1
|
Sun J, Zhou L, Li Z, He G, Mao H, Zhao J, Hunt JA, Chen X. Perovskite-Graphene Heterostructure Biosensor Integrated with Biotunable Nanoplasmonic Ternary Logic Gate for Ultrasensitive Cytokine Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03124. [PMID: 40397015 DOI: 10.1002/advs.202503124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/01/2025] [Indexed: 05/22/2025]
Abstract
The integration of 2D-materials and optoelectronic devices has attracted great attention for advanced applications. We propose the first perovskite/graphene heterostructure-based FET biosensor with uniquely biotunable ternary logic gating functionality. The biosensor integrates a lateral perovskite-on-graphene heterostructure phototransistor with a vertical bio-nano-photonic filter, with a decoupled construction inset. In the phototransistor, photoactive perovskite quantum dots (PQDs) serve as sensitizers to absorb light while a high mobility single-layer graphene (SLG) acts as an expressway for carrier transport. In the bio-nano-photonic filter, a localized surface plasmon resonance (LSPR) is induced by gold nanoparticles (AuNPs) in conjunction with antigen-antibody binding, tuning the delivery of light passing through the filter and facilitating biotunable functionality with ternary modes. The biosensor is set up to detect human interleukin-6 (IL6) in order to determine and achieve ultrahigh sensitivity with a limit of detection (LOD) of 0.9 fg mL-1 (43 aM), which is 4 orders of magnitude greater than graphene-FET biosensors. This ultrahigh sensitivity is achieved due to the synergistic effect of PQDs/SLG heterostructure, exhibiting superior electrical, optical, and physicochemical properties, consequently providing significantly high performance of the biosensor in terms of label-free, ultrahigh sensitivity (attomolar level), rapid responsivity (5 min), excellent stability, and selectivity. This heterostructure-based biotunable configuration could open a new avenue for 2D materials in the realm of next-generation bio-nano-photonic platforms for applications in healthcare, early diagnosis, and rapid detection.
Collapse
Affiliation(s)
- Jiaxing Sun
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lin Zhou
- Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zening Li
- Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Guolin He
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hongju Mao
- Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jianlong Zhao
- Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - John A Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Xianfeng Chen
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
2
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4354-4367. [PMID: 39471283 PMCID: PMC11758792 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
| | - Kang-Yun Lee
- Division
of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho
Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division
of Pulmonary Medicine, Department of Internal Medicine, School of
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan, R.O.C
- TMU
Research Center for Thoracic Medicine, Taipei
Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia
Biotech LTD., New Taipei City 23561, Taiwan,
R.O.C
| | - Amir Asri Kojabad
- Department
of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute
of Nanoengineering and Microsystems, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- Department
of Power Mechanical Engineering, National
Tsing Hua University, Hsinchu 30044, Taiwan,
R.O.C
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
3
|
Xie H, Wei L, Ruan G, Zhang H, Shi H. Interleukin-6 as a Pan-Cancer Prognostic Inflammatory Biomarker: A Population-Based Study and Comprehensive Bioinformatics Analysis. J Inflamm Res 2025; 18:573-587. [PMID: 39831196 PMCID: PMC11740593 DOI: 10.2147/jir.s484962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Interleukin-6 (IL-6) is a central factor linking inflammation to cancer. This study aimed to provide a comprehensive assessment of the prognostic value of IL-6 and its immunotherapeutic features using a population-based pan-cancer analysis and comprehensive bioinformatic analysis. Patients and Methods In the cohort study, 540 patients were included to explore the prognostic value of serum IL-6 levels in cancer. The differential expression of IL-6 and its association with survival and immune cell infiltration were investigated using the TCGA database. The SangerBox database was used to analyze the correlation between IL-6 expression and immune checkpoint (ICP), tumor mutation burden (TMB), and microsatellite instability (MSI) in cancer. Genomic changes in the IL-6 levels were studied using the c-BioPortal database. The IL-6 co-expression network was analyzed using the LinkedOmics database. Results Serum IL-6 is an independent prognostic factor for cancer, especially gastrointestinal cancers. Compared to other serum inflammatory markers, serum IL-6 is an optimal biomarker for cancer prognosis. A comprehensive bioinformatics analysis showed higher IL-6 expression in human cancers than in the paired normal tissues. The IL-6 expression is closely associated with prognosis, ICP, TMB, and MSI. In addition, it is also strongly correlated with tumor-infiltrating cells. IL-6 levels are significantly associated with the prognosis of stomach adenocarcinoma (STAD). The IL-6 co-expression network in STAD is mainly involved in regulating inflammatory pathways and cell communication. Conclusion IL-6 is a potential prognostic and immune biomarker of cancer. Compared to other clinical inflammatory biomarkers, IL-6 demonstrates superior prognostic efficacy.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lishuang Wei
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, People's Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Hanping Shi
- Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
4
|
Brouwer MAE, Karami Z, Keating ST, Vrijmoeth H, Lemmers HLM, Dijkstra H, van de Veerdonk FL, Lupse M, Ter Hofstede HJM, Netea MG, Joosten LAB. Borrelia burgdorferi sensu lato inhibits CIITA transcription through pSTAT3 activation and enhanced SOCS1 and SOCS3 expression leading to limited IFN-γ production. Ticks Tick Borne Dis 2025; 16:102442. [PMID: 39879745 DOI: 10.1016/j.ttbdis.2025.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Interferons (IFNs) are important signaling molecules in the human immune response against micro-organisms. Throughout initial Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) infection in vitro, inadequate IFN-γ production results in the absence of a strong T-helper 1 cell response, potentially hampering the development of an effective antibody responses in Lyme borreliosis (LB) patients. The aim of this study is to help understand the immunomodulatory mechanisms why IFN-γ production is absent in the early onset of LB. Therefore, cytokine production and STAT activation signature, following exposure of human immune cells to B. burgdorferi s.l., was investigated in vivo and in vitro. While STAT3 phosphorylation was highly induced in T cells, B cells and NK-(T) cells, STAT1 expression and IL-12p70 production were not or only slightly increased upon B. burgdorferi s.l. exposure. In response to B. burgdorferi s.l., STAT2 phosphorylation and IFNα production remained stable. STAT2 activation only increased in NK-(T) cells. In contrast, STAT4 signaling was reduced in all B. burgdorferi s.l. exposed immune cells. Moreover, B. burgdorferi s.l. significantly increased suppressor of cytokine signaling (SOCS)1 and SOCS3 gene expression in LB patients. Absence of IFN-γ production and STAT4 activation, in combination with STAT3 phosphorylation and upregulated SOCS1 and SOCS3 gene expression, suggests the formation of a more tolerant and anti-inflammatory response to B. burgdorferi s.l., specifically in T- and B-cells. In primary human PBMCs and monocyte populations, B. burgdorferi s.l. also specifically interfered with CIITA isoforms normally expressed in antigen presenting dendritic cells. In contrast, it enhanced CIITA isoforms typically present in adaptive immune cell subsets. Restoring antigen presentation capacity of innate immune cells and early production of IFN-γ in LB patients may help re-establish immune functions during initial LB. These new insights will help to understand the immunomodulatory mechanisms of B. burgdorferi s.l. during the onset of LB.
Collapse
Affiliation(s)
- Michelle A E Brouwer
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zara Karami
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samuel T Keating
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Biology, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi L M Lemmers
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca 400349, Romania
| | - Hadewych J M Ter Hofstede
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Wu X, Cao Y, Xiao H, Feng J, Lin J. Bazedoxifene Suppresses the Growth of Osteosarcoma Cells by Inhibiting IL-6 and IL-11/GP130 Signaling Pathway. J Pediatr Hematol Oncol 2024; 46:8-14. [PMID: 37962127 DOI: 10.1097/mph.0000000000002782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/17/2023] [Indexed: 11/15/2023]
Abstract
Osteosarcoma is the most common primary bone tumor. Using the multiple ligands simultaneous docking method, we found that bazedoxifene could bind to the GP130 D1 domain. We then demonstrated that bazedoxifene can decrease cell viability and cell migration of osteosarcoma cells by inhibiting interleukin 6 (IL-6) and IL-11/GP130 signaling. Consistently, treatment with IL-6 or IL-11 antibody or knockdown of GP130 by siRNA silenced the activation of STAT3, ERK, and AKT. Similarly, recombinant IL-6 and IL-11 proteins antagonized the inhibitory effect of bazedoxifene on osteosarcoma cells. Finally, the combinational treatment of temsirolimus and bazedoxifene synergistically suppressed osteosarcoma development in vitro and in vivo. Our findings suggest that bazedoxifene directly prompts the deactivation of GP130 and inhibits the osteosarcoma progression in vitro and in vivo. Therefore, bazedoxifene could be effectively applied as a therapeutic drug for human osteosarcoma in the future.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital
- The Research Institute at Nationwide Children's Hospital, The Ohio State University
| | - Yang Cao
- Department of Hematology & Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Hui Xiao
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Jiayuh Lin
- The Research Institute at Nationwide Children's Hospital, The Ohio State University
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD
| |
Collapse
|
7
|
Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, Ye X, Chen W. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos 2023; 51:543-559. [PMID: 36732076 DOI: 10.1124/dmd.122.001131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), one of the most important members of the cytochrome P450 subfamily, is a crucial catalyst in the metabolism of numerous drugs. As it catalyzes numerous processes for drug activation or inactivation, the pharmacological activities and clinical outcomes of anticancer drugs metabolized by CYP3A4 are highly dependent on the enzyme's activity and expression. Due to the complexity of tumor microenvironments and various influencing factors observed in human in vitro models and clinical studies, the pharmacokinetics of most anticancer drugs are influenced by the extent of induction or inhibition of CYP3A4-mediated metabolism, and these details are not fully recognized and highlighted. Therefore, this interindividual variability due to genetic and nongenetic factors, together with the narrow therapeutic index of most anticancer drugs, contributes to their unique set of exposures and responses, which have important implications for achieving the expected efficacy and minimizing adverse events of chemotherapy for cancer in individuals. To elucidate the mechanisms of CYP3A4-mediated activation/inactivation of anticancer drugs associated with personalized therapy, this review focuses on the underlying determinants that contribute to differences in CYP3A4 metabolic activity and provides a comprehensive and valuable overview of the significance of these factors, which differs from current considerations for dosing regimens in cancer therapy. We also discuss knowledge gaps, challenges, and opportunities to explore optimal dosing regimens for drug metabolic activation/inactivation in individual patients, with particular emphasis on pooling and analyzing clinical information that affects CYP3A4 activity. SIGNIFICANCE STATEMENT: This review focuses on anticancer drugs that are activated/deactivated by CYP3A4 and highlights outstanding factors affecting the interindividual variability of CYP3A4 activity in order to gain a detailed understanding of CYP3A4-mediated drug metabolism mechanisms. A systematic analysis of available information on the underlying genetic and nongenetic determinants leading to variation in CYP3A4 metabolic activity to predict therapeutic response to drug exposure, maximize efficacy, and avoid unpredictable adverse events has clinical implications for the identification and development of CYP3A4-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xue Zhang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yanyan Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yunna Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Huiyu Lu
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xiangyun Meng
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xi Ye
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Weidong Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| |
Collapse
|
8
|
Andiana O, Welis W, Taufik MS, Widiastuti, Siregar AH, Raharjo S. Effects of weight-bearing vs. non-weight-bearing endurance exercise on reducing body fat and inflammatory markers in obese females. J Basic Clin Physiol Pharmacol 2023; 34:215-225. [PMID: 36123345 DOI: 10.1515/jbcpp-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Endurance exercise is an effective strategy for maintaining an anti-inflammatory environment and weight management. However, the effect of this type of exercise on decreasing body fat and TNF-α levels and increasing adiponectin levels is controversial. The aims of this study was to prove the effects of weight-bearing vs. non-weight-bearing endurance exercise on reducing body fat and inflammatory markers in obese females. METHODS 24 obese adolescents were recruited from female students from the State University of Malang. The interventions given in this study were weight-bearing endurance exercise (WBEE), and non-weight-bearing endurance exercise (NWBEE). Serum TNF-α levels and serum adiponectin levels were evaluated using enzyme-linked immunosorbent assay (ELISA). Statistical analysis techniques use paired sample T-test with a significant level of 5%. RESULTS Results of the statistical analysis show that the average body fat (PBF, FM, FFM) and TNF-α levels before endurance exercise vs. after endurance exercise in both types of exercise experienced a significant decrease (p≤0.05), while average adiponectin levels in both types of exercise experienced a significant increase before endurance exercise vs. after endurance exercise (p≤0.001). CONCLUSIONS In general, it can be concluded that weight-bearing and non-weight-bearing endurance exercise with moderate-intensity for 40 min/exercise session reduce body fat and TNF-α levels and increase adiponectin levels as a marker of inflammation in obese female.
Collapse
Affiliation(s)
- Olivia Andiana
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, East Java, Malang, Indonesia
| | - Wilda Welis
- Department of Sport Science, Faculty of Sport Science, State University of Padang, Padang, West Sumatra, Indonesia
| | - Muhamad Syamsul Taufik
- Department of Physical Education, Health and Recreation, Faculty of Teacher and Education, University of Suryakancana, Cianjur, West Java, Indonesia
| | - Widiastuti
- Department of Sport Science, Faculty of Sport Science, State University of Jakarta, East Jakarta, Special Capital Region of Jakarta, Indonesia
| | - Abdul Hakim Siregar
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Medan, Medan, North Sumatra, Indonesia
| | - Slamet Raharjo
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, East Java, Malang, Indonesia
| |
Collapse
|
9
|
Tuska RM, Helm SM, Graf CF, James C, Kong G, Stiemsma LT, Green DB, Helm SE. Surfeit folic acid, protein, and exercise modify oncogenic inflammatory biomarkers and fecal microbiota. Front Nutr 2023; 9:1060212. [PMID: 36742002 PMCID: PMC9894611 DOI: 10.3389/fnut.2022.1060212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Intestinal microbiota, diet, and physical activity are inextricably linked to inflammation occurring in the presence of tumor progression and declining neurocognition. This study aimed to explore how fecal microbiota, inflammatory biomarkers, and neurocognitive behavior are influenced by voluntary exercise and surplus dietary protein and folic acid which are common health choices. Dietary treatments provided over 8 weeks to C57BL/CJ male mice (N = 76) were: Folic Acid (FA) Protein (P) Control (FPC, 17.9% P; 2 mgFA/kg); Folic Acid Deficient (FAD); Folic Acid Supplemented (FAS; 8 mgFA/kg); Low Protein Diet (LPD, 6% P); and High Protein Diet (HPD, 48% P). FAS mice had decreased plasma HCys (p < 0.05), therefore confirming consumption of FA. Objectives included examining influence of exercise using Voluntary Wheel Running (VWR) upon fecal microbiota, inflammatory biomarkers C - reactive protein (CRP), Vascular Endothelial Growth Factor (VEGF), Interleukin-6 (IL-6), nuclear factor kappa ß subunit (NF-κßp65), Caspase-3 (CASP3), Tumor Necrosis Factor-alpha (TNF-α), and neurocognitive behavior. CRP remained stable, while a significant exercise and dietary effect was notable with decreased VEGF (p < 0.05) and increased CASP3 (p < 0.05) for exercised HPD mice. Consumption of FAS did significantly increase (p < 0.05) muscle TNF-α and the ability to build a nest (p < 0.05) was significantly decreased for both FAD and LPD exercised mice. Rearing behavior was significantly increased (p < 0.05) in mice fed HPD. An emerging pattern with increased dietary protein intake revealed more distance explored in Open Field Testing. At week 1, both weighted and unweighted UniFrac principal coordinates analysis yielded significant clustering (permanova, p ≤ 0.05) associated with the specific diets. Consumption of a HPD diet resulted in the most distinct fecal microbiota composition. At the phylum level-comparing week 1 to week 8-we report a general increase in the Firmicutes/Bacteroidetes ratio, characterized by an outgrowth of Firmicutes by week 8 in all groups except the HPD. MaAsLin2 analysis corroborates this finding and emphasizes an apparent inversion of the microbiome composition at week 8 after HPD. Explicit modification of oncogenic inflammatory biomarkers and fecal microbiome post high FA and protein intake along with voluntary exercise contributed to current underlying evidence that this diet and exercise relationship has broader effects on human health and disease-perhaps importantly as a practical modulation of cancer progression and declining neurocognition.
Collapse
|
10
|
Salivary and serum neopterin and interleukin 6 as biomarkers in patients with oral and oropharyngeal squamous cell carcinoma. Pteridines 2022. [DOI: 10.1515/pteridines-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Because of an increasing incidence of malignant tumours of the head and neck there is an unmet medical need for early diagnosis of the primary disease or precancerous lesions, and timely detection of recurrence by simple non-invasive tests. The analysis of biomarkers in body fluids may be appropriate for this goal. In this review, we compare the data on utilization of neopterin and interleukin-6 (IL-6) measurements in saliva and plasma/serum of patients with oral and oropharyngeal squamous cell carcinoma, indicating the suitability of using saliva as a diagnostic matrix in head and neck cancers on behalf of close anatomical proximity and a potential to study the tumour microenvironment. Salivary neopterin and IL-6 are potential biomarkers of head and neck cancer suitable not only for early diagnosis, but also for monitoring of treatment results and detection of the disease recurrence.
Collapse
|
11
|
Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS 2 diodes. Nat Commun 2022; 13:7593. [PMID: 36535944 PMCID: PMC9763493 DOI: 10.1038/s41467-022-35278-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The elevation of cytokine levels in body fluids has been associated with numerous health conditions. The detection of these cytokine biomarkers at low concentrations may help clinicians diagnose diseases at an early stage. Here, we report an asymmetric geometry MoS2 diode-based biosensor for rapid, label-free, highly sensitive, and specific detection of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. This sensor is functionalized with TNF-α binding aptamers to detect TNF-α at concentrations as low as 10 fM, well below the typical concentrations found in healthy blood. Interactions between aptamers and TNF-α at the sensor surface induce a change in surface energy that alters the current-voltage rectification behavior of the MoS2 diode, which can be read out using a two-electrode configuration. The key advantages of this diode sensor are the simple fabrication process and electrical readout, and therefore, the potential to be applied in a rapid and easy-to-use, point-of-care, diagnostic tool.
Collapse
|
12
|
Patel DI, Almeida GJ, Darby NT, Serra MC, Calderon T, Lapetoda A, Gutierrez B, Ramirez AG, Hughes DC. Therapeutic yoga reduces pro-tumorigenic cytokines in cancer survivors. Support Care Cancer 2022; 31:33. [PMID: 36517621 PMCID: PMC9750838 DOI: 10.1007/s00520-022-07536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic inflammation can remain many years after the completion of cancer treatment and is associated with cancer recurrence. The purpose of this study was to examine how a 16-week therapeutic yoga program (TYP) modulates the cytokine profile in heterogeneous cancer survivors. METHODS Eligible participants were 18 years of age or older and clinically diagnosed with cancer. Consenting participants were asked to attend three, 75-min sessions weekly of TYP with meditation. Seventeen patients provided blood samples at baseline and end of study. Eight cytokines (interferon (IFN)-γ; interleukin (IL)-1b, IL-1ra, IL-4, IL-6, IL-8, IL-10; and tumor necrosis factor (TNF)-α), three receptors (sIL-6R, sTNFRI, sTNFRII), and C-reactive protein (CRP) were quantified. RESULTS Patients were 59.6 ± 7.3 years old; over half (56%) were overweight or obese BMI ≥ 25 kg/m2); majority were female (71%) and breast cancer survivors (65%), of which 44% were Hispanic. Marked reductions were observed in all cytokines except IL-4, with significant reductions (p < 0.05) found in IL-1b (- 13%) and IL-1ra (- 13%). No significant changes were observed in soluble cytokine receptors or CRP. CONCLUSIONS TYP led to significant reduction in circulating cytokines associated with chronic inflammation in a heterogeneous sample of cancer survivors.
Collapse
Affiliation(s)
- Darpan I Patel
- Biobehavioral Research Laboratory, School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive M/C 7975, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - G J Almeida
- School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N T Darby
- Nydia's Yoga Therapy Studio, The Open Hand Institute, San Antonio, TX, USA
| | - M C Serra
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T Calderon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A Lapetoda
- Institute for Health Promotion and Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B Gutierrez
- Institute for Health Promotion and Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A G Ramirez
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Health Promotion and Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - D C Hughes
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Health Promotion and Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Ameloblastoma modifies tumor microenvironment for enhancing invasiveness by altering collagen alignment. Histochem Cell Biol 2022; 158:595-602. [PMID: 35857110 DOI: 10.1007/s00418-022-02136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
Tumor progression is profoundly affected by crosstalk between cancer cells and their stroma. In the past decades, the development of bioinformatics and the establishment of organoid model systems have allowed extensive investigation of the relationship between tumor cells and the tumor microenvironment (TME). However, the interaction between tumor cells and the extracellular matrix (ECM) in odontogenic epithelial neoplasms and the ECM remodeling mechanism remain unclear. In the present study, transcriptomic comparison and histopathologic analysis revealed that TME-related genes were upregulated in ameloblastoma compared to in odontogenic keratocysts. Tumoroid analysis indicated that type I collagen is required for ameloblastoma progression. Furthermore, ameloblastoma shows the capacity to remodel the ECM independently of cancer-associated fibroblasts. In conclusion, ameloblastoma-mediated ECM remodeling contributes to the formation of an invasive collagen architecture during tumor progression.
Collapse
|
14
|
Wen Z, Yang C, Zou D, Liu J, Wang S, Liu X, Zhang Y, Zhang Y. Pan-cancer analysis of PSAP identifies its expression and clinical relevance in gastric cancer. Pathol Res Pract 2022; 238:154027. [PMID: 36084426 DOI: 10.1016/j.prp.2022.154027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
Prosaposin (PSAP) plays a critical role in sphingolipid and cancer metabolism. Reports have shown that PSAP was involved in proliferation, tumorigenesis, and metastasis. However, the expression pattern of PSAP and its prognostic roles in gastric cancer remain elusive. PSAP expression pattern and its prognostic roles in gastric cancer (GC) were explored using data from the TCGA and Kaplan-Meier Plotter. Immunohistochemical staining of GC tissues was performed to validate the prognostic role of PSAP. TISIDB was used to analyze its correlation with immunomodulators. PSAP-associated genes, PDCD1, TGFB1, and CSF1R were used to build a risk model to evaluate immunotherapy outcomes of patients with stomach adenocarcinoma (STAD). Results showed that PSAP was highly expressed in GC. High PSAP expression in GC patients also significantly indicated a poor prognosis. The results of immunohistochemical staining showed that PSAP was an independent prognostic factor in GC patients. Based on three PSAP-associated genes, a risk model that could predict the prognosis and immunotherapy outcome of STAD was bulit. PSAP was an independent prognostic factor in GC. Our results have identified three prognosis-related genes which were useful to evaluate immunotherapy outcomes of STAD patients.
Collapse
Affiliation(s)
- Zhenpeng Wen
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Dan Zou
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, Liaoning Province 110042, PR China.
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Song Wang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Xuqin Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| |
Collapse
|
15
|
Shou J, Mo F, Zhang S, Lu L, Han N, Liu L, Qiu M, Li H, Han W, Ma D, Guo X, Guo Q, Huang Q, Zhang X, Ye S, Pan H, Chen S, Fang Y. Combination treatment of radiofrequency ablation and peptide neoantigen vaccination: Promising modality for future cancer immunotherapy. Front Immunol 2022; 13:1000681. [PMID: 36248865 PMCID: PMC9559398 DOI: 10.3389/fimmu.2022.1000681] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background The safety and immunogenicity of a personalized neoantigen-based peptide vaccine, iNeo-Vac-P01, was reported previously in patients with a variety of cancer types. The current study investigated the synergistic effects of radiofrequency ablation (RFA) and neoantigen vaccination in cancer patients and tumor-bearing mice. Methods Twenty-eight cancer patients were enrolled in this study, including 10 patients who had received RFA treatment within 6 months before vaccination (Cohort 1), and 18 patients who had not (Cohort 2). Individualized neoantigen peptide vaccines were designed, manufactured, and subcutaneously administrated with GM-CSF as an adjuvant for all patients. Mouse models were employed to validate the synergistic efficacy of combination treatment of RFA and neoantigen vaccination. Results Longer median progression free survival (mPFS) and median overall survival (mOS) were observed in patients in Cohort 1 compared to patients in Cohort 2 (4.42 and 20.18 months vs. 2.82 and 10.94 months). The results of ex vivo IFN-γ ELISpot assay showed that patients in Cohort 1 had stronger neoantigen-specific immune responses at baseline and post vaccination. Mice receiving combination treatment of RFA and neoantigen vaccines displayed higher antitumor immune responses than mice receiving single modality. The combination of PD-1 blockage with RFA and neoantigen vaccines further enhanced the antitumor response in mice. Conclusion Neoantigen vaccination after local RFA treatment could improve the clinical and immune response among patients of different cancer types. The synergistic antitumor potentials of these two modalities were also validated in mice, and might be further enhanced by immune checkpoint inhibition. The mechanisms of their synergies require further investigation. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03662815.
Collapse
Affiliation(s)
- Jiawei Shou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Mo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Hangzhou AI-Force Therapeutics Co., Ltd., Hangzhou, China
| | - Shanshan Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
| | - Lantian Lu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ning Han
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- Hangzhou AI-Nano Therapeutics Co., Ltd., Hangzhou, China
| | - Liang Liu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Hongseng Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongying Ma
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaojie Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qianpeng Guo
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Qinxue Huang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Xiaomeng Zhang
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
| | - Shengli Ye
- Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Shuqing Chen
- Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| | - Yong Fang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongming Pan, ; Shuqing Chen, ; Yong Fang,
| |
Collapse
|
16
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
17
|
Fontvieille E, His M, Biessy C, Navionis AS, Torres-Mejía G, Ángeles-Llerenas A, Alvarado-Cabrero I, Sánchez GI, Navarro E, Cortes YR, Porras C, Rodriguez AC, Garmendia ML, Soto JL, Moyano L, Porter PL, Lin MG, Guenthoer J, Romieu I, Rinaldi S. Inflammatory biomarkers and risk of breast cancer among young women in Latin America: a case-control study. BMC Cancer 2022; 22:877. [PMID: 35948877 PMCID: PMC9367082 DOI: 10.1186/s12885-022-09975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Breast cancer incidence is increasing rapidly in Latin America, with a higher proportion of cases among young women than in developed countries. Studies have linked inflammation to breast cancer development, but data is limited in premenopausal women, especially in Latin America. METHODS We investigated the associations between serum biomarkers of chronic inflammation (interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), leptin, adiponectin) and risk of premenopausal breast cancer among 453 cases and 453 matched, population-based controls from Chile, Colombia, Costa Rica, and Mexico. Odds ratios (OR) were estimated using conditional logistic regression models. Analyses were stratified by size and hormonal receptor status of the tumors. RESULTS IL-6 (ORper standard deviation (SD) = 1.33 (1.11-1.60)) and TNF-α (ORper SD = 1.32 (1.11-1.58)) were positively associated with breast cancer risk in fully adjusted models. Evidence of heterogeneity by estrogen receptor (ER) status was observed for IL-8 (P-homogeneity = 0.05), with a positive association in ER-negative tumors only. IL-8 (P-homogeneity = 0.06) and TNF-α (P-homogeneity = 0.003) were positively associated with risk in the largest tumors, while for leptin (P-homogeneity = 0.003) a positive association was observed for the smallest tumors only. CONCLUSIONS The results of this study support the implication of chronic inflammation in breast cancer risk in young women in Latin America. Largest studies of prospective design are needed to confirm these findings in premenopausal women.
Collapse
Affiliation(s)
- Emma Fontvieille
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mathilde His
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Anne-Sophie Navionis
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Gabriela Torres-Mejía
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Isabel Alvarado-Cabrero
- Servicio de Patología, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gloria Inés Sánchez
- Group Infection and Cancer, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Edgar Navarro
- Grupo Proyecto UNI-Barranquilla, Universidad del Norte, Barranquilla, Colombia
| | | | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Ana Cecilia Rodriguez
- Agencia Costarricense de Investigaciones Biomédicas (ACIB)-Fundación INCIENSA, San Jose, Costa Rica
| | - Maria Luisa Garmendia
- Instituto de Nutrición y de Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | | | - Peggy L Porter
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Gang Lin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Isabelle Romieu
- Centre for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, Georgia, USA
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France.
| |
Collapse
|
18
|
Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022; 12:911410. [PMID: 35965509 PMCID: PMC9366252 DOI: 10.3389/fonc.2022.911410] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
As a significant public health problem with high morbidity and mortality worldwide, tumor is one of the major diseases endangering human life. Moreover, metastasis is the most important contributor to the death of tumor patients. Epithelial-mesenchymal transition (EMT) is an essential biological process in developing primary tumors to metastasis. It underlies tumor progression and metastasis by inducing a series of alterations in tumor cells that confer the ability to move and migrate. Tumor-associated macrophages (TAMs) are one of the primary infiltrating immune cells in the tumor microenvironment, and they play an indispensable role in the EMT process of tumor cells by interacting with tumor cells. With the increasing clarity of the relationship between TAMs and EMT and tumor metastasis, targeting TAMs and EMT processes is emerging as a promising target for developing new cancer therapies. Therefore, this paper reviews the recent research progress of tumor-associated macrophages in tumor epithelial-mesenchymal transition and briefly discusses the current anti-tumor therapies targeting TAMs and EMT processes.
Collapse
Affiliation(s)
| | | | - Xiaobo Peng
- *Correspondence: Xiaobo Peng, ; Xianbao Zhan,
| | | |
Collapse
|
19
|
Garg T, Weiss CR, Sheth RA. Techniques for Profiling the Cellular Immune Response and Their Implications for Interventional Oncology. Cancers (Basel) 2022; 14:3628. [PMID: 35892890 PMCID: PMC9332307 DOI: 10.3390/cancers14153628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years there has been increased interest in using the immune contexture of the primary tumors to predict the patient's prognosis. The tumor microenvironment of patients with cancers consists of different types of lymphocytes, tumor-infiltrating leukocytes, dendritic cells, and others. Different technologies can be used for the evaluation of the tumor microenvironment, all of which require a tissue or cell sample. Image-guided tissue sampling is a cornerstone in the diagnosis, stratification, and longitudinal evaluation of therapeutic efficacy for cancer patients receiving immunotherapies. Therefore, interventional radiologists (IRs) play an essential role in the evaluation of patients treated with systemically administered immunotherapies. This review provides a detailed description of different technologies used for immune assessment and analysis of the data collected from the use of these technologies. The detailed approach provided herein is intended to provide the reader with the knowledge necessary to not only interpret studies containing such data but also design and apply these tools for clinical practice and future research studies.
Collapse
Affiliation(s)
- Tushar Garg
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.G.); (C.R.W.)
| | - Clifford R. Weiss
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.G.); (C.R.W.)
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Regulation of S100As Expression by Inflammatory Cytokines in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms23136952. [PMID: 35805957 PMCID: PMC9267105 DOI: 10.3390/ijms23136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-binding proteins S100A4, S100A8, and S100A9 are upregulated in chronic lymphocytic leukemia (CLL), while the S100A9 promotes NF-κB activity during disease progression. The S100-protein family has been involved in several malignancies as mediators of inflammation and proliferation. The hypothesis of our study is that S100A proteins are mediators in signaling pathways associated with inflammation-induced proliferation, such as NF-κB, PI3K/AKT, and JAK/STAT. The mononuclear cells (MNCs) of CLL were treated with proinflammatory IL-6, anti-inflammatory IL-10 cytokines, inhibitors of JAK1/2, NF-κB, and PI3K signaling pathways, to evaluate S100A4, S100A8, S100A9, and S100A12 expression as well as NF-κB activation by qRT-PCR, immunocytochemistry, and immunoblotting. The quantity of S100A4, S100A8, and S100A9 positive cells (p < 0.05) and their protein expression (p < 0.01) were significantly decreased in MNCs of CLL patients compared to healthy controls. The S100A levels were generally increased in CD19+ cells compared to MNCs of CLL. The S100A4 gene expression was significantly stimulated (p < 0.05) by the inhibition of the PI3K/AKT signaling pathway in MNCs. IL-6 stimulated S100A4 and S100A8 protein expression, prevented by the NF-κB and JAK1/2 inhibitors. In contrast, IL-10 reduced S100A8, S100A9, and S100A12 protein expressions in MNCs of CLL. Moreover, IL-10 inhibited activation of NF-κB signaling (4-fold, p < 0.05). In conclusion, inflammation stimulated the S100A protein expression mediated via the proliferation-related signaling and balanced by the cytokines in CLL.
Collapse
|
21
|
Andarianto A, Rejeki P, Sakina, Pranoto A, Seputra TA, Sugiharto, Miftahussurur M. Inflammatory markers in response to interval and continuous exercise in obese women. COMPARATIVE EXERCISE PHYSIOLOGY 2022; 18:135-142. [DOI: 10.3920/cep210038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Obesity is strongly associated with the degree of inflammation characterised by proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α). Lifestyle modification with exercise is the right strategy because it can stimulate interleukin 6 (IL-6) secretion which acts as an anti-inflammatory. This study aimed to analyse the response of interval and continuous exercise to inflammatory markers in obese women. Twenty-four women participated in this study and were randomly divided into 3 groups: CONG (n=8, control group without any intervention): MCEG (n=8, continuous exercise group) and MIEG (n=8, interval exercise group). ELISA was used to measure the levels of IL-6 and TNF-α, pre-exercise and post-exercise. The data were analysed using the paired sample t-test. The mean levels of TNF-α, pre-exercise and post-exercise, were 19.35±2.73 vs 19.36±2.23 pg/ml (P=0.989) in CONG, 19.42±2.79 vs 16.63±0.82 pg/ml (P=0.017) in MCEG, and 19.46±3.08 vs 16.96±2.11 pg/ml (P=0.079) in MIEG. Mean levels of IL-6, pre-exercise and post-exercise, were 7.56±2.88 vs 7.66±4.12 pg/ml (P=0.957) for CONG, 7.68±3.41 vs 13.97±2.38 pg/ml (P=0.001) for MCEG, and 7.78±1.99 vs 13.66±3.55 pg/ml (P=0.001) for MIEG. We concluded that interval and continuous exercise decreased pro-inflammatory and increased anti-inflammatory cytokines.
Collapse
Affiliation(s)
- A. Andarianto
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - P.S. Rejeki
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sakina
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya Indonesia
| | - A. Pranoto
- Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - T.W. Aga Seputra
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Jl. Semarang No.5, 65145 Malang, Indonesia
| | - M. Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, 60286 Surabaya, Indonesia
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 6-8, 60286 Surabaya, Indonesia
| |
Collapse
|
22
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
23
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
24
|
Expression Levels of Il-6 and Il-18 in Acute Myeloid Leukemia and Its Relation with Response to Therapy and Acute GvHD After Bone Marrow Transplantation. Indian J Surg Oncol 2021; 12:465-471. [PMID: 34658572 DOI: 10.1007/s13193-021-01358-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cytokines seem to play a crucial role in physiological and pathological conditions of acute myeloid leukemia (AML). The aim of this study was to evaluate the expression levels of interleukins-6 (IL-6) and IL-18 in patients with AML and its correlation with response to therapy and graft versus host disease (GvHD) after bone marrow transplantation. The expression levels of IL-6 and IL-18 genes were done in all patients and compared with matched control. Complete remission (CR) was used for evaluation of the effects of these cytokines on response to treatment in patients group. The expression level of these cytokines was also evaluated in patients who underwent bone marrow transplantation and experienced acute GvHD in compare with patients without aGvHD. Il-6 gene expression level was significantly higher in these patients in comparison with control but Il-18 gene expression level was not statistically significant compared to control group. Il-6 and also Il-18 expression levels were significantly higher in patients without a response to treatment according to CR compared to patient's whit response to treatment as well as patients experienced aGvHD after bone marrow transplantation. IL-6 and Il-18 are important markers in the progression of the disease and could be considered as a prognostic marker in acute leukemia. It is recommended that more studies with larger study groups and more involved cytokines are needed for more evaluation of the cytokine roles in pathophysiology and progression of acute leukemia.
Collapse
|
25
|
Pawlik W, Pawlik J, Kozłowski M, Łuczkowska K, Kwiatkowski S, Kwiatkowska E, Machaliński B, Cymbaluk-Płoska A. The Clinical Importance of IL-6, IL-8, and TNF-α in Patients with Ovarian Carcinoma and Benign Cystic Lesions. Diagnostics (Basel) 2021; 11:diagnostics11091625. [PMID: 34573967 PMCID: PMC8469088 DOI: 10.3390/diagnostics11091625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
The exact pathogenesis and influence of various cytokines in patients with ovarian lesions remains unclear. Hence, this study aimed to investigate whether IL-6, IL-8, and TNF-α could be considered as new useful markers for diagnosis of ovarian cancer. 63 women diagnosed with ovarian cancer (OC) and 53 patients with benign ovarian cystic (BOC) lesions were included in this study. Serum levels of IL-6, IL-8, and TNF-α were measured using ELISA. Statistical comparisons were made using the Mann–Whitney U test and all correlations were evaluated by Spearman’s ranks. The serum IL-8 and TNF-α concentration measured in the OC Group was significantly higher than in the BOC Group (p < 0.05). The cutoff level of IL-8 and TNF-α in the serum was set at 4.09 ng/mL and 2.63 ng/mL, respectively, with the sensitivity and specificity of 70% and 96% for IL-8 and 85.7% and 79.3% for TNF-α (p < 0.0001). These results suggest that IL-8 and TNF-α are useful biomarkers for predicting the malignant character of lesions of the ovary. The present study highlighted the importance of measuring the cytokines such as IL-8 and TNF-α in patients with ovarian lesions in predicting the clinical outcome.
Collapse
Affiliation(s)
- Weronika Pawlik
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
- Correspondence:
| | - Jakub Pawlik
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| | - Mateusz Kozłowski
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| |
Collapse
|
26
|
Wang Y, Liu X, Hu G, Hu C, Gao Y, Huo M, Zhu H, Liu M, Xu N. EGFR-IL-6 Signaling Axis Mediated the Inhibitory Effect of Methylseleninic Acid on Esophageal Squamous Cell Carcinoma. Front Pharmacol 2021; 12:719785. [PMID: 34393797 PMCID: PMC8363297 DOI: 10.3389/fphar.2021.719785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023] Open
Abstract
Epidemiological and experimental evidence indicate that selenium is associated with a reduced risk of some cancers, including esophageal cancer. However, the exact mechanism is still unclear. In the present study, we used esophageal squamous cell carcinoma (ESCC) cell lines and animal models to explore the anti-cancer mechanism of methylseleninic acid (MSA). Firstly, MSA treatment dramatically attenuated Epidermal Growth Factor Receptor (EGFR) protein expression but did not alter mRNA levels in ESCC cells. On the contrary, EGFR overexpression partly abolished the inhibitory effect of MSA. With a microRNA-array, we found MSA up-regulated miR-146a which directly targeted EGFR, whereas miR-146a inhibitor antagonized MSA-induced decrease of EGFR protein. We further used 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumor mice model to evaluate the inhibitory effect of MSA in vivo. MSA treatment significantly decreased the tumor burden and EGFR protein expression in tumor specimens. Furthermore, MSA treatment inhibited EGFR pathway and subsequntly reduced Interleukin-6 (IL-6) secretion in the supernatant of cancer cell lines. MSA-induced IL-6 suppression was EGFR-dependent. To further evaluate the association of IL-6 and the anti-tumor effect of MSA on esophageal cancer, we established the 4NQO-induced esophageal tumor model in IL-6 knock-out (IL-6 KO) mice. The results showed that IL-6 deficiency did not affect esophageal tumorigenesis in mice, but the inhibitory effect of MSA was abolished in IL-6 KO mice. In conclusion, our study demonstrated that MSA upregulated miR-146a which directly targeted EGFR, and inhibited EGFR protein expression and pathway activity, subsequently decreased IL-6 secretion. The inhibitory effect of MSA on esophageal cancer was IL-6 dependent. These results suggested that MSA may serve as a potential drug treating esophageal cancer.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghui Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
28
|
Imbalance of Chemokines and Cytokines in the Bone Marrow Microenvironment of Children with B-Cell Acute Lymphoblastic Leukemia. JOURNAL OF ONCOLOGY 2021; 2021:5530650. [PMID: 34335758 PMCID: PMC8321713 DOI: 10.1155/2021/5530650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
In the hematopoietic microenvironment, leukemic cells secrete factors that imbalanced chemokine and cytokine production. However, the network of soluble immunological molecules in the bone marrow microenvironment of acute lymphoblastic leukemia (ALL) remains underexplored. Herein, we evaluated the levels of the immunological molecules (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-10, and IL-2) in the bone marrow plasma of 47 recently diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients during induction therapy using cytometric beads arrays. The results demonstrated that B-ALL patients showed high levels of CXCL9, CXCL10, IL-6, and IL-10 at the time of diagnosis, while at the end of induction therapy, a decrease in the levels of these immunological molecules and an increase in CCL5, IFN-γ, and IL-17A levels were observed. These findings indicate that B-ALL patients have an imbalance in chemokines and cytokines in the bone marrow microenvironment that contributes to suppressing the immune response. This immune imbalance may be associated with the presence of leukemic cells since, at the end of the induction therapy, with the elimination and reduction to residual cells, the proinflammatory profile is reestablished, characterized by an increase in the cytokines of the Th1 and Th17 profiles.
Collapse
|
29
|
Curcumin Loaded Chitosan-Protamine Nanoparticles Revealed Antitumor Activity Via Suppression of NF-κB, Proinflammatory Cytokines and Bcl-2 Gene Expression in the Breast Cancer Cells. J Pharm Sci 2021; 110:3298-3305. [PMID: 34097977 DOI: 10.1016/j.xphs.2021.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Nano drug delivery has been recently used to enhance the stability and bioavailability of chemotherapeutic agents. In this study, Chitosan/protamine nanocarrier was synthesized and used to encapsulate curcumin (CUR). The physicochemical properties of the empty carrier (CHPNPs) and curcumin-containing carrier (CU-CHPNPs) were characterized by TEM imaging, Zetasizer, and FT-IR spectroscopy. The antitumor activity of the prepared nanoparticles was assessed by determination of cell count, cell viability, the level of NF-κB, IL-6, and TNF-α and Bcl-2 gene expression in breast cancer cells (MCF-7). The results revealed that the obtained CU-CHPNPs had an average hydrodynamic size of 200 nm, zeta potential of +26.66 mv, and showed a drug encapsulation efficiency of 67%, and drug loading capacity of 40.20%. The cell-based assay showed a significant reduction in the cell viability, and NF-κB, TNF-α, and IL-6 levels upon treatment with CU-CHPNPs as compared to free CUR. Finally, the (CU-CHPNPs) downregulated the expression of the Bcl-2 anti-apoptotic gene more effectively than CUR and the CHPNPs comparing with the β Actin housekeeping gene. This study concluded that the nano-encapsulation of CUR significantly enhances its antitumor efficacy via inhibition of NF-κB, IL-6, and TNF-α and downregulation of Bcl-2.
Collapse
|
30
|
Circulating Biomarkers of Colorectal Cancer (CRC)-Their Utility in Diagnosis and Prognosis. J Clin Med 2021; 10:jcm10112391. [PMID: 34071492 PMCID: PMC8199026 DOI: 10.3390/jcm10112391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to increase, with 2.2 million new cases and 1.1 million annual deaths by 2030. Therefore, the establishment of novel biomarkers useful in the early diagnosis of CRC is of utmost importance. A number of publications have documented the significance of the overexpression of several specific proteins, such as inflammatory mediators, in CRC progression. However, little is known about the potential utility of these proteins as circulating blood tumor biomarkers of CRC. Therefore, in the present review we report the results of our previous original studies as well as the findings of other authors who investigated whether inflammatory mediators might be used as novel biomarkers in the diagnosis and prognosis of CRC. Our study revealed that among all of the tested proteins, serum M-CSF, CXCL-8, IL-6 and TIMP-1 have the greatest value in the diagnosis and progression of CRC. Serum TIMP-1 is useful in differentiating between CRC and colorectal adenomas, whereas M-CSF and CRP are independent prognostic factors for the survival of patients with CRC. This review confirms the promising significance of these proteins as circulating biomarkers for CRC. However, due to their non-specific nature, further validation of their sensitivity and specificity is required.
Collapse
|
31
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, Semba RD, Franceschi C, Gorospe M, Ferrucci L. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell 2021; 20:e13325. [PMID: 33730416 PMCID: PMC8045948 DOI: 10.1111/acel.13325] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of plasma proteins that systematically change with age and, independent of chronological age, predict accelerated decline of health is an expanding area of research. Circulating proteins are ideal translational "omics" since they are final effectors of physiological pathways and because physicians are accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and tracking the effectiveness of treatments. Recent technological advancements, including mass spectrometry (MS)-based proteomics, multiplexed proteomic assay using modified aptamers (SOMAscan), and Proximity Extension Assay (PEA, O-Link), have allowed for the assessment of thousands of proteins in plasma or other biological matrices, which are potentially translatable into new clinical biomarkers and provide new clues about the mechanisms by which aging is associated with health deterioration and functional decline. We carried out a detailed literature search for proteomic studies performed in different matrices (plasma, serum, urine, saliva, tissues) and species using multiple platforms. Herein, we identified 232 proteins that were age-associated across studies. Enrichment analysis of the 232 age-associated proteins revealed metabolic pathways previously connected with biological aging both in animal models and in humans, most remarkably insulin-like growth factor (IGF) signaling, mitogen-activated protein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), cytokine signaling, Forkhead Box O (FOXO) metabolic pathways, folate metabolism, advance glycation end products (AGE), and receptor AGE (RAGE) metabolic pathway. Information on these age-relevant proteins, likely expanded and validated in longitudinal studies and examined in mechanistic studies, will be essential for patient stratification and the development of new treatments aimed at improving health expectancy.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | - Toshiko Tanaka
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Alexey Lyashkov
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | | | - Richard D Semba
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Claudio Franceschi
- University of Bologna and IRCCS Institute of Neurological Sciences Bologna Italy
| | - Myriam Gorospe
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Luigi Ferrucci
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| |
Collapse
|
32
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
33
|
Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, Zhong J, Pan L, Zhang X, Guo Y, Liu Y, Jin S, Tan Y, Yu X. MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci 2021; 17:869-881. [PMID: 33767595 PMCID: PMC7975698 DOI: 10.7150/ijbs.56152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) plays an important role in necroptosis, but the role and mechanism of MLKL in intestinal tumorigenesis remain unclear. Here, we found that hematopoietic- and nonhematopoietic-derived MLKL affected intestinal inflammation, but nonhematopoietic-derived MLKL primarily inhibited intestinal tumorigenesis. Loss of MLKL enhanced intestinal regeneration and the susceptibility to intestinal tumorigenesis in Apcmin/+ mice by hyperactivating the Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) axis. Furthermore, MLKL deficiency increased interleukin-6 (IL-6) production in dendritic cells. Administration of anti-IL-6R antibody therapy reduced intestinal tumorigenesis in Apcmin/+Mlkl-/- mice. Notably, low MLKL expression in human colorectal tumors, which enhanced STAT3 activation, was associated with decreased overall survival. Together, our results reveal that MLKL exhibits a suppressive effect during intestinal tumorigenesis by suppressing the IL-6/JAK2/STAT3 signals.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinran Cheng
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Li Kuang
- Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jianhua Ren
- Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jing Zhong
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Zhang
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
34
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
35
|
Bai Z, Li L, Guan T, Wang J, Zhao J, Su L. Clinical prognosis and bioinformatic analysis of primary thyroid lymphoma. Medicine (Baltimore) 2021; 100:e24598. [PMID: 33578562 PMCID: PMC7886455 DOI: 10.1097/md.0000000000024598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Primary thyroid lymphoma (PTL) is a rare malignant disease with the most common histological type of diffuse large B-cell lymphoma (DLBCL). Hashimoto's thyroiditis (HT) is closely related to the pathogenesis of PTL. The present study is to explore the clinical prognosis of PTL and analyze the gene correlations between PTL and HT.Thirty-nine patients diagnosed with PTL between 2010 and 2018 in our institute were retrospectively reviewed and clinical features were evaluated on PTL survival. Then, overlapping differentially expressed genes (DEGs) between PTL and HT were evaluated for gene ontology, pathways enrichment, protein-protein interaction network analysis. Furthermore, we used gene expression profiling interactive analysis to evaluate the differential expression of these hub genes.In this analysis, International Prognostic Index (IPI) score ≥3 and high β2-MG (>3 mg/L) were associated with worse prognosis in PTL. Notably, a total of 15 both upregulated DEGs in DLBCL and HT were identified and 10 hub genes with a high degree of connectivity were picked out. Among these 10 hub genes, IL6, IL10, CXCL10, and CXCR3 were higher expressed in DLBCL than the normal tissue but have no significant prognosis of DLBCL.High IPI score and high β2-MG level have a poor prognosis in PTL. Besides, IL6, IL10, CXCL10, and CXCR3 are associated with both DLBCL and HT and may be used for the early diagnosis of PTL.
Collapse
Affiliation(s)
| | | | - Tao Guan
- Department of Hematology, Shanxi Tumor Hospital affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiangtao Wang
- Department of Hematology, Shanxi Tumor Hospital affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Zhao
- Department of Hematology, Shanxi Tumor Hospital affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Su
- Department of Hematology, Shanxi Tumor Hospital affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
36
|
Altuwayjiri A, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Kashani H, Faridi S, Yunesian M, Naddafi K, Sioutas C. Association of systemic inflammation and coagulation biomarkers with source-specific PM 2.5 mass concentrations among young and elderly subjects in central Tehran. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:191-208. [PMID: 32758070 DOI: 10.1080/10962247.2020.1806140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Sina Taghvaee
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Amirhosein Mousavi
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Advanced Monitoring Technologies, Science and Technology Advancement Division, South Coast Air Quality Management District , Diamond Bar, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
37
|
Pourteymour Fard Tabrizi Z, Miraj S, Tahmasebian S, Ghasemi S. Plasma Levels of miR-27a, miR-130b, and miR-301a in Polycystic Ovary Syndrome. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:198-206. [PMID: 33274182 PMCID: PMC7703662 DOI: 10.22088/ijmcm.bums.9.3.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder in women of reproductive age. There is adequate evidence that suggests several microRNAs (miRNAs) are of great importance for PCOS. It seems that dysregulated expression of miR-27a, miR-130b, and miR-301a are associated with PCOS. The aim of this study was to investigate whether plasma levels of these miRNAs are different between patients with PCOS and healthy controls. Fifty-three women with a definite diagnosis of PCOS, and 53 healthy controls were enrolled. MiRNAs expression levels in plasma were evaluated by real-time PCR. The diagnostic values of each miRNA were calculated by the receiver operating characteristic (ROC) curve and areas under the curves (AUC). The main clinical characteristics were not significantly different between the two groups. The circulating plasma expression levels of miR-27a and miR-301a had a significant increase (P = 0.0008 and P <0.0001, respectively) but miR-130b expression level decreased in the patient group (P <0.0001). The AUC for miR-27a, miR-130b, and miR-301a were 0.71, 0.77, and 0.66, respectively. A positive exponential was observed for miR-27a and miR-301a in multiple logistic regression. Changes in the plasma expressions of the studied miRNAs are likely to be associated with PCOS phenotypes. MiR-27a has a potential to serve as a diagnostic biomarker of PCOS.
Collapse
Affiliation(s)
- Zahra Pourteymour Fard Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sepideh Miraj
- Department of Obstetrics and Gynecology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
38
|
Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microb Pathog 2020; 145:104207. [PMID: 32325236 DOI: 10.1016/j.micpath.2020.104207] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/17/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023]
Abstract
As of present, a number of studies have shown anti-cancer effects of different strains of probiotics, but the precise host immunological mechanisms of these antitumor effects remain unclear. Thus, the aim of current study was to investigate the preventive-therapeutic effects of oral versus intravenous administration of probiotic Bifidobacterium bifidum on immune response and tumor growth of C57BL/6 mice bearing transplanted TC-1 cell of human papillomavirus (HPV)-related tumor, expressing HPV-16 E6/E7 oncogenes. Our major findings are that the intravenous or oral administration of Bifidobacterium bifidum effectively induces antitumor immune responses and inhibits tumor growth in mice. Compared to oral route only, intravenous administration of probiotic Bifidobacterium bifidum into tumor-bearing mice leads to the activation of tumor-specific IL-12 and IFN-γ, lymphocyte proliferation, CD8+ cytolytic responses that control and eradicate tumor growth. These observations meant intravenous administration of probiotics is an effective anticancer approach through modulation of the immune system. The potential of probiotic Bifidobacterium bifidum as an immunomodulator in the treatment of cervical cancer could be further explored.
Collapse
|
39
|
Adeoye J, Brennan PA, Thomson P. “Search less, verify more”—Reviewing salivary biomarkers in oral cancer detection. J Oral Pathol Med 2020; 49:711-719. [DOI: 10.1111/jop.13003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- John Adeoye
- Oral & Maxillofacial Surgery Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | | | - Peter Thomson
- Oral & Maxillofacial Surgery Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
40
|
Judge SJ, Yanagisawa M, Sturgill IR, Bateni SB, Gingrich AA, Foltz JA, Lee DA, Modiano JF, Monjazeb AM, Culp WTN, Rebhun RB, Murphy WJ, Kent MS, Canter RJ. Blood and tissue biomarker analysis in dogs with osteosarcoma treated with palliative radiation and intra-tumoral autologous natural killer cell transfer. PLoS One 2020; 15:e0224775. [PMID: 32084139 PMCID: PMC7034869 DOI: 10.1371/journal.pone.0224775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
We have previously reported radiation-induced sensitization of canine osteosarcoma (OSA) to natural killer (NK) therapy, including results from a first-in-dog clinical trial. Here, we report correlative analyses of blood and tissue specimens for signals of immune activation in trial subjects. Among 10 dogs treated with palliative radiotherapy (RT) and intra-tumoral adoptive NK transfer, we performed ELISA on serum cytokines, flow cytometry for immune phenotype of PBMCs, and PCR on tumor tissue for immune-related gene expression. We then queried The Cancer Genome Atlas (TCGA) to evaluate the association of cytotoxic/immune-related gene expression with human sarcoma survival. Updated survival analysis revealed five 6-month survivors, including one dog who lived 17.9 months. Using feeder line co-culture for NK expansion, we observed maximal activation of dog NK cells on day 17-19 post isolation with near 100% expression of granzyme B and NKp46 and high cytotoxic function in the injected NK product. Among dogs on trial, we observed a trend for higher baseline serum IL-6 to predict worse lung metastasis-free and overall survival (P = 0.08). PCR analysis revealed low absolute gene expression of CD3, CD8, and NKG2D in untreated OSA. Among treated dogs, there was marked heterogeneity in the expression of immune-related genes pre- and post-treatment, but increases in CD3 and CD8 gene expression were higher among dogs that lived > 6 months compared to those who did not. Analysis of the TCGA confirmed significant differences in survival among human sarcoma patients with high and low expression of genes associated with greater immune activation and cytotoxicity (CD3e, CD8a, IFN-γ, perforin, and CD122/IL-2 receptor beta). Updated results from a first-in-dog clinical trial of palliative RT and autologous NK cell immunotherapy for OSA illustrate the translational relevance of companion dogs for novel cancer therapies. Similar to human studies, analyses of immune markers from canine serum, PBMCs, and tumor tissue are feasible and provide insight into potential biomarkers of response and resistance.
Collapse
Affiliation(s)
- Sean J. Judge
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Mio Yanagisawa
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Ian R. Sturgill
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Sarah B. Bateni
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Alicia A. Gingrich
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Jennifer A. Foltz
- Nationwide Children’s Hospital, Center for Childhood Cancer & Blood Diseases, Columbus, Ohio, United States of America
| | - Dean A. Lee
- Nationwide Children’s Hospital, Center for Childhood Cancer & Blood Diseases, Columbus, Ohio, United States of America
| | - Jaime F. Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Animal Cancer Care and Research Center, Center for Immunology, Masonic Cancer Center, and Stem Cell Institute, University of Minnesota, St. Paul, Minneapolis, United States of America
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California, United States of America
| | - William T. N. Culp
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Robert B. Rebhun
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - William J. Murphy
- Distinguished Professor of Dermatology and Internal Medicine, Vice Chair of Dermatology, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Michael S. Kent
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Robert J. Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, California, United States of America
| |
Collapse
|
41
|
Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci Rep 2020; 10:2213. [PMID: 32042020 PMCID: PMC7010756 DOI: 10.1038/s41598-020-59009-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Pre-operative discrimination of malignant masses is crucial for accurate diagnosis and prompt referral to a gynae oncology centre for optimal surgical intervention. HGSOC progression is correlated with local and systemic inflammation. We hypothesised that inclusion of inflammatory biomarkers in sera may improve diagnostic tests. In the training cohort, we tested four existing clinical tests (RMI score and ROMA, CA125 and HE4) and a panel of 28 immune soluble biomarkers in sera from 66 patients undergoing surgery for suspected ovarian cancer. Six promising immune biomarkers alone, or in combination with conventional tests, were subsequently analysed in an independent validation cohort (n = 69). IL-6 was identified as the main driver of variability followed closely by conventional diagnostic tests. Median sera IL-6 was higher in HGSOC patients compared to those with a benign mass or controls with normal ovaries (28.3 vs 7.3 vs 1.2 pg/ml, p < 0.0001). The combination of IL-6 further improved the overall predictive probability of the conventional tests. Modelling a two-step triage of women with a suspicious ovarian mass, with IL-6 > 3.75 pg/ml as primary triage followed by conventional tests (CA125 or RMI score) identified ovarian cancer in patients with a misclassification rate of 4.54–3.03%, superior to the use of CA125 or RMI alone (9.09 to 10.60). The validation cohort demonstrated a similar improvement in the diagnostic sensitivity following addition of IL-6. IL-6 in combination with conventional tests may be a useful clinical biomarker for triage of patients with a suspected malignant ovarian mass.
Collapse
|
42
|
Bhyan SB, Zhao L, Wee Y, Liu Y, Zhao M. Genetic links between endometriosis and cancers in women. PeerJ 2019; 7:e8135. [PMID: 31879572 PMCID: PMC6927350 DOI: 10.7717/peerj.8135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Endometriosis is a chronic disease occurring during the reproductive stage of women. Although there is only limited association between endometriosis and gynecological cancers with regard to clinical features, the molecular basis of the relationship between these diseases is unexplored. We conducted a systematic study by integrating literature-based evidence, gene expression and large-scale cancer genomics data in order to reveal any genetic relationships between endometriosis and cancers in women. We curated 984 endometriosis-related genes from 3270 PubMed articles and then conducted a meta-analysis of the two public gene expression profiles related to endometriosis which identified Differential Expression of Genes (DEGs). Following an overlapping analysis, we identified 39 key endometriosis-related genes common in both literature and DEG analysis. Finally, the functional analysis confirmed that all the 39 genes were associated with the vital processes of tumour formation and cancer progression and that two genes (PGR and ESR1) were common to four cancers of women. From network analysis, we identified a novel linker gene, C3AR1, which had not been implicated previously in endometriosis. The shared genetic mechanisms of endometriosis and cancers in women identified in this study provided possible new avenues of multiple disease management and treatments through early diagnosis.
Collapse
Affiliation(s)
- Salma Begum Bhyan
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Li Zhao
- Dongguan Women and Children’s Hospital, Dongguan, China
| | - YongKiat Wee
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| |
Collapse
|
43
|
King Thomas J, Mir H, Kapur N, Singh S. Racial Differences in Immunological Landscape Modifiers Contributing to Disparity in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121857. [PMID: 31769418 PMCID: PMC6966521 DOI: 10.3390/cancers11121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer affects African Americans disproportionately by exhibiting greater incidence, rapid disease progression, and higher mortality when compared to their Caucasian counterparts. Additionally, standard treatment interventions do not achieve similar outcome in African Americans compared to Caucasian Americans, indicating differences in host factors contributing to racial disparity. African Americans have allelic variants and hyper-expression of genes that often lead to an immunosuppressive tumor microenvironment, possibly contributing to more aggressive tumors and poorer disease and therapeutic outcomes than Caucasians. In this review, we have discussed race-specific differences in external factors impacting internal milieu, which modify immunological topography as well as contribute to disparity in prostate cancer.
Collapse
Affiliation(s)
- Jeronay King Thomas
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-5718; Fax: +1-404-752-1179
| |
Collapse
|
44
|
Zhang S, Zhang Q, An L, Zhang J, Li Z, Zhang J, Li Y, Tuerhong M, Ohizumi Y, Jin J, Xu J, Guo Y. A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects. Carbohydr Polym 2019; 229:115477. [PMID: 31826524 DOI: 10.1016/j.carbpol.2019.115477] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
A novel polysaccharide, AAP70-1, was isolated from Anemarrhena asphodeloides for the first time. The primary structural analysis revealed that AAP70-1 was composed of glucose and fructose, had an absolute molecular weight of 2720 Da, and contained a (2→6)-linked β-D-fructofuranose (Fruf) backbone and a (2→1,6)-linked β-D-Fruf side chain with an internal α-D-glucopyranose (Glcp) in the form of a neokestose. To explore the potential factors responsible for the medicinally relevant bioactivities of A. asphodeloides, a biological assay was performed. Using flow cytometry analysis, AAP70-1 was experimentally shown to have neuroprotective effects, and it can prevent and ameliorate neurological damage via reducing apoptosis. The immunomodulation assay further revealed that AAP70-1 can significantly improve immune function by promoting phagocytic capacity and the secretion of cytokines (IL-6, IL-1β and TNF-α) in RAW264.7 cells. These results suggest that AAP70-1 has potential as a therapeutic agent for central nervous system diseases or as an immunomodulatory agent.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
45
|
Fan H, Li J, Wang J, Hu Z. Long Non-Coding RNAs (lncRNAs) Tumor-Suppressive Role of lncRNA on Chromosome 8p12 (TSLNC8) Inhibits Tumor Metastasis and Promotes Apoptosis by Regulating Interleukin 6 (IL-6)/Signal Transducer and Activator of Transcription 3 (STAT3)/Hypoxia-Inducible Factor 1-alpha (HIF-1α) Signaling Pathway in Non-Small Cell Lung Cancer. Med Sci Monit 2019; 25:7624-7633. [PMID: 31601776 PMCID: PMC6800465 DOI: 10.12659/msm.917565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) exert various functions in human cancers. However, the biological functions of lncRNAs in non-small cell lung cancer (NSCLC) are unknown. In the present study we investigated the tumor-suppressive role of lncRNA on chromosome 8p12 (TSLNC8) in the pathogenesis and progression of NSCLC. MATERIAL AND METHODS qRT-PCR was carried out to evaluate the expression of TSLNC8 in lung cancer cell lines. The effects of TSLNC8 on A549 cells proliferation, migration, and invasion were analyzed using CCK-8 assay, wound healing assay, Transwell assay, and Western blot analysis. We used flow cytometry to assess cell apoptosis, and cell autophagy was assessed by Western blot analysis and immunofluorescence staining. Levels of proteins in the IL-6/STAT3/HIF-1alpha pathway were measured by Western blot analysis. RESULTS The results revealed that TSLNC8 was significantly downregulated in lung cancer cells compared to normal bronchial epithelial cells. Further experiments showed that overexpression of TSLNC8 in A549 cells significantly inhibited proliferation in a time-dependent manner and promoted cell apoptosis. We found that TSLNC8 overexpression suppressed cell migration and invasion, and upregulation of TSLNC8 regulated the protein levels of Beclin-1, p62, ATG14, and LC3-II and inhibited the IL-6/STAT3/HIF-1alpha signaling pathway. CONCLUSIONS lncRNA TSLNC8 remarkably inhibited the proliferation and migration and accelerated apoptosis of lung cancer cells by targeting the IL-6/STAT3/HIF-1alpha signaling pathway. TSLNC8 may be a potential therapeutic target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Hanli Fan
- Department of Thoracic Surgery, Wuhan No. 4 Hospital, Wuhan, Hubei, China (mainland)
| | - Jianbo Li
- Department of Thoracic Surgery, Wuhan No. 4 Hospital, Wuhan, Hubei, China (mainland)
| | - Jiwu Wang
- Department of Thoracic Surgery, Wuhan No. 4 Hospital, Wuhan, Hubei, China (mainland)
| | - Zange Hu
- Department of Thoracic Surgery, Wuhan No. 4 Hospital, Wuhan, Hubei, China (mainland)
| |
Collapse
|
46
|
Eghtedari M, Beigi V, Maalhagh M, Ashraf H. Expression of interleukin-6 in ocular surface squamous neoplasia. Clin Ophthalmol 2019; 13:1675-1680. [PMID: 31564816 PMCID: PMC6722455 DOI: 10.2147/opth.s221911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/08/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose Interleukin-6 (IL-6) is an important cytokine in the cascade of inflammation and cancer progression. The aim of this study was to identify IL-6 expression in ocular surface squamous neoplasia (OSSN) in comparison with non-neoplastic conjunctival tissue. Methods Twenty paraffin-embedded tissue sections of conjunctiva from patients with OSSN including conjunctival intraepithelial neoplasia (CIN) in all grades of severity and squamous cell carcinoma (SCC) were assessed by immunohistochemistry staining for IL-6. Twenty non-neoplastic conjunctival sections from age matched patients were selected as the control group. Tissues with more than one focus of inflammatory cell infiltration were excluded from the study. The mean area of positive staining was recorded and the intensity of staining was scored in both groups and compared by statistical methods. Results The mean staining area in the dysplasia group was significantly more than non-neoplastic conjunctival tissue (63.5±25.96 and 30±15.98 percent respectively; P-value of <0.0001). Nuclear staining was observed in both groups and the difference was not statistically significant. Conclusion IL-6 expressed more in the dysplastic group in compare to non-neoplastic conjunctiva and can therefore be used to diagnose dysplastic state of the conjunctiva; however, in our study, intensity of staining does not correlate with the severity of dysplasia statistically; most probably because of a low sample size in each category. The role of nuclear staining is not clear. Our findings can be an introduction toward targeted treatment of ocular surface neoplasia by the aim of newer anti-IL agents. Further investigation is needed.
Collapse
Affiliation(s)
- Masoomeh Eghtedari
- Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran.,Ophthalmology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Beigi
- Ophthalmology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Maalhagh
- Ophthalmology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Ashraf
- Ophthalmology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Chen Y, Huang Z, Chen X, Ye H. Activation of the Toll‑like receptor 2 signaling pathway inhibits the proliferation of HCC cells in vitro. Oncol Rep 2019; 42:2267-2278. [PMID: 31578587 PMCID: PMC6826303 DOI: 10.3892/or.2019.7340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/07/2019] [Indexed: 12/23/2022] Open
Abstract
Toll‑like receptor 2 (TLR2), is an important pattern recognition receptor which serves a role in chronic inflammation of the liver. However, the role of TLR2 in the progression of human hepatocellular carcinoma (HCC) remains unknown. The aim of the present study was to examine the effects of the activation of the TLR2 signaling pathway on biological functions, such as proliferation and apoptosis. TLR2 expression in HCC tissues was assayed by quantitative polymerase chain reaction, flow cytometry and western blotting. B76/Huh7 cells were transfected with overexpression plasmids, and cell proliferation was detected using a Cell Counting Kit‑8 assay and the secreted cytokines in the supernatant of transfected cells were measured by ELISA. The findings revealed that TLR2 expression was increased in the peritumoral groups compared with inner‑tumoral groups. Activation of the TLR2 signaling pathway through overexpression of pathway molecules inhibited the growth of B76/Huh7 cells and the secretion of interleukin‑6 and tumor necrosis factor‑α were reduced. Inhibition of the TLR2 signaling pathway resulted in a significant increase in the downstream signaling cascade, thus potentially increasing hepatocarcinogenesis and tumor progression. Activation of the TLR2 signaling pathway may be a potential target for therapeutic intervention in patients with HCC and downstream secreted cytokines are required for the functional biological effect. Therefore, modulation of the TLR2 signaling pathway may provide important insight into designing effective therapeutic regimens for treating patients with HCC.
Collapse
Affiliation(s)
- Yi Chen
- United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zuxiong Huang
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Hanhui Ye
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
48
|
Vishwajeet V, Kakkar N, Singhal P, Mandal AK. Synchronous retroperitoneal Castleman's disease with clear cell renal cell carcinoma. BMJ Case Rep 2019; 12:12/9/e230919. [PMID: 31527211 DOI: 10.1136/bcr-2019-230919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Castleman's disease is a rare non-clonal lymphoproliferative disorder and known to be associated with a number of disorders such as polyneuropathy, organomegaly, endocrinopathy, monoclonal protein and skin changes syndrome, Kaposi sarcoma, paraneoplastic pemphigus and plasma cell dyscrasias. The association of Castleman's disease with epithelial malignancy is not clear and limited to few case reports. We describe a case of synchronous Castleman's disease with renal cell carcinoma in a 53-year-old woman. She presented with right abdominal lump with feeling of heaviness. She also presented with vague discomfort in left hypochondrium for 15 years. The CT imaging of abdomen revealed two masses-one in right kidney and another in left anterior pararenal space of retroperitoneum. The patient underwent right radical nephrectomy with excision of left retroperitoneal mass. Histological examination revealed clear cell renal cell carcinoma and Castleman's disease, respectively. Role of interleukin-6 has been postulated as an important factor in association of Castleman's disease and epithelial malignancy.
Collapse
|
49
|
Aryappalli P, Shabbiri K, Masad RJ, Al-Marri RH, Haneefa SM, Mohamed YA, Arafat K, Attoub S, Cabral-Marques O, Ramadi KB, Fernandez-Cabezudo MJ, Al-Ramadi BK. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int J Mol Sci 2019; 20:E4340. [PMID: 31491838 PMCID: PMC6769459 DOI: 10.3390/ijms20184340] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 μM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 μM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khadija Shabbiri
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J Masad
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roadha H Al-Marri
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Khalil B Ramadi
- Harvard-MIT Health Sciences and Technology Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Basel K Al-Ramadi
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
50
|
Litman-Zawadzka A, Łukaszewicz-Zając M, Mroczko B. Novel potential biomarkers for pancreatic cancer - A systematic review. Adv Med Sci 2019; 64:252-257. [PMID: 30844662 DOI: 10.1016/j.advms.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is estimated that in developed countries the incidence rate of pancreatic cancer (PC) will continue to rise and by 2020 will be the second most fatal cancer. The mortality of PC patients closely parallels the incidence rate, as this malignancy remains asymptomatic until it reaches an advanced stage of disease. Thus, novel biochemical markers that improve the management of PC patients are necessary. The aim of the work that follows is to investigate whether selected inflammatory mediators might be used in the diagnosis of PC, with the aim of improving the prognosis for PC patients. METHODS We performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. RESULTS It has been proved that certain inflammatory mediators might be involved in tumor progression, such as growth, proliferation, migration and angiogenesis of tumor cells. In the present review, we summarized and referred to a number of original papers concerning the clinical significance of selected cytokines and specific inflammatory proteins such as C-reactive protein, as well as of various matrix metalloproteinases and their tissue inhibitors, as potential biomarkers for PC in comparison to well-established tumor markers for this malignancy. CONCLUSION Presented proteins might be potential biomarkers in the diagnosis and progression of PC.
Collapse
Affiliation(s)
- Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland; Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|