct-ligated rats PKB Ser(473) phosphorylation was decreased by about 50%. CONCLUSION TLCS induces insulin resistance by a PKC-dependent suppression of insulin-induced IRbeta phosphorylation and the PI 3-kinase/PKB path. This can in part be compensated by a decrease of mTOR activity, which may release insulin-sensitive components downstream of the insulin receptor from tonic inhibition. The data suggest that retention of hydrophobic bile acids confers insulin resistance on the cholestatic liver.
Collapse
Affiliation(s)
- Gudrun Mannack
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|