1
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Fibroblast Activation Protein Inhibitor (FAPI)-Based Theranostics-Where We Are at and Where We Are Heading: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043863. [PMID: 36835275 PMCID: PMC9965519 DOI: 10.3390/ijms24043863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is the leading cause of death around the globe, followed by heart disease and stroke, with the highest mortality to this day. We have reached great levels of understanding of how these various types of cancer operate at a cellular level and this has brought us to what we call "precision medicine" where every diagnostic examination and the therapeutic procedure is tailored to the patient. FAPI is among the new tracers that can be used to assess and treat many types of cancer. The aim of this review was to gather all the known literature on FAPI theranostics. A MEDLINE search was conducted on four web libraries, PUBMED, Cochrane, Scopus, and Web of Sciences. All of the available articles that included both diagnoses and therapy with FAPI tracers were collected and put through the CASP (Critical Appraisal Skills Programme) questionnaire for systematic reviewing. A total of 8 records were deemed suitable for CASP review, ranging from 2018 to November 2022. These studies were put through the CASP diagnostic checklist, in order to assess the goal of the study, diagnostic and reference tests, results, descriptions of the patient sample, and future applications. Sample sizes were heterogeneous, both for size as well as for tumor type. Only one author studied a single type of cancer with FAPI tracers. Progression of disease was the most common outcome, and no relevant collateral effects were noted. Although FAPI theranostics is still in its infancy and lacks solid grounds to be brought into clinical practice, it does not show any collateral effects that prohibit administration to patients, thus far, and has good tolerability profiles.
Collapse
|
3
|
Sidrak MMA, De Feo MS, Frantellizzi V, Marongiu A, Caponnetto S, Filippi L, Nuvoli S, Spanu A, Schillaci O, De Vincentis G. First-, Second-, and Third-Generation Radiolabeled Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Positron Emission Tomography: State of the Art, a Systematic Review. Cancer Biother Radiopharm 2023; 38:232-245. [PMID: 36622960 DOI: 10.1089/cbr.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction: Lung cancer (LC) is a leading cause of death among men and women, with non-small cell LC (NSCLC) accounting for a substantial portion of the histopathological spectrum and epidermal growth factor receptor (EGFR) mutations being correlated with its manifestation and evolution. Positron emission tomography (PET)/computed tomography has been the most widely used instrument to assess and monitor LC in a noninvasive way, including EGFR-mutated NSCLC, and its course during therapy, indicating to the referring physician the response to ongoing treatment or the lack of it. This systematic review aims to evaluate the feasibility and safety of radiolabeled EGFR tyrosine kinase inhibitors (TKis) in PET in clinical practice. Materials and Methods: From 1999 to April 2022 a Medline search was conducted on four different databases such as PubMed, Cochrane Library, Scopus, and Web of Sciences. Clinical studies were assessed by Quality Assessment of Diagnostic accuracy Studies-2 (QUADAS-2) and preclinical studies were also reported in this review. Results: Nine clinical studies were QUADAS-2 assessed and risk-of-bias assessment, and it turned out acceptable as two out of eight studies had low risk of bias in all four domains for risk-of-bias assessment, and the other four studies had three low-risk domains. The overall assessment for applicability risks was low. Conclusions: Radiolabeled EGFR-TKis in PET are a valid tool in identifying patients who may benefit from TKi therapy and who may not as a means to start an effective treatment. Although the number of clinical studies conducted so far is meager, these new PET tracers are already proving to be very useful in clinical settings as patient prognosis can be better assessed.
Collapse
Affiliation(s)
- Marko Magdi Abdou Sidrak
- Nuclear Medicine, Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Maria Silvia De Feo
- Nuclear Medicine, Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Viviana Frantellizzi
- Nuclear Medicine, Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Andrea Marongiu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Caponnetto
- Oncology B, Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe De Vincentis
- Nuclear Medicine, Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019; 20:3786-3797. [PMID: 31535846 PMCID: PMC6794642 DOI: 10.1021/acs.biomac.9b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fast
and bioorthogonally reacting nanoparticles are attractive
tools for biomedical applications such as tumor pretargeting. In this
study, we designed an amphiphilic block copolymer system based on
HPMA using different strategies to introduce the highly reactive click
units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or
statistical into the hydrophobic block. This reactive group undergoes
a rapid, bioorthogonal inverse electron-demand Diels–Alder
reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently,
this polymer platform was used for the preparation of different Tz-covered
nanoparticles, such as micelles and colloids. Thereby it was found
that the reactivity of the polymeric micelles is comparable to that
of the low molar mass tetrazines. The core-cross-linked micelles can
be successfully conjugated at rather low concentrations to large biomacromolecules
like antibodies, not only in physiological buffer, but also in human
blood plasma, which was confirmed by fluorescence correlation spectroscopy
(FCS).
Collapse
Affiliation(s)
- Stefan Kramer
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dennis Svatunek
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Irina Alberg
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Barbara Gräfen
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Lydia Braun
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Arthur H A M van Onzen
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hannes Mikula
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
5
|
Chong Y, Chang J, Zhao W, He Y, Li Y, Zhang H, Qi C. Synthesis and evaluation of novel 18 F-labeled quinazoline derivatives with low lipophilicity for tumor PET imaging. J Labelled Comp Radiopharm 2018; 61:42-53. [PMID: 28833405 DOI: 10.1002/jlcr.3538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 01/06/2023]
Abstract
Four novel 18 F-labeled quinazoline derivatives with low lipophilicity, [18 F]4-(2-fluoroethoxy)-6,7-dimethoxyquinazoline ([18 F]I), [18 F]4-(3-((4-(2-fluoroethoxy)-7-methoxyquinazolin-6-yl)oxy)propyl)morpholine ([18 F]II), [18 F]4-(2-fluoroethoxy)-7-methoxy-6-(2-methoxyethoxy)quinazoline ([18 F]III), and [18 F]4-(2-fluoroethoxy)-6,7-bis(2-methoxyethoxy)quinazoline ([18 F]IV), were synthesized via a 2-step radiosynthesis procedure with an overall radiochemical yield of 10% to 38% (without decay correction) and radiochemical purities of >98%. The lipophilicity and stability of labeled compounds were tested in vitro. The log P values of the 4 radiotracers ranged from 0.52 to 1.07. We then performed ELISA to measure their affinities to EGFR-TK; ELISA assay results indicated that each inhibitor was specifically bounded to EGFR-TK in a dose-dependent manner. The EGFR-TK autophosphorylation IC50 values of [18 F]I, [18 F]II, [18 F]III, and [18 F]IV were 7.732, 0.4698, 0.1174, and 0.1176 μM, respectively. All labeled compounds were evaluated via cellular uptake and blocking studies in HepG2 cell lines in vitro. Cellular uptake and blocking experiment results indicated that [18 F]I and [18 F]III had excellent cellular uptake at 120-minute postinjection in HepG2 carcinoma cells (51.80 ± 3.42%ID/mg protein and 27.31 ± 1.94%ID/mg protein, respectively). Additionally, biodistribution experiments in S180 tumor-bearing mice in vivo indicated that [18 F]I had a very fast clearance in blood and a relatively high uptake ratio of tumor to blood (4.76) and tumor to muscle (1.82) at 60-minute postinjection. [18 F]III had a quick clearance in plasma, and its highest uptake ratio of tumor to muscle was 2.55 at 15-minute postinjection. These experimental results and experiences were valuable for the further exploration of novel radiotracers of quinazoline derivatives.
Collapse
Affiliation(s)
- Yan Chong
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Jin Chang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Wenwen Zhao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yong He
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yuqiao Li
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Chuanmin Qi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Uehara T, Watanabe M, Suzuki H, Furusawa Y, Arano Y. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy. PLoS One 2017; 12:e0173096. [PMID: 28245294 PMCID: PMC5330493 DOI: 10.1371/journal.pone.0173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 11/19/2022] Open
Abstract
L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects of particle radiotherapy on tumors at early stage of the treatment.
Collapse
Affiliation(s)
- Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
- * E-mail:
| | - Mariko Watanabe
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Yoshiya Furusawa
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 PMCID: PMC3799232 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
8
|
Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Am J Cancer Res 2013; 3:76-84. [PMID: 23382787 PMCID: PMC3563082 DOI: 10.7150/thno.4835] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023] Open
Abstract
CXCR4 was found to be expressed by many different types of human cancers and its expression has been correlated with tumor aggressiveness, poor prognosis and resistance to chemotherapy. CXCR4 was also shown to contribute to metastatic seeding of organs that express its ligand CXCL12 and support the survival of these cells. These findings suggest that CXCR4 is a potentially attractive therapeutic target, and several antagonists and antibodies for this receptor were developed and are under clinical evaluation. Quantifying CXCR4 expression non-invasively might aid in prognostication as a mean for personalized therapy and post treatment monitoring. Multiple attempts were done over the recent years to develop imaging agents for CXCR4 using different technologies including PET, SPECT, fluorescent and bioluminescence, and will be reviewed in this paper.
Collapse
|
9
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
10
|
Park JW, Cho CH, Jeong DS, Chae HD. Role of F-fluoro-2-deoxyglucose Positron Emission Tomography in Gastric GIST: Predicting Malignant Potential Pre-operatively. J Gastric Cancer 2011; 11:173-9. [PMID: 22076223 PMCID: PMC3204465 DOI: 10.5230/jgc.2011.11.3.173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022] Open
Abstract
Purpose It is difficult to obtain biopsies from gastrointestinal stromal tumors (GISTs) prior to surgery because GISTs are submucoal tumors, despite being the most common nonepithelial neoplasms of the gastrointestinal tract. Unlike anatomic imaging techniques, PET-CT, which is a molecular imaging tool, can be a useful technique for assessing tumor activity and predicting the malignant potential of certain tumors. Thus, we aimed to evaluate the usefulness of PET-CT as a pre-operative prognostic factor for GISTs by analyzing the correlation between the existing post-operative prognostic factors and the maximum SUV uptake (SUVmax) of pre-operative 18F-fluoro-2-deoxyglucose (FDG) PET-CT. Materials and Methods The study was conducted on 26 patients who were diagnosed with gastric GISTs and underwent surgery after being examined with pre-operative FDG PET-CT. An analysis of the correlation bewteen (i) NIH risk classfication and the Ki-67 proliferation index, which are post-operative prognostic factors, and (ii) the SUVmax of PET-CT, which is a pre-operative prognostic factor, was performed. Results There were significant correlations between (i) SUVmax and (ii) Ki-67 index, tumor size, mitotic count, and NIH risk group (r=0.854, 0.888, 0.791, and 0.756, respectively). The optimal cut-off value for SUVmax was 3.94 between "low-risk malignancy" and "high-risk malignancy" groups. The sensitivity and specificity of SUVmax for predicting the risk of malignancy were 85.7% and 94.7%, respectively. Conclusions The SUVmax of PET-CT is associated with Ki-67 index, tumor size, mitotic count, and NIH classification. Therefore, it is believed that PET-CT is a relatively safe, non-invasive diagnostic tool for assessing malignant potential pre-operatively.
Collapse
Affiliation(s)
- Jeon-Woo Park
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | | | | |
Collapse
|
11
|
Wagner CC, Langer O. Approaches using molecular imaging technology -- use of PET in clinical microdose studies. Adv Drug Deliv Rev 2011; 63:539-46. [PMID: 20887762 DOI: 10.1016/j.addr.2010.09.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing.
Collapse
Affiliation(s)
- Claudia C Wagner
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger-Gürtel 18-20, A-1090, Vienna, Austria
| | | |
Collapse
|
12
|
Bayouth JE, Casavant TL, Graham MM, Sonka M, Muruganandham M, Buatti JM. Image-based biomarkers in clinical practice. Semin Radiat Oncol 2011; 21:157-66. [PMID: 21356483 PMCID: PMC4270476 DOI: 10.1016/j.semradonc.2010.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth of functional and metabolically informative imaging is eclipsing anatomic imaging alone in clinical practice. The recognition that magnetic resonance (MR) and positron emission tomography (PET)-based treatment planning and response assessment are essential components of clinical practice and furthermore offer the potential of quantitative analysis being important. Extracting the greatest benefit from these imaging techniques will require refining the best combinations of multimodality imaging through well-designed clinical trials that use robust image-analysis tools and require substantial computer based infrastructure. Through these changes and enhancements, image-based biomarkers will enhance clinical decision making and accelerate the progress that is made through clinical trial research.
Collapse
Affiliation(s)
- John E Bayouth
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Mileshkin L, Hicks RJ, Hughes BGM, Mitchell PLR, Charu V, Gitlitz BJ, Macfarlane D, Solomon B, Amler LC, Yu W, Pirzkall A, Fine BM. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res 2011; 17:3304-15. [PMID: 21364032 DOI: 10.1158/1078-0432.ccr-10-2763] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Assessing clinical activity of molecularly targeted anticancer agents, especially in the absence of tumor shrinkage, is challenging. To evaluate on-treatment 18F-fluorodeoxyglucose (FDG) and/or 18F-fluorodeoxythymidine (FLT) positron emission tomography (PET) for this purpose, we conducted a prospective multicenter trial assessing PET response rates and associations with progression-free (PFS) and overall survival (OS) in 2nd/3rd-line non-small-cell lung cancer patients treated with erlotinib. EXPERIMENTAL DESIGN PET/computed tomography (CT) scans were conducted at baseline, day (d)14 and d56 after the first daily erlotinib dose, with diagnostic CT at baseline and d56 (all scans centrally reviewed). PET partial metabolic response (PMR) was defined as a mean decrease (in ≤ 5 lesions/patient) of 15% or more maximum standardized uptake value. PFS was investigator-determined. RESULTS Of 74 erlotinib-treated patients, 51 completed all imaging assessments through d56; 13 of 51 (26%) FDG-evaluable patients had PMR at d14, as did 9 of 50 (18%) FLT-evaluable patients. Four (7.8%) showed partial responses (PR) by d56 CT; all 4 had PMR by d14 FDG-PET with 3 PMRs by d14 FLT-PET. Three of the 4 patients with CT PR had evaluable archival tumor tissue; all 3 had epidermal growth factor receptor mutations. D14 and d56 PMRs by FDG or FLT were associated with improved PFS; HRs for PET responders versus nonresponders were 0.3 to 0.4. D14 FDG-PET PMR was associated with improved OS (P = 0.03) compared with FDG-PET nonresponders. CONCLUSION Early (d14) FDG-PET PMR is associated with improved PFS and OS, even in the absence of subsequent Response Evaluation Criteria in Solid Tumors response. These data support inclusion of FDG-PET imaging in clinical trials testing novel targeted therapies, particularly those with anticipated cytostatic effects.
Collapse
Affiliation(s)
- Linda Mileshkin
- Peter MacCallum Cancer Centre, East Melbourne, The University of Melbourne, Parkville, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aristei C, Falcinelli L, Palumbo B, Tarducci R. PET and PET-CT in radiation treatment planning for lung cancer. Expert Rev Anticancer Ther 2010; 10:571-84. [PMID: 20397922 DOI: 10.1586/era.09.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review analyzes PET images in radiotherapy treatment planning for lung cancer patients and discusses the most controversial current issues. Computed tomography images are commonly used to assess location and extension of target volumes and organs at risk in radiotherapy treatment planning. Although PET is more sensitive and specific, contouring on PET images is difficult because tumor margins are indistinct, due to heterogeneous (18)fluorodeoxyglucose uptake distribution and limited spatial resolution. The best target delineation criteria have not yet been established. In non-small-cell lung cancer, PET appears to improve sparing of organs at risk and reduce the risk of toxicity; prescribed doses can be increased. Data are scarce on small-cell lung cancer.
Collapse
Affiliation(s)
- Cynthia Aristei
- Radiation Oncology Section, Department of Surgical, Radiological and Odontostomatological Sciences, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06156 Perugia, Italy.
| | | | | | | |
Collapse
|
15
|
Jacobson O, Chen X. PET designated flouride-18 production and chemistry. Curr Top Med Chem 2010; 10:1048-59. [PMID: 20388116 PMCID: PMC3617500 DOI: 10.2174/156802610791384298] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 02/23/2010] [Indexed: 11/22/2022]
Abstract
Positron emission tomography (PET) is a nuclear medicine imaging technology which allows for four-dimensional, quantitative determination of the distribution of labeled biological compounds within the human body. PET is becoming an increasingly important tool for the measurement of physiological, biochemical and pharmacological functions at the molecular level in healthy and pathological conditions. This review will focus on Flouride-18, one of the common isotopes used for PET imaging, which has a half life of 109.8 minutes. This isotope can be produced with an efficient yield in a cyclotron as a nucleophile or as an electrophile. Flouride-18 can be thereafter introduced into small molecules or biomolecules using various chemical synthetic routes, to give the desired imaging agent.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| |
Collapse
|
16
|
Uehara T, Nakagawa M, Takai N, Koike S, Furusawa Y, Ando K, Kawai K, Akizawa H, Irie T, Arano Y. Intracellular reactions affecting 2-amino-4-([(11)C]methylthio)butyric acid ([(11)C]methionine) response to carbon ion radiotherapy in C10 glioma cells. Nucl Med Biol 2009; 36:985-91. [PMID: 19875056 DOI: 10.1016/j.nucmedbio.2009.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/22/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE The response of 2-amino-4-([(14)C]methylthio)butyric acid ([(14)C]Met) uptake and [(125)I]3-iodo-alpha-methyl-l-tyrosine ([(125)I]IMT) uptake to radiotherapy of C10 glioma cells was compared to elucidate the intracellular reactions that affect the response of 2-amino-4-([(11)C]methylthio)butyric acid ([(11)C]Met) uptake to radiotherapy. METHODS After irradiation of cultured (3 Gy) or xenografted C10 glioma cells (25 Gy) using a carbon ion beam, the accumulation of [(14)C]Met and [(125)I]IMT in the tumors was investigated. The radiometabolites in xenografted tumors after radiotherapy were analyzed by size-exclusion HPLC. RESULTS [(14)C]Met provided earlier responses to the carbon ion beam irradiation than [(125)I]IMT in both cultured and xenografted tumors. While [(125)I]IMT remained intact in xenografted tumor before and after irradiation, the radioactivity derived from [(14)C]Met was observed both in high molecular fractions and intact fractions, and the former decreased after irradiation. CONCLUSION The earlier response of [(11)C]Met uptake to tumor radiotherapy could be attributable to the decline in the intracellular energy-dependent reactions of tumors due to radiotherapy.
Collapse
Affiliation(s)
- Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Krajicek BJ, Ryu JH, Hartman TE, Lowe VJ, Vassallo R. Abnormal Fluorodeoxyglucose PET in Pulmonary Langerhans Cell Histiocytosis. Chest 2009; 135:1542-1549. [DOI: 10.1378/chest.08-1899] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
18
|
Petit SF, Dekker ALAJ, Seigneuric R, Murrer L, van Riel NAW, Nordsmark M, Overgaard J, Lambin P, Wouters BG. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study. Phys Med Biol 2009; 54:2179-96. [PMID: 19293465 DOI: 10.1088/0031-9155/54/7/022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to increase the potential of dose redistribution by incorporating estimates of oxygen heterogeneity within imaging voxels for optimal dose determination. Cellular oxygen tension (pO(2)) distributions were estimated for imaging-size-based voxels by solving oxygen diffusion-consumption equations around capillaries placed at random locations. The linear-quadratic model was used to determine cell survival in the voxels as a function of pO(2) and dose. The dose distribution across the tumour was optimized to yield minimal survival after 30 x 2 Gy fractions by redistributing the dose based on differences in oxygen levels. Eppendorf data of a series of 69 tumours were used as a surrogate of what might be expected from oxygen imaging datasets. Dose optimizations were performed both taking into account cellular heterogeneity in oxygenation within voxels and assuming a homogeneous cellular distribution of oxygen. Our simulations show that dose redistribution based on derived cellular oxygen distributions within voxels result in dose distributions that require less total dose to obtain the same degree of cell kill as dose distributions that were optimized with a model that considered voxels as homogeneous with respect to oxygen. Moderately hypoxic tumours are expected to gain most from dose redistribution. Incorporating cellular-based distributions of radiosensitivity into dose-planning algorithms theoretically improves the potential gains from dose redistribution algorithms.
Collapse
Affiliation(s)
- Steven F Petit
- Department of Radiation Oncology (Maastro), GROW, U.H. Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
Molecular imaging can allow the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development, which could aid decisions to select candidates that seem most likely to be successful or to halt the development of drugs that seem likely to ultimately fail. Here, with an emphasis on oncology, we review the applications of molecular imaging in drug development, highlighting successes and identifying key challenges that need to be addressed for successful integration of molecular imaging into the drug development process.
Collapse
|
21
|
Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 2008; 275:2991-3002. [PMID: 18445039 DOI: 10.1111/j.1742-4658.2008.06454.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid tumours are complex structures in which the interdependent relationship between tumour and endothelial cells modulates tumour development and metastasis dissemination. The tumour microenvironment plays an important role in this cell interplay, and changes in its features have a major impact on tumour growth as well as on anticancer therapy responsiveness. Different studies have shown irregular blood flow in tumours, which is responsible for hypoxia and reoxygenation phases, also called intermittent hypoxia. Intermittent hypoxia induces transient changes, the impact of which has been underestimated for a long time. Recent in vitro and in vivo studies have shown that intermittent hypoxia could positively modulate tumour development, inducing tumour growth, angiogenic processes, chemoresistance, and radioresistance. In this article, we review the effects of intermittent hypoxia on tumour and endothelial cells as well as its impacts on tumour development.
Collapse
Affiliation(s)
- S Toffoli
- Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur-FUNDP, 61 rue de Bruxelles, Namur, Belgium
| | | |
Collapse
|
22
|
Armstrong AF, Oakley N, Parker S, Causey PW, Lemon J, Capretta A, Zimmerman C, Joyal J, Appoh F, Zubieta J, Babich JW, Singh G, Valliant JF. A robust strategy for the preparation of libraries of metallopeptides. A new paradigm for the discovery of targeted molecular imaging and therapy agents. Chem Commun (Camb) 2008:5532-4. [DOI: 10.1039/b810706h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Nanni C, Pettinato C, Ambrosini V, Spinelli A, Trespidi S, Rubello D, Al-Nahhas A, Franchi R, Alavi A, Fanti S. Retro-orbital injection is an effective route for radiopharmaceutical administration in mice during small-animal PET studies. Nucl Med Commun 2007; 28:547-53. [PMID: 17538396 DOI: 10.1097/mnm.0b013e3281fbd42b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Small-animal PET is acquiring importance for pre-clinical studies. In rodents, radiotracers are usually administrated via the tail vein. This procedure can be very difficult and time-consuming as soft tissue extravasations are very frequent and tail scars can prevent repeated injections after initial failure. The aim of our study was to compare the retro-orbital (RO) versus tail vein intravenous (i.v.) administration of (18)F-FDG and (11)C-choline in mice for small-animal PET studies. METHODS We evaluated four healthy female ICR CD1 mice according to the following protocol. Day 1: each animal underwent an i.v. injection of 28 MBq of (11)C-choline. PET scan was performed after 10 min and 40 min. Day 2: each animal received an RO injection of 28 MBq of (11)C-choline. A PET scan was performed after 10 min and 40 min. Day 3: each animal received an i.v. injection of 28 MBq of (18)F-FDG. A PET scan was performed after 60 min and 120 min. Day 4: each animal received an RO injection of 28 MBq of (18)F-FDG. A PET scan was performed after 60 min and 120 min. Administration and image acquisition were performed under gas anaesthesia. For FDG studies the animals fasted for 2 h and were kept asleep for 20-30 min after injection, to avoid muscular uptake. Images were reconstructed with 2-D OSEM. For each scan ROIs were drawn on liver, kidneys, lung, brain, heart brown fat and muscles, and the SUV was calculated. We finally compared choline i.v. standard acquisition to choline RO standard acquisition; choline i.v. delayed acquisition to choline RO delayed acquisition; FDG i.v. standard acquisition to FDG RO standard acquisition; FDG i.v. delayed acquisition to FDG RO delayed acquisition. RESULTS The RO injections for both (18)F-FDG and (11)C-choline were comparable to the intravenous injection of F-FDG for the standard and delayed acquisitions. CONCLUSION The RO administration in mice represents a technical advantage over intravenous administration in being an easier and faster procedure. However, its use requires high specific activity while its value in peptides and other receptor-specific radiopharmaceuticals needs further assessment.
Collapse
Affiliation(s)
- Cristina Nanni
- Nuclear Medicine Department, Azienda Ospedaliero-Universitaria di Bologna Policlinico S. Orsola-Malpighi, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee JS, Orita H, Gabrielson K, Alvey S, Hagemann RL, Kuhajda FP, Gabrielson E, Pomper MG. FDG-PET for pharmacodynamic assessment of the fatty acid synthase inhibitor C75 in an experimental model of lung cancer. Pharm Res 2007; 24:1202-7. [PMID: 17404812 DOI: 10.1007/s11095-007-9264-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Fatty acid synthase (FAS) is an emerging target for anticancer therapy with a variety of new FAS inhibitors being explored in preclinical models. The aim of this study was to use positron emission tomography with [(18)F]fluorodeoxyglucose (FDG-PET) to monitor the effects of the FAS inhibitor C75 on tumor glucose metabolism in a rodent model of human A549 lung cancer. MATERIALS AND METHODS After a baseline FDG-PET scan, C75 was administered and post-treatment scans were performed serially. FAS activity was measured in treated animals ex vivo by [(14)C]acetate incorporation in animals euthanized in parallel to those imaged. RESULTS Longitudinally measured metabolic volumes of interest and tumor/background ratios demonstrated a transient, reversible decrease in glucose metabolism and tumor metabolic volume after treatment, with the peak effect seen at 4 h. FDG-PET measurements correlated with changes in tumor FAS activity measured ex vivo. CONCLUSIONS Because C75 causes an effect that is shorter in duration than expected, modification of the current weekly dosing regimen should be considered. These results demonstrate the utility of small animal FDG-PET in assessing the pharmacodynamics of new anticancer agents in preclinical models.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Radiology, Johns Hopkins Medical Institutions, 1550 Orleans Street, 492 CRB II, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|