1
|
Telomere Status of Advanced Non-Small-Cell Lung Cancer Offers a Novel Promising Prognostic and Predictive Biomarker. Cancers (Basel) 2022; 15:cancers15010290. [PMID: 36612286 PMCID: PMC9818321 DOI: 10.3390/cancers15010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Telomere length appears to correlate with survival in early non-small-cell lung cancer (NSCLC), but the prognostic impact of telomere status in advanced NSCLC remains undetermined. Our purpose was to evaluate telomere parameters as prognostic and predictive biomarkers in advanced NSCLC. In 79 biopsies obtained before treatment, we analyzed the telomere length and expression of TERT and shelterin complex genes (TRF1, TRF2, POT1, TPP1, RAP1, and TIN2), using quantitative PCR. Non-responders to first-line chemotherapy were characterized by shorter telomeres and low RAP1 expression (p = 0.0035 and p = 0.0069), and tended to show higher TERT levels (p = 0.058). In multivariate analysis, short telomeres were associated with reduced event-free (EFS, p = 0.0023) and overall survival (OS, p = 0.00041). TERT and TRF2 overexpression correlated with poor EFS (p = 0.0069 and p = 0.00041) and OS (p = 0.0051 and p = 0.007). Low RAP1 and TIN2 expression-levels were linked to reduced EFS (p = 0.00032 and p = 0.0069) and OS (p = 0.000051 and p = 0.02). Short telomeres were also associated with decreased survival after nivolumab therapy (p = 0.097). Evaluation of telomere status in advanced NSCLC emerges as a useful biomarker that allows for the selection of patient groups with different clinical evolutions, to establish personalized treatment.
Collapse
|
2
|
Rej PH, Gravlee CC, Mulligan CJ. Shortened telomere length is associated with unfair treatment attributed to race in African Americans living in Tallahassee, Florida. Am J Hum Biol 2019; 32:e23375. [PMID: 31867825 DOI: 10.1002/ajhb.23375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Experiences of interpersonal discrimination are pervasive stressors in the lives of African Americans. Increased discrimination stress may cause premature aging. Telomere length (TL) is a plastic genetic trait that is an emerging indicator of cellular health and aging. Short TL is a risk factor for the earlier onset of disease. TL shortens with age, a process that may be accelerated by psychosocial stress. Our study explores the relationship between TL and experiences of discrimination in the form of self-reported unfair treatment (UT). METHODS Using a qPCR-based method, we measured TL in DNA from saliva samples provided by 135 African American adults from Tallahassee, FL. We developed discrimination measures using a modified survey that explores nine social domains of self-reported unfair treatment experienced both directly and indirectly. We used multiple regression to examine associations between UT and TL. RESULTS We found that racial discrimination in the form of self-reported unfair treatment attributed to race (UT-Race-Self) is inversely associated with TL. CONCLUSIONS The significant association between increased UT-Race-Self and shorter telomeres supports the hypothesis that psychosocial stress stemming from racial discrimination may affect TL. The potential impact of discrimination on TL may contribute to premature biological aging and racial health inequalities seen in African Americans.
Collapse
Affiliation(s)
- Peter H Rej
- Department of Anthropology, University of Washington, Seattle, Washington.,Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| | -
- Health Equity Alliance of Tallahassee Steering Committee, Tallahassee, Florida: James Bellamy, Qasimah Boston, Edward Holifield, Miaisha Mitchell, and Cynthia Seaborn
| | - Clarence C Gravlee
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Picco V, Coste I, Giraud-Panis MJ, Renno T, Gilson E, Pagès G. ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Oncotarget 2018; 7:46615-46627. [PMID: 27366950 PMCID: PMC5216822 DOI: 10.18632/oncotarget.10316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Picco
- Centre Scientifique de Monaco, Biomedical Department, MC-98000 Monaco, Principality of Monaco
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Marie-Josèphe Giraud-Panis
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Eric Gilson
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06200 Nice, France
| | - Gilles Pagès
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| |
Collapse
|
4
|
Chhabra G, Wojdyla L, Frakes M, Schrank Z, Leviskas B, Ivancich M, Vinay P, Ganapathy R, Ramirez BE, Puri N. Mechanism of Action of G-Quadruplex-Forming Oligonucleotide Homologous to the Telomere Overhang in Melanoma. J Invest Dermatol 2017; 138:903-910. [PMID: 29203363 DOI: 10.1016/j.jid.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
T-oligo, a guanine-rich oligonucleotide homologous to the 3'-telomeric overhang of telomeres, elicits potent DNA-damage responses in melanoma cells; however, its mechanism of action is largely unknown. Guanine-rich oligonucleotides can form G-quadruplexes (G4), which are stabilized by the hydrogen bonding of guanine residues. In this study, we confirmed the G4-forming capabilities of T-oligo using nondenaturing PAGE, nuclear magnetic resonance, and immunofluorescence. Using an anti-G-quadruplex antibody, we showed that T-oligo can form G4 in the nuclei of melanoma cells. Furthermore, using DNase I in a nuclease degradation assay, G4-T-oligo was found to be more stable than single-stranded T-oligo. G4-T-oligo had decreased antiproliferative effects compared with single-stranded T-oligo. However, G4-T-oligo has similar cellular uptake as single-stranded T-oligo, as shown by FACS analysis. Inhibition of JNK, which causes DNA damage-induced apoptosis, partially reversed the antiproliferative activity of T-oligo. T-oligo also inhibited mRNA expression of human telomerase reverse transcriptase, a catalytic subunit of telomerase that was reversed by JNK inhibition. Furthermore, two shelterin complex proteins TRF2/POT1 were found to be up-regulated and bound by T-oligo, suggesting that T-oligo may mediate dissociation of these proteins from the telomere overhang. These studies show that T-oligo can form a G-quadruplex and that the antitumor effects of T-oligo may be mediated through POT1/TRF2 and via human telomerase reverse transcriptase inhibition through JNK activation.
Collapse
Affiliation(s)
- Gagan Chhabra
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Luke Wojdyla
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Mark Frakes
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Zachary Schrank
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Brandon Leviskas
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Marko Ivancich
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Pooja Vinay
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | | | - Benjamin E Ramirez
- Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Neelu Puri
- University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA.
| |
Collapse
|
5
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
6
|
Prognostic value of telomere function in gastric cancers with and without microsatellite instability. Eur J Gastroenterol Hepatol 2015; 27:162-9. [PMID: 25486025 DOI: 10.1097/meg.0000000000000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To identify molecular markers that may be useful in the selection of gastric cancer patients with different prognoses, we investigated telomere function in gastric cancers with and without microsatellite instability (MSI). MATERIALS AND METHODS We analyzed 83 gastric cancers and its paired-normal tissues to investigate MSI and telomere function. MSI was established using five polymorphic human repeat DNA markers. Telomere function was evaluated by determining telomerase activity, telomere length, and telomere-repeat factors 1 and 2 (TRF1 and TRF2) expression. RESULTS Patients with high microsatellite instability (MSI-H) gastric cancers showed a significantly better prognosis than those affected by microsatellite stable or low microsatellite instability (MSS/MSI-L) tumors (P = 0.03). The lowest expression levels of TRF1 and TRF2 were associated with MSI-H gastric cancers (P = 0.008 and 0.006, respectively). Moreover, a clear trend toward a worse prognosis was found in the group of patients who had tumors with the shortest telomeres (P = 0.01). Cox multivariate analysis showed that MSI emerged as a protective prognostic factor; MSS/MSI-L tumors conferred a significantly poor prognosis in patients (relative risk = 4.862-fold greater than the MSI-H group) (P = 0.033). Telomere length of gastric tumors less than 2.86 kbp was a factor that led to a poor prognosis (relative risk = 4.420, with respect to tumors showing telomere length ≥ 2.86 kbp) (P = 0.002). CONCLUSION We propose telomere status as a potential molecular marker with usefulness in the establishment of the prognosis of gastric cancers both for the mutator phenotype and for the suppressor pathway.
Collapse
|
7
|
El Maï M, Wagner KD, Michiels JF, Ambrosetti D, Borderie A, Destree S, Renault V, Djerbi N, Giraud-Panis MJ, Gilson E, Wagner N. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter. Cell Rep 2014; 9:1047-60. [PMID: 25437559 DOI: 10.1016/j.celrep.2014.09.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022] Open
Abstract
Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms' tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ). These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator.
Collapse
Affiliation(s)
- Mounir El Maï
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Kay-Dietrich Wagner
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Jean-François Michiels
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Damien Ambrosetti
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Arnaud Borderie
- Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Sandrine Destree
- Department of Pathology, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France
| | - Valerie Renault
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Nadir Djerbi
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Marie-Josèphe Giraud-Panis
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France
| | - Eric Gilson
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France; Department of Medical Genetics, Le Centre Hospitalier Universitaire de Nice, 06107 Nice, France.
| | - Nicole Wagner
- Institut for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, 06107 Nice, France.
| |
Collapse
|
8
|
The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines. Breast Cancer Res Treat 2014; 145:581-91. [PMID: 24807106 PMCID: PMC4031391 DOI: 10.1007/s10549-014-2975-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability.
Collapse
|
9
|
PinX1, a novel target gene of p53, is suppressed by HPV16 E6 in cervical cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:88-96. [PMID: 24412852 DOI: 10.1016/j.bbagrm.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
|
10
|
|
11
|
Chen J, Zhang B, Wong N, Lo AWI, To KF, Chan AWH, Ng MHL, Ho CYS, Cheng SH, Lai PBS, Yu J, Ng HK, Ling MT, Huang AL, Cai XF, Ko BCB. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 2011; 71:4138-49. [PMID: 21527554 DOI: 10.1158/0008-5472.can-10-4274] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with a poor prognosis. Treatment of HCC is complicated by the fact that the disease is often diagnosed at an advanced stage when it is no longer amenable to curative surgery, and current systemic chemotherapeutics are mostly inefficacious. Sirtuin 1 (SIRT1) is a class III histone deacetylase that is implicated in gene regulations and stress resistance. In this study, we found that SIRT1 is essential for the tumorigenesis of HCC. We showed that although SIRT1 was expressed at very low levels in normal livers, it was overexpressed in HCC cell lines and in a subset of HCC. Tissue microarray analysis of HCC and adjacent nontumoral liver tissues revealed a positive correlation between the expression levels of SIRT1 and advancement in tumor grades. Downregulation of SIRT1 consistently suppressed the proliferation of HCC cells via the induction of cellular senescence or apoptosis. SIRT1 silencing also caused telomere dysfunction-induced foci and nuclear abnormality that were clearly associated with reduced expressions of telomerase reverse transcriptase (TERT), and PTOP, which is a member of the shelter in complex. Ectopic expression of either TERT or PTOP in SIRT1-depleted cells significantly restored cell proliferation. There was also a positive correlation between the level of induction of SIRT1 and TERT [corrected] in human HCC. Finally, SIRT1-silencing sensitized HCC cells to doxorubicin treatment. Together, our findings reveal a novel function for SIRT1 in telomere maintenance of HCC, and they rationalize the clinical exploration of SIRT1 inhibitors for HCC therapy.
Collapse
Affiliation(s)
- Juan Chen
- The State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Folini M, Venturini L, Cimino-Reale G, Zaffaroni N. Telomeres as targets for anticancer therapies. Expert Opin Ther Targets 2011; 15:579-93. [DOI: 10.1517/14728222.2011.556621] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Degerman S, Siwicki JK, Osterman P, Lafferty-Whyte K, Keith WN, Roos G. Telomerase upregulation is a postcrisis event during senescence bypass and immortalization of two Nijmegen breakage syndrome T cell cultures. Aging Cell 2010; 9:220-35. [PMID: 20089118 DOI: 10.1111/j.1474-9726.2010.00550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Our knowledge on immortalization and telomere biology is mainly based on genetically manipulated cells analyzed before and many population doublings post growth crisis. The general view is that growth crisis is telomere length (TL) dependent and that escape from crisis is coupled to increased expression of the telomerase reverse transcriptase (hTERT) gene, telomerase activity upregulation and TL stabilization. Here we have analyzed the process of spontaneous immortalization of human T cells, regarding pathways involved in senescence and telomerase regulation. Two Nijmegen breakage syndrome (NBS) T cell cultures (S3R and S4) showed gradual telomere attrition until a period of growth crisis followed by the outgrowth of immortalized cells. Whole genome expression analysis indicated differences between pre-, early post- and late postcrisis cells. Early postcrisis cells demonstrated a logarithmic growth curve, very short telomeres and, notably, no increase in hTERT or telomerase activity despite downregulation of several negative hTERT regulators (e.g. FOS, JUN D, SMAD3, RUNX2, TNF-a and TGFb-R2). Thereafter, cMYC mRNA increased in parallel with increased hTERT expression, telomerase activity and elongation of short telomeres, indicating a step-wise activation of hTERT transcription involving reduction of negative regulators followed by activation of positive regulator(s). Gene expression analysis indicated that cells escaped growth crisis by deregulated DNA damage response and senescence controlling genes, including downregulation of ATM, CDKN1B (p27), CDKN2D (p19) and ASF1A and upregulation of CDK4, TWIST1, TP73L (p63) and SYK. Telomerase upregulation was thus found to be uncoupled to escape of growth crisis but rather a later event in the immortalization process of NBS T cell cultures.
Collapse
Affiliation(s)
- Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|