1
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Hu K, Ma C, Ma R, Zheng Q, Wang Y, Zhang N, Sun Z. Roles of Krüppel-like factor 6 splice variant 1 in the development, diagnosis, and possible treatment strategies for non-small cell lung cancer. Am J Cancer Res 2022; 12:4468-4482. [PMID: 36381325 PMCID: PMC9641401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is a nuclear transcriptional regulator found in mammalian tissue that has been identified as a tumor suppressor gene in several malignancies. As a result of loss of heterozygosity, DNA methylation, and alternative splicing, it is frequently inactivated in various malignancies. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), Krüppel-like factor 6 splice variant 2, and Krüppel-like factor 6 splice variant 3 alternatively spliced isoforms that emerge from a single nucleotide polymorphism in the KLF6 gene. KLF6-SV1 is generally upregulated in multiple cancers, and its biological function is well understood. Overexpression of KLF6-SV1 inhibits the KLF6 gene function while promoting tumor progression, which is associated with a poor prognosis in patients with various malignancies. We reviewed the progress of KLF6-SV1 research in NSCLC over the last several years to understand the molecular mechanisms of tumorigenesis, tumor development, and therapy resistance. Finally, this review emphasizes the therapeutic potential of small interfering RNA targeted silencing of KLF6-SV1 as a novel strategy for managing chemotherapy resistance in NSCLC patients.
Collapse
Affiliation(s)
- Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Ruijie Ma
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Qiming Zheng
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Yepeng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Nan Zhang
- Department of Breast Disease Center, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| |
Collapse
|
3
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
4
|
Polvani S, Pepe S, Tempesti S, Tarocchi M, Marroncini G, Bencini L, Ceni E, Mello T, Picariello L, Simeone I, Grappone C, Dragoni G, Antonuzzo L, Giommoni E, Milani S, Galli A. Isoforms of the orphan nuclear receptor COUP‑TFII differentially modulate pancreatic cancer progression. Int J Oncol 2022; 60:55. [PMID: 35348189 PMCID: PMC8997336 DOI: 10.3892/ijo.2022.5345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
The expression of the nuclear receptor transcription factor (TF) COUP‑TFII is broadly associated with cell differentiation and cancer development, including of pancreatic ductal adenocarcinoma (PDAC), a devastating disease with one of the poorest prognoses among cancers worldwide. Recent studies have started to investigate the pathological and physiological roles of a novel COUP‑TFII isoform (COUP‑TFII_V2) that lacks the DNA‑binding domain. As the role of the canonical COUP‑TFII in PDAC was previously demonstrated, the present study evaluated whether COUP‑TFII_V2 may have a functional role in PDAC. It was demonstrated that COUP‑TFII_V2 naturally occurs in PDAC cells and in primary samples, where its expression is consistent with shorter overall survival and peripheral invasion. Of note, COUP‑TFII_V2, exhibiting nuclear and cytosolic expression, is linked to epithelial to mesenchymal transition (EMT) and cancer progression, as confirmed by nude mouse experiments. The present results demonstrated that COUP‑TFII_V2 distinctively regulates the EMT of PDAC and, similarly to its sibling, it is associated with tumor aggressiveness. The two isoforms have both overlapping and exclusive functions that cooperate with cancer growth and dissemination. By studying how PDAC cells switch from one isoform to the other, novel insight into cancer biology was gained, indicating that this receptor may serve as a novel possible target for PDAC management.
Collapse
Affiliation(s)
- Simone Polvani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Sara Pepe
- Core Research Laboratory, Institute for Cancer Research and Prevention, I-50139 Florence, Italy
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Sara Tempesti
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Mirko Tarocchi
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Giada Marroncini
- Endocrinology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50139 Florence, Italy
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, I-50139 Florence, Italy
| | - Elisabetta Ceni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Tommaso Mello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Lucia Picariello
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Irene Simeone
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Cecilia Grappone
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, I-50139 Florence, Italy
| | - Elisa Giommoni
- Medical Oncology, Azienda Ospedaliero Universitaria Careggi, I-50139 Florence, Italy
| | - Stefano Milani
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, I-50134 Florence, Italy
| |
Collapse
|
5
|
Yao J, Tang YC, Yi B, Yang J, Chai Y, Yin N, Zhang ZX, Wei YJ, Li DC, Zhou J. Signature of gene aberrant alternative splicing events in pancreatic adenocarcinoma prognosis. J Cancer 2021; 12:3164-3179. [PMID: 33976726 PMCID: PMC8100795 DOI: 10.7150/jca.48661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS), as an effective and universal mechanism of transcriptional regulation, is involved in the development and progression of cancer. Therefore, systematic analysis of alternative splicing in pancreatic adenocarcinoma (PAAD) is warranted. The corresponding clinical information of the RNA-Seq data and PAAD cohort was downloaded from the TCGA data portal. Then, a java application, SpliceSeq, was used to evaluate the RNA splicing pattern and calculate the splicing percentage index (PSI). Differentially expressed AS events (DEAS) were identified based on PSI values between PAAD cancer samples and normal samples of adjacent tissues. Kaplan-Meier and Cox regression analyses were used to assess the association between DEAS and patient clinical characteristics. Unsupervised cluster analysis used to reveal four clusters with different survival patterns. At the same time, GEO and TCGA combined with GTEx to verify the differential expression of AS gene and splicing factor. After rigorous filtering, a total of 45,313 AS events were identified, 1,546 of which were differentially expressed AS events. Nineteen DEAS were found to be associated with OS with a five-year overall survival rate of 0.946. And the subtype clusters results indicate that there are differences in the nature of individual AS that affect clinical outcomes. Results also identified 15 splicing factors associated with the prognosis of PAAD. And the splicing factors ESRP1 and RBM5 played an important role in the PAAD-associated AS events. The PAAD-associated AS events, splicing networks, and clusters identified in this study are valuable for deciphering the underlying mechanisms of AS in PAAD and may facilitate the establishment of therapeutic goals for further validation.
Collapse
Affiliation(s)
- Jun Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yu-Chen Tang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Yi
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Yang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yun Chai
- Department of Plastic Surgery, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215006, China
| | - Ni Yin
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yi-Jun Wei
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Chun Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
6
|
Hu K, Zheng QK, Ma RJ, Ma C, Sun ZG, Zhang N. Krüppel-Like Factor 6 Splice Variant 1: An Oncogenic Transcription Factor Involved in the Progression of Multiple Malignant Tumors. Front Cell Dev Biol 2021; 9:661731. [PMID: 33816511 PMCID: PMC8017371 DOI: 10.3389/fcell.2021.661731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is one of the most studied members of the specificity protein/Krüppel-like factor (SP/KLF) transcription factor family. It has a typical zinc finger structure and plays a pivotal role in regulating the biological processes of cells. Recently, it has been considered to play a role in combatting cancer. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), being one of the alternative KLF6 splicing isoforms, participates in tumor occurrence and development and has the potential to become a new target for molecular targeted therapy, although its action mechanism remains to be determined. The purpose of this article is to provide a comprehensive and systematic review of the important role of KLF6-SV1 in human malignant tumors to provide novel insights for oncotherapy.
Collapse
Affiliation(s)
- Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Bessa C, Matos P, Jordan P, Gonçalves V. Alternative Splicing: Expanding the Landscape of Cancer Biomarkers and Therapeutics. Int J Mol Sci 2020; 21:ijms21239032. [PMID: 33261131 PMCID: PMC7729450 DOI: 10.3390/ijms21239032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a critical post-transcriptional regulatory mechanism used by more than 95% of transcribed human genes and responsible for structural transcript variation and proteome diversity. In the past decade, genome-wide transcriptome sequencing has revealed that AS is tightly regulated in a tissue- and developmental stage-specific manner, and also frequently dysregulated in multiple human cancer types. It is currently recognized that splicing defects, including genetic alterations in the spliced gene, altered expression of both core components or regulators of the precursor messenger RNA (pre-mRNA) splicing machinery, or both, are major drivers of tumorigenesis. Hence, in this review we provide an overview of our current understanding of splicing alterations in cancer, and emphasize the need to further explore the cancer-specific splicing programs in order to obtain new insights in oncology. Furthermore, we also discuss the recent advances in the identification of dysregulated splicing signatures on a genome-wide scale and their potential use as biomarkers. Finally, we highlight the therapeutic opportunities arising from dysregulated splicing and summarize the current approaches to therapeutically target AS in cancer.
Collapse
Affiliation(s)
- Cláudia Bessa
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| | - Vânia Gonçalves
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| |
Collapse
|
8
|
Zhang N, Yan QQ, Lu L, Shao JB, Sun ZG. The KLF6 splice variant KLF6-SV1 promotes proliferation and invasion of non-small cell lung cancer by up-regultating PI3K-AKT signaling pathway. J Cancer 2019; 10:5324-5331. [PMID: 31632477 PMCID: PMC6775693 DOI: 10.7150/jca.34212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is an aggressive type of lung malignancy. Most of the patients have poor prognosis. Increasing evidence has revealed an association between KLF6-SV1, known as an oncogenic splice variant of KLF6, and metastatic potential or poor prognosis in many cancers. We previously demonstrated the increased KLF6-SV1 expression in NSCLC samples. There was a significant association between increased expression of KLF6-SV1 with the pN and pTNM stages and poor survival in NSCLC patients. In the present study, we aimed to further investigate the functional role of KLF6-SV1 in the progression of NSCLC. SK-MES-1 cells were infected with Lenti-virus containing KLF6-SV1 to up-regulate its expression, and the small interfering RNA (siRNA) was designed to knock down KLF6-SV1 transcript level in A549 cells. CCK8, colony formation, wound-healing, and transwell assays were performed to examine cell proliferation, migration, and invasion respectively. Western blot assay was used to detect the expression or phosphorylation of related proteins. We found that in vitro silencing of KLF6-SV1 by siRNA inhibited A549 cell proliferation, migration, and invasion through changes in E-cadherin, N-cadherin, Vimentin, Snail1 and Snail2 expression. Furthermore, KLF6-SV1 isoform knockdown triggered caspase-dependent apoptosis of A549 cells through downregulation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt signaling pathway and apoptosis-related protein expression. Overexpression of KLF6-SV1 transcript induced significant increase in proliferation, migration, invasion and changes in expression of related proteins. Our study support KLF6-SV1 might be an important player in modulating the growth, migration, invasion, and survival of NSCLC cells, and that silencing KLF6-SV1 siRNA has the potential to be a powerful gene therapy strategy for NSCLC.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250012, People's Republic of China
| | - Qian-Qian Yan
- Shandong University; Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250012, People's Republic of China
| | - Lu Lu
- Taishan Medical University; Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan 250013, Shandong Province, China
| | - Jing-Bo Shao
- Weifang Medical University; Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250012, People's Republic of China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan 250013, Shandong Province, China
| |
Collapse
|
9
|
Wang L, Shen F, Stroehlein JR, Wei D. Context-dependent functions of KLF4 in cancers: Could alternative splicing isoforms be the key? Cancer Lett 2018; 438:10-16. [PMID: 30217565 DOI: 10.1016/j.canlet.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an important transcription factor that is expressed in a variety of tissues and regulates many critical physiologic and cellular processes, including cell proliferation, differentiation, stem cell reprogramming, maintenance of genomic stability, and normal tissue homeostasis. KLF4 has both tumor suppressive and oncogenic functions in gastrointestinal and other cancers. These functions are thought to be context dependent, but how KLF4 exerts these differential functions and the molecular mechanisms behind them remain poorly understood. Recent studies have shown that the KLF4 gene undergoes alternative splicing, and the protein products of certain transcripts antagonize wild-type KLF4 function, suggesting an additional layer of regulation of KLF4 function. Therefore, detailed study of KLF4 alternative splicing may not only provide new insights into the complexity of KLF4 functions but also lead to rational targeting of KLF4 for cancer prevention and therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Shen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Stroehlein
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
11
|
Ferralli J, Chiquet-Ehrismann R, Degen M. KLF4α stimulates breast cancer cell proliferation by acting as a KLF4 antagonist. Oncotarget 2018; 7:45608-45621. [PMID: 27323810 PMCID: PMC5216746 DOI: 10.18632/oncotarget.10058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a transcription factor involved in both tumor suppression and oncogenesis in various human tumors, is subject to alternative splicing that produces KLF4α. KLF4α is primarily expressed in the cytoplasm because it lacks exon 3 of KLF4, which contains the nuclear localization signal. The role of KLF4 in breast cancer remains unclear and nothing is known yet about the expression and function of the isoform KLF4α. Here, we show that KLF4α is expressed in normal and tumoral tissue of the breast and provide evidence that the KLF4α/KLF4(full-length) (FL) ratio is increased in tumors compared to corresponding normal tissue. Forced increase of the KLF4α/KLF4(FL) ratio in the metastatic breast cancer cell line MDA-MB-231 decreases the levels of E-Cadherin, p21Cip1, and p27Kip1, three known KLF4(FL) target genes, and stimulates cell proliferation. We suggest that cytoplasmic KLF4α binds to KLF4(FL) and retains it in the cytoplasm thereby antagonizing the gene regulatory activities of KLF4(FL) in the nucleus. Our results establish KLF4α as a KLF4 isoform that opposes the function of KLF4(FL) and as an important factor in the complex and unresolved role of KLF4(FL) in breast carcinogenesis.
Collapse
Affiliation(s)
- Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Martin Degen
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Wang J, Dumartin L, Mafficini A, Ulug P, Sangaralingam A, Alamiry NA, Radon TP, Salvia R, Lawlor RT, Lemoine NR, Scarpa A, Chelala C, Crnogorac-Jurcevic T. Splice variants as novel targets in pancreatic ductal adenocarcinoma. Sci Rep 2017; 7:2980. [PMID: 28592875 PMCID: PMC5462735 DOI: 10.1038/s41598-017-03354-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Despite a wealth of genomic information, a comprehensive alternative splicing (AS) analysis of pancreatic ductal adenocarcinoma (PDAC) has not been performed yet. In the present study, we assessed whole exome-based transcriptome and AS profiles of 43 pancreas tissues using Affymetrix exon array. The AS analysis of PDAC indicated on average two AS probe-sets (ranging from 1-28) in 1,354 significantly identified protein-coding genes, with skipped exon and alternative first exon being the most frequently utilised. In addition to overrepresented extracellular matrix (ECM)-receptor interaction and focal adhesion that were also seen in transcriptome differential expression (DE) analysis, Fc gamma receptor-mediated phagocytosis and axon guidance AS genes were also highly represented. Of note, the highest numbers of AS probe-sets were found in collagen genes, which encode the characteristically abundant stroma seen in PDAC. We also describe a set of 37 'hypersensitive' genes which were frequently targeted by somatic mutations, copy number alterations, DE and AS, indicating their propensity for multidimensional regulation. We provide the most comprehensive overview of the AS landscape in PDAC with underlying changes in the spliceosomal machinery. We also collate a set of AS and DE genes encoding cell surface proteins, which present promising diagnostic and therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK.
| | - Laurent Dumartin
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Andrea Mafficini
- ARC-Net Research Centre and Department of Diagnostics and Publich Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Pinar Ulug
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Ajanthah Sangaralingam
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Namaa Audi Alamiry
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Tomasz P Radon
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Roberto Salvia
- ARC-Net Research Centre and Department of Diagnostics and Publich Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Centre and Department of Diagnostics and Publich Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Publich Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Tatjana Crnogorac-Jurcevic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK.
| |
Collapse
|
13
|
Kirby MK, Ramaker RC, Gertz J, Davis NS, Johnston BE, Oliver PG, Sexton KC, Greeno EW, Christein JD, Heslin MJ, Posey JA, Grizzle WE, Vickers SM, Buchsbaum DJ, Cooper SJ, Myers RM. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Mol Oncol 2016; 10:1169-82. [PMID: 27282075 PMCID: PMC5423196 DOI: 10.1016/j.molonc.2016.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma patients have low survival rates due to late-stage diagnosis and high rates of cancer recurrence even after surgical resection. It is important to understand the molecular characteristics associated with survival differences in pancreatic adenocarcinoma tumors that may inform patient care. RESULTS RNA sequencing was performed for 51 patient tumor tissues extracted from patients undergoing surgical resection, and expression was associated with overall survival time from diagnosis. Our analysis uncovered 323 transcripts whose expression correlates with survival time in our pancreatic patient cohort. This genomic signature was validated in an independent RNA-seq dataset of 68 additional patients from the International Cancer Genome Consortium. We demonstrate that this transcriptional profile is largely independent of markers of cellular division and present a 19-transcript predictive model built from a subset of the 323 transcripts that can distinguish patients with differing survival times across both the training and validation patient cohorts. We present evidence that a subset of the survival-associated transcripts is associated with resistance to gemcitabine treatment in vitro, and reveal that reduced expression of one of the survival-associated transcripts, Angiopoietin-like 4, impairs growth of a gemcitabine-resistant pancreatic cancer cell line. CONCLUSIONS Gene expression patterns in pancreatic adenocarcinoma tumors can distinguish patients with differing survival outcomes after undergoing surgical resection, and the survival difference could be associated with the intrinsic gemcitabine sensitivity of primary patient tumors. Thus, these transcriptional differences may impact patient care by distinguishing patients who would benefit from a non-gemcitabine based therapy.
Collapse
Affiliation(s)
- Marie K Kirby
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA; University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Gertz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Patsy G Oliver
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | - James A Posey
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
14
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
15
|
Jackson DP, Joshi AD, Elferink CJ. Ah Receptor Pathway Intricacies; Signaling Through Diverse Protein Partners and DNA-Motifs. Toxicol Res (Camb) 2015; 4:1143-1158. [PMID: 26783425 PMCID: PMC4714567 DOI: 10.1039/c4tx00236a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Ah receptor is a transcription factor that modulates gene expression via interactions with multiple protein partners; these are reviewed, including the novel NC-XRE pathway involving KLF6.
Collapse
|
16
|
Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2015; 35:2413-27. [PMID: 26300000 DOI: 10.1038/onc.2015.318] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.
Collapse
Affiliation(s)
- A Sveen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - R A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Keung EZ, Akdemir KC, Al Sannaa GA, Garnett J, Lev D, Torres KE, Lazar AJ, Rai K, Chin L. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. J Clin Invest 2015; 125:2965-78. [PMID: 26193637 DOI: 10.1172/jci77976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 06/04/2015] [Indexed: 12/29/2022] Open
Abstract
Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.
Collapse
|
18
|
Abstract
PURPOSE Krüppel-like factor 15 (KLF15) is a transcription factor that is involved in various biological processes, including cellular proliferation, differentiation and death. In addition, KLF15 has recently been implicated in the development of several human malignancies, including breast cancer. In vitro breast cancer studies have pointed at a putative role in the regulation of cell proliferation. As yet, however, KLF15 expression analyses in primary human breast cancers have not been reported. Here, we set out to investigate the clinical and biological significance of KLF15 expression in human breast cancers. METHODS KLF15 expression was evaluated by immunohistochemistry in 54 primary invasive ductal breast carcinomas, and its status was correlated with various clinicopathological parameters. We also assessed KLF15 expression in vitro in 4 breast cancer-derived cell lines using Western blotting, and examined the effects of exogenous KLF15 expression on cell cycle progression using flow cytometry. Concomitant (changes in) p21, p27 and TOPO2A expression levels were examined using real-time RT-PCR and immunocytochemistry, respectively. RESULTS In ~90% of the primary breast carcinoma tissues tested, KLF15 was found to be expressed and localized in either the cytoplasm, the nucleus or both. Predominant nuclear immunoreactivity was found to be associated with clinicopathological factors predicting a better clinical outcome (i.e., ER positive, HER2 negative, low grade, low Ki-67 expression). The breast cancer-derived cell lines tested showed a low KLF15 expression with a predominant cytoplasmic localization. Subsequent exogenous KLF15 over-expression resulted in a predominant nuclear localization and a concomitant decreased cellular proliferation and an arrest at the G0/G1 phase of the cell cycle. In addition, we found that nuclear KLF15 expression results in up-regulation of p21, a pivotal suppressor of the G1 to S phase transition of the cell cycle. CONCLUSIONS Our results indicate that nuclear KLF15 expression suppresses breast cancer cell proliferation at least partially through p21 up-regulation and subsequent cell cycle arrest. This is a first study addressing the role of KLF15 in breast cancer development.
Collapse
|
19
|
Zhang Y, Hao J, Zheng Y, Jing D, Shen Y, Wang J, Zhao Z. Role of Krüppel-like factors in cancer stem cells. J Physiol Biochem 2015; 71:155-64. [PMID: 25616500 DOI: 10.1007/s13105-015-0381-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 02/05/2023]
Abstract
Cancer stem cells (CSCs), or cancer cells with stem cell properties, are a rare population of tumor bulk and are recognized to be responsible for cancer recurrence, drug resistance, and metastasis. However, the molecular mechanisms of how to regulate the differentiation and self-renewing of CSCs are poorly understood. Krüppel-like factors (KLFs) are essential DNA-binding transcriptional regulators with diverse functions in various cellular processes, including differentiation, proliferation, inflammation, migration, and pluripotency. Recent progress has highlighted the significance of KLFs in tumor progression and CSCs. The regulatory functions of KLFs in the development of cancer and CSCs have become a burgeoning area of intense research. In this review, we summarize the current understanding and progress of the transcriptional regulation of KLFs in CSCs and discuss the functional implications of targeting CSCs by KLFs for cancer therapeutics.
Collapse
Affiliation(s)
- Yueling Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Hatami R, Sieuwerts AM, Izadmehr S, Yao Z, Qiao RF, Papa L, Look MP, Smid M, Ohlssen J, Levine AC, Germain D, Burstein D, Kirschenbaum A, DiFeo A, Foekens JA, Narla G. KLF6-SV1 drives breast cancer metastasis and is associated with poor survival. Sci Transl Med 2013; 5:169ra12. [PMID: 23345610 DOI: 10.1126/scitranslmed.3004688] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis is the major cause of cancer mortality. A more thorough understanding of the mechanisms driving this complex multistep process will aid in the identification and characterization of therapeutically targetable genetic drivers of disease progression. We demonstrate that KLF6-SV1, an oncogenic splice variant of the KLF6 tumor suppressor gene, is associated with increased metastatic potential and poor survival in a cohort of 671 lymph node-negative breast cancer patients. KLF6-SV1 overexpression in mammary epithelial cell lines resulted in an epithelial-to-mesenchymal-like transition and drove aggressive multiorgan metastatic disease in multiple in vivo models. Additionally, KLF6-SV1 loss-of-function studies demonstrated reversion to an epithelial and less invasive phenotype. Combined, these findings implicate KLF6-SV1 as a key driver of breast cancer metastasis that distinguishes between indolent and lethal early-stage disease and provides a potential therapeutic target for invasive breast cancer.
Collapse
Affiliation(s)
- Raheleh Hatami
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effects of Kruppel-like factor 6 on osteosarcoma cell biological behavior. Tumour Biol 2013; 34:1097-105. [DOI: 10.1007/s13277-013-0651-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/03/2013] [Indexed: 01/18/2023] Open
|
22
|
Chiam K, Ryan NK, Ricciardelli C, Day TK, Buchanan G, Ochnik AM, Murti K, Selth LA, Butler LM, Tilley WD, Bianco-Miotto T. Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers. Prostate 2013; 73:182-93. [PMID: 22782870 DOI: 10.1002/pros.22554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Krüppel-like factor (KLF) 6 is a candidate tumor suppressor gene in prostate cancer, but the mechanisms contributing to its loss of expression are poorly understood. We characterized KLF6 expression and DNA methylation status during prostate tumorigenesis in humans and mice. METHODS KLF6 expression was assessed in matched human non-malignant (NM) and tumor prostate tissues (n = 22) by quantitative real-time PCR (qPCR) and in three independent human prostate cancer cohorts bioinformatically. QPCR for KLF6 expression and methylation-sensitive PCR (MSP) were performed in human prostate LNCaP cancer cells after 5-aza-2'-deoxycytidine treatment. Klf6 protein levels and DNA promoter methylation were assessed in TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors by immunohistochemistry and MSP, respectively. RESULTS KLF6 splice variants expression was increased (P = 0.0015) in human prostate tumors compared to NM tissues. Overall, KLF6 was decreased in metastatic compared to primary prostate cancers and reduced expression in primary tumors was associated with a shorter time to relapse (P = 0.0028). Treatment with the demethylating agent 5-aza-2'-deoxycytidine resulted in up-regulation of KLF6 expression (two-fold; P = 0.002) and a decrease in DNA methylation of the KLF6 promoter in LNCaP cells. Klf6 protein levels significantly decreased with progression in the TRAMP model of prostate cancer (P < 0.05), but there was no difference in Klf6 promoter methylation. CONCLUSION KLF6 expression was decreased in both clinical prostate cancer and the TRAMP model with disease progression, but this could not be explained by DNA methylation of the KLF6 promoter.
Collapse
Affiliation(s)
- Karen Chiam
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research Centre, Discipline of Medicine, The University of Adelaide and Hanson Institute, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vetter D, Cohen-Naftaly M, Villaneuva A, Lee YA, Kocabayoglu P, Hannivoort R, Narla G, Llovet JM, Thung SN, Friedman SL. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing. Hepatology 2012; 56:1361-70. [PMID: 22535637 PMCID: PMC3412196 DOI: 10.1002/hep.25810] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022]
Abstract
UNLABELLED KLF6-SV1 (SV1), the major splice variant of KLF6, antagonizes the KLF6 tumor suppressor by an unknown mechanism. Decreased KLF6 expression in human hepatocellular carcinoma (HCC) correlates with increased mortality, but the contribution of increased SV1 is unknown. We sought to define the impact of SV1 on human outcomes and experimental murine hepatocarcinogenesis and to elucidate its mechanism of action. In hepatitis C virus (HCV)-related HCC, an increased ratio of SV1/KLF6 within the tumor was associated with features of more advanced disease. Six months after a single injection of diethylnitrosamine (DEN), SV1 hepatocyte transgenic mice developed more histologically advanced tumors, whereas Klf6-depleted mice developed bigger tumors compared to the Klf6fl(+/+) control mice. Nine months after DEN, SV1 transgenic mice with Klf6 depletion had the greatest tumor burden. Primary mouse hepatocytes from both the SV1 transgenic animals and those with hepatocyte-specific Klf6 depletion displayed increased DNA synthesis, with an additive effect in hepatocytes harboring both SV1 overexpression and Klf6 depletion. Parallel results were obtained by viral SV1 transduction and depletion of Klf6 through adenovirus-Cre infection of primary Klf6fl(+/+) hepatocytes. Increased DNA synthesis was due to both enhanced cell proliferation and increased ploidy. Coimmunoprecipitation studies in 293T cells uncovered a direct interaction of transfected SV1 with KLF6. Accelerated KLF6 degradation in the presence of SV1 was abrogated by the proteasome inhibitor MG132. CONCLUSION An increased SV1/KLF6 ratio correlates with more aggressive HCC. In mice, an increased SV1/KLF6 ratio, generated either by increasing SV1, decreasing KLF6, or both, accelerates hepatic carcinogenesis. Moreover, SV1 binds directly to KLF6 and accelerates its degradation. These findings represent a novel mechanism underlying the antagonism of tumor suppressor gene function by a splice variant of the same gene.
Collapse
Affiliation(s)
- Diana Vetter
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Abdominal Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Michal Cohen-Naftaly
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Augusto Villaneuva
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clinic, Barcelona, Spain
| | - Youngmin A. Lee
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Peri Kocabayoglu
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Rebekka Hannivoort
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Goutham Narla
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Departments of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY
| | - Josep Maria Llovet
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clinic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Mount Sinai School of Medicine, New York, NY
| | - Swan N. Thung
- Department of Pathology, Mount Sinai School of Medicine, New York, NY
| | - Scott L. Friedman
- Department of Medicine/Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
24
|
A small interfering RNA targeting the KLF6 splice variant, KLF6-SV1, as gene therapy for gastric cancer. Gastric Cancer 2011; 14:339-52. [PMID: 21538018 DOI: 10.1007/s10120-011-0049-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidence suggests that the tumor suppressor gene Kruppel-like factor 6 (KLF6) and its dominant-negative splice form KLF6-SV1 play important roles in both the development and progression of cancer. However, the role of KLF6-SV1 in gastric cancer remains largely unknown. METHODS KLF6-SV1 expression was detected in various human gastric cancer cell lines and gastric cancer patient samples by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Small interfering RNA (siRNA) was used to inhibit KLF6-SV1 expression in BGC-823 and SGC-7901 cell lines. The effects of downregulation of KLF6-SV1 by siRNA on cell proliferation, migration, invasion, and tumor growth were examined in vitro and in vivo. RESULTS Overexpression of KLF6-SV1 was detected in tumor samples from gastric cancer patients, and in various differentiated gastric cancer cell lines. In vitro downregulation of KLF6-SV1 by siRNA inhibited BGC-823 and SGC-7901 cell proliferation, anchorage-independent growth, migration, and invasion through the altered expression of Ki-67, vascular endothelial growth factor (VEGF), E-cadherin, and matrix metalloproteinase (MMP)-9. Also, KLF6-SV1 silencing promoted caspase-dependent apoptosis of BGC-823 and SGC-7901 cells via the regulation of phosphatidylinositol 3-OH kinase (PI3K)/Akt activity and Bcl-2-related protein expression. In vivo animal studies showed that KLF6-SV1 siRNA significantly inhibited the tumorigenicity of BGC-823 and SGC-7901 cells. Gene therapy with polyethylenimine/si-SV1 intratumoral injection also resulted in the suppression of tumor growth and prolonged animal survival in an established xenograft tumor model. CONCLUSION These data demonstrate that KLF6-SV1 is an important regulator of the growth, migration, invasion, and survival of gastric cancer cells, and downregulation of KLF6-SV1 by siRNA may offer a new potential gene therapy approach for gastric cancer.
Collapse
|
25
|
Bureau C, Hanoun N, Torrisani J, Vinel JP, Buscail L, Cordelier P. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Curr Genomics 2011; 10:353-60. [PMID: 20119532 PMCID: PMC2729999 DOI: 10.2174/138920209788921010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/22/2022] Open
Abstract
Krüppel-like factor (KLF) family members share a three C2H2 zinc finger DNA binding domain, and are involved in cell proliferation and differentiation control in normal as in pathological situations. Studies over the past several years support a significant role for this family of transcription factors in carcinogenesis. KLFs can both activate and repress genes that participate in cell-cycle regulation. Among them, many up-regulated genes are inhibitors of proliferation, whereas genes that promote cell proliferation are repressed. However, several studies do present KLFs as positive regulator of cell proliferation. KLFs can be deregulated in multiple cancers either by loss of heterozygosity (LOH), somatic mutation or transcriptional silencing by promoter hypermethylation. Accordingly, KLF expression was shown to mediate growth inhibition when ectopically expressed in multiple cancer-derived cell lines through the inhibition of a number of key oncogenic signaling pathways, and to revert the tumorogenic phenotype in vivo. Taken together, these observations suggest that KLFs act as tumor suppressor. However, in some occasion, KLFs could act as tumor promoters, depending on “cellular context”. Thus, this review will discuss the roles and the functions of KLF family members in carcinogenesis, with a special focus on cancers from epithelial origin.
Collapse
Affiliation(s)
- Christophe Bureau
- Institut National de la Santé et de la Recherche Médicale Unité 858-I2MR, Institut de Médecine Moléculaire de Rangueil, Département Cancers Epithéliaux, Angiogénèse et Signalisation, 31432 Toulouse Cedex 4 France
| | | | | | | | | | | |
Collapse
|
26
|
Chen H, Chen L, Zhang QF. The Krüppel-like factor 6 genotype is associated with gastric cancer in a Chinese population. J Int Med Res 2011; 38:1801-7. [PMID: 21309496 DOI: 10.1177/147323001003800527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Association of the IVS1 -27G/A polymorphism of Krüppel-like factor 6 (KLF6) with gastric cancer was examined in a Chinese population comprising 300 gastric cancer patients and 300 healthy controls. Single-nucleotide polymorphism analysis was performed by amplifying intron 1 of KLF6 and sequencing the products. The KLF6 genotype IVS1 -27AA was significantly less frequent in gastric cancer patients than in controls and significantly less frequent in patients with advanced (stage III/IV) gastric cancer than in those with early (stage I/II) cancer. Stratification by location, Lauren's classification and histological differentiation revealed no significant differences in genotype distribution. Thus, in this Chinese population the KLF6 IVS1 -27AA genotype was associated with a decreased risk of gastric cancer and with cancer stage. Further study is required to clarify the mechanisms involved and, potentially, to facilitate the design of effective clinical trials.
Collapse
Affiliation(s)
- H Chen
- Department of Urology, Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | |
Collapse
|
27
|
Tchirkov A, Sapin V, Marceau G, Chautard E, Narla G, Veronese L, Friedman S, Khalil T, Vago P, Kemeny JL, Verrelle P. Increased expression of the oncogenic KLF6-SV1 transcript in human glioblastoma. Clin Chem Lab Med 2010; 48:1167-70. [PMID: 20545576 DOI: 10.1515/cclm.2010.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gliomas constitute the vast majority of primary central nervous system tumors in adults. Glioblastoma multiforme (GBM) is the most aggressive form of these primary brain tumors. There is a need to define diagnostic and prognostic markers that may help to distinguish GBM from non-GBM tumors. The Krüppel-like factor 6 (KLF6) gene has recently emerged as a promising candidate. The goal of our study was to determine if there is a link between KLF6 splice variants expression and different grades of gliomas. METHODS Fifty-three primary gliomas tumor samples were analyzed using quantitative real-time PCR for the total KLF6, wild-type and alternatively spliced (SV1) KLF6 mRNA. RESULTS Compared to the non-GBM group, the GBM group had a 2.2-fold increase in the mean level of total KLF6 mRNA expression. GBM showed a 2.1-fold increase in the KLF6 splicing ratio. In addition, KLF6-SV1 mRNA expression levels were also 2.2-fold higher in the GBM group, suggesting that the increase in the KLF6 splicing ratio was due to increased expression of the KLF6-SV1 oncogenic splice variant. CONCLUSIONS Our study demonstrates that quantification of total and spliced forms of KLF6 may provide a new and useful supplementary molecular tool for grading glioma.
Collapse
Affiliation(s)
- Andrei Tchirkov
- University Clermont 1, EA 3846, School of Medicine, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Verma M. Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology. Cancers (Basel) 2010; 2:1830-7. [PMID: 24281203 PMCID: PMC3840448 DOI: 10.3390/cancers2041830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality in the United States. Biomarkers are needed to detect this cancer early during the disease development and for screening populations to identify those who are at risk. In cancer, “biomarker” refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. A number of potential biomarkers have been identified for pancreatic cancer. These markers can be assayed in non-invasively collected biofluids. These biomarkers need analytical and clinical validation so that they can be used for the purpose of screening and diagnosing pancreatic cancer and determining disease prognosis. In this article, the latest developments in pancreatic cancer biomarkers are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Suite 5100. Bethesda, MD 20892-7324, USA.
| |
Collapse
|
30
|
Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One 2010; 5. [PMID: 20844588 PMCID: PMC2936564 DOI: 10.1371/journal.pone.0012639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background The tumor suppressor KLF6 and its oncogenic cytoplasmic splice variant KLF6-SV1 represent a paradigm in cancer biology in that their antagonistic cancer functions are encoded within the same gene. As a consequence of splicing, KLF6-SV1 loses both the C-terminus C2H2 three zinc finger (ZF) domain, which characterizes all KLF proteins, as well as the adjacent 5′ basic region (5BR), a putative nuclear localization signal (NLS). It has been hypothesized that this NLS is a functional domain critical to direct the distinct subcellular localization of the tumor suppressor and its splice variant. Methodology/Principal Findings In this study, we demonstrate using EGFP fusion constructs that KLF6/KLF6-SV1 nucleo-cytoplasmic transport is not regulated by the 5′ basic region but activated by a novel NLS encoded within the ZF domain, and a nuclear export signal (NES) located in the first 16 amino acids of the shared N-terminus sequence. We demonstrate KLF6 nuclear export to be Crm1-dependent. The dysregulation of nucleo-cytoplasmic transport when disrupting the KLF6 NLS using site-directed mutagenesis showed that its integrity is necessary for appropriate protein stability. Moreover, these mutations impaired transcriptional induction of two KLF6 well-characterized target genes, E-cadherin and p21, as shown by RT-PCR and luciferase promoter assays. The addition of the ZF domain to KLF6-SV1 results in its nuclear localization and a markedly decreased half-life similar to wild type KLF6. Conclusions/Significance We describe the domains that control KLF6 nucleo-cytoplasmic shuttling and how these domains play a role in KLF6 protein half-life and tumor suppressor function. The results begin to mechanistically explain, at least in part, the opposing functions of KLF6 and KLF6-SV1 in cancer.
Collapse
|
31
|
Stratford JK, Bentrem DJ, Anderson JM, Fan C, Volmar KA, Marron JS, Routh ED, Caskey LS, Samuel JC, Der CJ, Thorne LB, Calvo BF, Kim HJ, Talamonti MS, Iacobuzio-Donahue CA, Hollingsworth MA, Perou CM, Yeh JJ. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med 2010; 7:e1000307. [PMID: 20644708 PMCID: PMC2903589 DOI: 10.1371/journal.pmed.1000307] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/03/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease. For patients with localized PDAC, surgery is the best option, but with a median survival of less than 2 years and a difficult and prolonged postoperative course for most, there is an urgent need to better identify patients who have the most aggressive disease. METHODS AND FINDINGS We analyzed the gene expression profiles of primary tumors from patients with localized compared to metastatic disease and identified a six-gene signature associated with metastatic disease. We evaluated the prognostic potential of this signature in a training set of 34 patients with localized and resected PDAC and selected a cut-point associated with outcome using X-tile. We then applied this cut-point to an independent test set of 67 patients with localized and resected PDAC and found that our signature was independently predictive of survival and superior to established clinical prognostic factors such as grade, tumor size, and nodal status, with a hazard ratio of 4.1 (95% confidence interval [CI] 1.7-10.0). Patients defined to be high-risk patients by the six-gene signature had a 1-year survival rate of 55% compared to 91% in the low-risk group. CONCLUSIONS Our six-gene signature may be used to better stage PDAC patients and assist in the difficult treatment decisions of surgery and to select patients whose tumor biology may benefit most from neoadjuvant therapy. The use of this six-gene signature should be investigated in prospective patient cohorts, and if confirmed, in future PDAC clinical trials, its potential as a biomarker should be investigated. Genes in this signature, or the pathways that they fall into, may represent new therapeutic targets. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Jeran K. Stratford
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David J. Bentrem
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Judy M. Anderson
- The Eppley Cancer Institute, University of Nebraska, Omaha, Nebraska, United States of America
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith A. Volmar
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. S. Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth D. Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Laura S. Caskey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan C. Samuel
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Leigh B. Thorne
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Benjamin F. Calvo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Jin Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark S. Talamonti
- Department of Surgery, NorthShore University HealthSystem, Baltimore, Maryland, United States of America
| | | | | | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Liu J, Du T, Yuan Y, He Y, Tan Z, Liu Z. KLF6 inhibits estrogen receptor-mediated cell growth in breast cancer via a c-Src-mediated pathway. Mol Cell Biochem 2009; 335:29-35. [PMID: 19707857 DOI: 10.1007/s11010-009-0237-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 08/13/2009] [Indexed: 11/25/2022]
Abstract
Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor(alpha) (ERalpha)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERalpha-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERalpha-negative cells. We conclude that KLF6 can modulate ERalpha-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | | | | | | | | | | |
Collapse
|
33
|
TGF-beta regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction. Biochem J 2009; 419:485-95. [PMID: 19076057 DOI: 10.1042/bj20081434] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
KLF6 (Krüppel-like factor 6) is a transcription factor and tumour suppressor with a growing range of biological activities and transcriptional targets. Among these, KLF6 suppresses growth through transactivation of TGF-beta1 (transforming growth factor-beta1). KLF6 can be alternatively spliced, generating lower-molecular-mass isoforms that antagonize the full-length WT (wild-type) protein and promote growth. A key target gene of full-length KLF6 is endoglin, which is induced in vascular injury. Endoglin, a homodimeric cell membrane glycoprotein and TGF-beta auxiliary receptor, has a pro-angiogenic role in endothelial cells and is also involved in malignant progression. The aim of the present work was to explore the effect of TGF-beta on KLF6 expression and splicing, and to define the contribution of TGF-beta on promoters regulated by co-operation between KLF6 and Sp1 (specificity protein 1). Using co-transfection, co-immunoprecipitation and fluorescence resonance energy transfer, our data demonstrate that KLF6 co-operates with Sp1 in transcriptionally regulating KLF6-responsive genes and that this co-operation is further enhanced by TGF-beta1 through at least two mechanisms. First, in specific cell types, TGF-beta1 may decrease KLF6 alternative splicing, resulting in a net increase in full-length, growth-suppressive KLF6 activity. Secondly, KLF6-Sp1 co-operation is further enhanced by the TGF-beta-Smad (similar to mothers against decapentaplegic) pathway via the likely formation of a tripartite KLF6-Sp1-Smad3 complex in which KLF6 interacts indirectly with Smad3 through Sp1, which may serve as a bridging molecule to co-ordinate this interaction. These findings unveil a finely tuned network of interactions between KLF6, Sp1 and TGF-beta to regulate target genes.
Collapse
|
34
|
Sangodkar J, Shi J, DiFeo A, Schwartz R, Bromberg R, Choudhri A, McClinch K, Hatami R, Scheer E, Kremer-Tal S, Martignetti JA, Hui A, Leung WK, Friedman SL, Narla G. Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer 2008; 45:666-76. [PMID: 19101139 DOI: 10.1016/j.ejca.2008.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 11/17/2022]
Abstract
Gastric cancer is the second most common cancer and a leading cause of cancer-related death worldwide. The Kruppel-like factor 6 (KLF6) tumour suppressor gene had been previously shown to be inactivated in a number of human cancers through loss of heterozygosity (LOH), somatic mutation, decreased expression and increased alternative splicing into a dominant negative oncogenic splice variant, KLF6-SV1. In the present study, 37 gastric cancer samples were analysed for the presence of loss of heterozygosity (LOH) of the KLF6 locus and somatic mutation. In total, 18 of 34 (53%) of the gastric cancer samples analysed demonstrated KLF6 locus specific loss. Four missense mutations, such as T179I, R198G, R71Q and S180L, were detected. Interestingly, two of these mutations R71Q and S180L have been identified independently by several groups in various malignancies including prostate, colorectal and gastric cancers. In addition, decreased wild-type KLF6 (wtKLF6) expression was associated with loss of the KLF6 locus and was present in 48% of primary gastric tumour samples analysed. Functional studies confirmed that wtKLF6 suppressed proliferation of gastric cancer cells via transcriptional regulation of the cyclin-dependent kinase inhibitor p21 and the oncogene c-myc. Functional characterisation of the common tumour-derived mutants demonstrated that the mutant proteins fail to suppress proliferation and function as dominant negative regulators of wtKLF6 function. Furthermore, stable overexpression of the R71Q and S180L tumour-derived mutants in the gastric cancer cell line, Hs746T, resulted in an increased tumourigenicity in vivo. Combined, these findings suggest an important role for the KLF6 tumour suppressor gene in gastric cancer development and progression and identify several highly cancer-relevant signalling pathways regulated by the KLF6 tumour suppressor gene.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 2008; 12:1-7. [PMID: 19097929 DOI: 10.1016/j.drup.2008.11.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 12/21/2022]
Abstract
The Krüppel-like zinc finger transcription factor (KLF6) gene encodes a family of proteins generated through alternative splicing involved in the regulation of cancer development and progression. Alternative splicing of the KLF6 gene results in the production of at least four alternatively spliced isoforms, two of which are extensively discussed in this review. The full length form of the KLF6 gene is a tumor suppressor gene that is frequently inactivated by loss of heterozygozity (LOH), somatic mutation, and/or decreased expression in human cancer. While the exact mechanisms underlying KLF6's tumor suppressor roles are not completely known, a number of highly relevant, overlapping pathways have been described: transactivation of p21 in a p53-independent manner, reduction of cyclin D1/cdk4 complexes via interaction with cyclin D1, inhibition of c-Jun proto-oncoprotein activities, decreased VEGF expression, and induction of apoptosis. Kruppel-like factor 6 splice variant 1 (KLF6-SV1) is an oncogenic splice variant of the KLF6 tumor suppressor gene that is specifically overexpressed in a number of human cancers. Increased KLF6-SV1 expression is associated with poor prognosis in prostate, lung, and ovarian cancer. Furthermore, KLF6-SV1 has been shown to be biologically active, antagonizing the tumor suppressor function of KLF6 and promoting tumor growth and dissemination in both ovarian and prostate cancer models. In addition, a common germline polymorphism in the KLF6 gene associated with increased prostate cancer risk in a large multi-institutional study of 3411 men results in increased expression of KLF6-SV1. Furthermore, recent studies have demonstrated that targeted reduction of KLF6-SV1 results in the induction of spontaneous apoptosis in cell culture, synergizes with chemotherapeutic agents like cisplatin, and results in significant tumor regression in vivo. Combined, these data make the KLF6 gene family a compelling therapeutic target for both the treatment of localized as well as metastatic cancer.
Collapse
Affiliation(s)
- Analisa DiFeo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|