1
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Wang J, Feng J, Chen X, Weng Y, Wang T, Wei J, Zhan Y, Peng M. Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer. Aging (Albany NY) 2024; 16:7331-7356. [PMID: 38656888 PMCID: PMC11087130 DOI: 10.18632/aging.205760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Patients with gastric cancer respond poorly to immunotherapy. There are still unknowns about the biomarkers associated with immunotherapy sensitivity and their underlying molecular mechanisms. METHODS Gene expression data for gastric cancer were gathered from TCGA and GEO databases. DEGs associated with immunotherapy response came from ICBatlas. KEGG and GO analyses investigated pathways. Hub genes identification employed multiple machine algorithms. Associations between hub genes and signaling pathways, disease genes, immune cell infiltration, drug sensitivity, and prognostic predictions were explored via multi-omics analysis. Hub gene expression was validated through HPA and CCLE. Multiple algorithms pinpointed Cancer-Associated Fibroblasts genes (CAFs), with ten machine-learning methods generating CAFs scores for prognosis. Model gene expression was validated at the single-cell level using the TISCH database. RESULTS We identified 201 upregulated and 935 downregulated DEGs. Three hub genes, namely CDH6, EGFLAM, and RASGRF2, were unveiled. These genes are implicated in diverse disease-related signaling pathways. Additionally, they exhibited significant correlations with disease-associated gene expression, immune cell infiltration, and drug sensitivity. Exploration of the HPA and CCLE databases exposed substantial expression variations across patients and cell lines for these genes. Subsequently, we identified CAFs-associated genes and established a robust prognostic model. The analysis in the TISCH database showed that the genes in this model were highly expressed in CAFs. CONCLUSIONS The results unveil an association between CDH6, EGFLAM, and RASGRF2 and the immunotherapeutic response in gastric cancer. These genes hold potential as predictive biomarkers for gastric cancer immunotherapy resistance and prognostic assessment.
Collapse
Affiliation(s)
- Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jia Feng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yujie Zhan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
3
|
Holm TM, Yeo S, Turner KM, Guan JL. Targeting Autophagy in Thyroid Cancer: EMT, Apoptosis, and Cancer Stem Cells. Front Cell Dev Biol 2022; 10:821855. [PMID: 35846375 PMCID: PMC9277179 DOI: 10.3389/fcell.2022.821855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a highly conserved recycling process through which cellular homeostasis is achieved and maintained. With respect to cancer biology, autophagy acts as a double-edged sword supporting tumor cells during times of metabolic and therapeutic stress, while also inhibiting tumor development by promoting genomic stability. Accumulating evidence suggests that autophagy plays a role in thyroid cancer, acting to promote tumor cell viability and metastatic disease through maintenance of cancer stem cells (CSCs), supporting epithelial-to-mesenchymal transition (EMT), and preventing tumor cell death. Intriguingly, well-differentiated thyroid cancer is more prevalent in women as compared to men, though the underlying molecular biology driving this disparity has not yet been elucidated. Several studies have demonstrated that autophagy inhibitors may augment the anti-cancer effects of known thyroid cancer therapies. Autophagy modulation has become an attractive target for improving outcomes in thyroid cancer. This review aims to provide a comprehensive picture of the current knowledge regarding the role of autophagy in thyroid cancer, focusing on the potential mechanism(s) through which inhibition of autophagy may enhance cancer therapy and outcomes.
Collapse
Affiliation(s)
- Tammy M Holm
- Department of Surgery, The University of Cincinnati, Cincinnati, OH, United States.,Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Syn Yeo
- Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Kevin M Turner
- Department of Surgery, The University of Cincinnati, Cincinnati, OH, United States.,Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| | - Jun-Lin Guan
- Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Zhao Z, Li S, Li S, Wang J, Lin H, Fu W. High expression of oncogene cadherin-6 correlates with tumor progression and a poor prognosis in gastric cancer. Cancer Cell Int 2021; 21:493. [PMID: 34530820 PMCID: PMC8447617 DOI: 10.1186/s12935-021-02071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and fatal cancers worldwide. Effective biomarkers to aid the early diagnosis of GC, as well as predict the course of disease, are urgently needed. Hence, we explored the role and function of cadherin-6 (CDH6) in the diagnosis and prognosis of gastric cancer. METHODS The expression levels of CDH6 in cancerous and normal gastric tissue were analyzed using multiple public databases. Gene set enrichment analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) dataset. The diagnostic efficiency of CDH6 expression in GC patients was determined through receiver operating characteristic (ROC) curve analysis. The associations between clinical variables and CDH6 expression were evaluated statistically, and the prognostic factors for overall survival were analyzed by univariate and multivariate Cox regression. 44 GC tissue samples, 20 donor-matched adjacent normal tissue samples, and associated detailed clinical information, were collected from the Tianjin Medical University General Hospital. CDH6 expression levels were determined for further validation. RESULTS CDH6 was upregulated in GC samples compared to normal gastric tissue. Furthermore, GSEA identified the tricarboxylic acid (TCA) cycle, extracellular matrix (ECM) receptor interaction, glyoxylate and dicarboxylate metabolism, oxidative phosphorylation, and the pentose phosphate pathway as differentially enriched in GC tissue samples. According to the area under the ROC curve (AUC) values (AUC = 0.829 in the TCGA and 0.966 in the GSE54129 dataset), CDH6 expression was associated with high diagnostic efficacy. Patients with high CDH6 levels in their GC tissues had a higher T number (according to the TNM classification) and a worse prognosis than those with low CDH6 expression. Univariate and multivariate Cox regression analysis showed that CDH6 was an independent risk factor for overall survival (univariate: HR = 1.305, P = 0.002, multivariate: HR = 1.481, P < 0.001). CONCLUSION CDH6 was upregulated in GC, and high CDH6 expression was indicative of a higher T number and a worse prognosis. Therefore, CDH6 represents a potentially independent molecular biomarker for the diagnostic and prognostic prediction of GC.
Collapse
Affiliation(s)
- Zongxian Zhao
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China.
| | - Shuliang Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Liaocheng, Liaocheng, Shangdong, China.
| | - Shilong Li
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Jun Wang
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Hai Lin
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China
| | - Weihua Fu
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, China.
| |
Collapse
|
5
|
Wojnarowicz PM, Escolano MG, Huang YH, Desai B, Chin Y, Shah R, Xu S, Yadav S, Yaklichkin S, Ouerfelli O, Soni RK, Philip J, Montrose DC, Healey JH, Rajasekhar VK, Garland WA, Ratiu J, Zhuang Y, Norton L, Rosen N, Hendrickson RC, Zhou XK, Iavarone A, Massague J, Dannenberg AJ, Lasorella A, Benezra R. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer 2021; 7:58. [PMID: 34031428 PMCID: PMC8144414 DOI: 10.1038/s41523-021-00266-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
ID proteins are helix-loop-helix (HLH) transcriptional regulators frequently overexpressed in cancer. ID proteins inhibit basic-HLH transcription factors often blocking differentiation and sustaining proliferation. A small-molecule, AGX51, targets ID proteins for degradation and impairs ocular neovascularization in mouse models. Here we show that AGX51 treatment of cancer cell lines impairs cell growth and viability that results from an increase in reactive oxygen species (ROS) production upon ID degradation. In mouse models, AGX51 treatment suppresses breast cancer colonization in the lung, regresses the growth of paclitaxel-resistant breast tumors when combined with paclitaxel and reduces tumor burden in sporadic colorectal neoplasia. Furthermore, in cells and mice, we fail to observe acquired resistance to AGX51 likely the result of the inability to mutate the binding pocket without loss of ID function and efficient degradation of the ID proteins. Thus, AGX51 is a first-in-class compound that antagonizes ID proteins, shows strong anti-tumor effects and may be further developed for the management of multiple cancers.
Collapse
Affiliation(s)
- Paulina M Wojnarowicz
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marta Garcia Escolano
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Sloan Kettering/Rockefeller Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, 10065, USA
| | - Bina Desai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sijia Xu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saurabh Yadav
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergey Yaklichkin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David C Montrose
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John H Healey
- Orthopedics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jeremy Ratiu
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University, Durham, NC, USA
| | - Larry Norton
- Evelyn H. Lauder Breast Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xi Kathy Zhou
- Department of Healthcare Policy and Research Weill Cornell Medical College, New York, NY, USA
| | - Antonio Iavarone
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Lasorella
- Department of Pediatrics, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA, Ballester H, Aranda FI, Castellon-Molla E, Sempere-Ortells JM, Peiro G. ID1 and ID4 Are Biomarkers of Tumor Aggressiveness and Poor Outcome in Immunophenotypes of Breast Cancer. Cancers (Basel) 2021; 13:cancers13030492. [PMID: 33514024 PMCID: PMC7865969 DOI: 10.3390/cancers13030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Inhibitor of differentiation (ID) proteins are essential to promote proliferation during embryonic development, but they are silenced in most adult tissues. Evidence to date shows ID1 expression in many tumor types, including breast cancer. However, the role of the remaining ID family members, especially ID4, in breast cancer remains unclear. In this work, we aimed to assess the four ID genes expression in breast cancer cell lines and a long series of breast cancer samples and correlate them with clinicopathological features and patients’ survival. We observed a significantly higher expression of ID4 in tumor cell lines than the healthy breast epithelium cell line. We confirmed that the overexpression of ID1 and ID4 correlated with more aggressive phenotypes and poor survival in breast cancer patients’ samples. Our results support the importance of ID proteins as targets for the development of anti-cancer drugs. Abstract Inhibitor of differentiation (ID) proteins are a family of transcription factors that contribute to maintaining proliferation during embryogenesis as they avoid cell differentiation. Afterward, their expression is mainly silenced, but their reactivation and contribution to tumor development have been suggested. In breast cancer (BC), the overexpression of ID1 has been previously described. However, whether the remaining ID genes have a specific role in this neoplasia is still unclear. We studied the mRNA expression of all ID genes by q RT-PCR in BC cell lines and 307 breast carcinomas, including all BC subtypes. Our results showed that ID genes are highly expressed in all cell lines tested. However, ID4 presented higher expression in BC cell lines compared to a healthy breast epithelium cell line. In accordance, ID1 and ID4 were predominantly overexpressed in Triple-Negative and HER2-enriched samples. Moreover, high levels of both genes were associated with larger tumor size, histological grade 3, necrosis and vascular invasion, and poorer patients’ outcomes. In conclusion, ID1 and ID4 may act as biomarkers of tumor aggressiveness and worse prognosis in breast cancer, and they could be used as potential targets for new treatments discover.
Collapse
Affiliation(s)
- Marta Garcia-Escolano
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Correspondence: ; Tel.: +34-965-913953 (ext. 3952)
| | - Yoel G. Montoyo-Pujol
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Fernando Ortiz-Martinez
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Jose J. Ponce
- Medical Oncology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain;
| | - Silvia Delgado-Garcia
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Tina A. Martin
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - F. Ignacio Aranda
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - Elena Castellon-Molla
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - J. Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, 03010 Alicante, Spain;
| | - Gloria Peiro
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| |
Collapse
|
7
|
Deng G, Chen Y, Guo C, Yin L, Han Y, Li Y, Fu Y, Cai C, Shen H, Zeng S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via ID1. J Cell Sci 2020; 133:jcs237222. [PMID: 32376787 DOI: 10.1242/jcs.237222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with poor patient's prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both in vitro and in vivo, whereas knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Furthermore, the inhibitor of DNA binding 1 (also known as DNA-binding protein inhibitor ID1) was identified as a downstream target of BMP4 using PCR arrays and was upregulated via SMAD1/5/8 phosphorylation. ID1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, ID1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT and promoted GC metastasis by upregulating ID1 expression. Antagonizing BMP4 could be a potential therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Ganlu Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022 Guangxi, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ling Yin
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yiyi Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
8
|
Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy. Int J Med Sci 2020; 17:995-1005. [PMID: 32410828 PMCID: PMC7211148 DOI: 10.7150/ijms.42805] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival. Id1 is a stem cell-like gene more than a classical oncogene. Id1 is overexpressed in numerous types of cancers and exerts its promotion effect to these tumors through different pathways. Briefly, Id1 was found significantly correlated with EMT-related proteins, K-Ras signaling, EGFR signaling, BMP signaling, PI3K/Akt signaling, WNT and SHH signaling, c-Myc signaling, STAT3 signaling, RK1/2 MAPK/Egr1 pathway and TGF-β pathway, etc. Id1 has potent effect on facilitating tumorous angiogenesis and metastasis. Moreover, high expression of Id1 plays a facilitating role in the development of drug resistance, including chemoresistance, radiation resistance and resistance to drugs targeting angiogenesis. However, controversial results were also obtained. Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhiyuan Bo
- The Second Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weiyi Gong
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Yong Guo
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
9
|
Kim JW, Kim JM, Choi ME, Kim SK, Kim YM, Choi JS. Adipose-derived mesenchymal stem cells regenerate radioiodine-induced salivary gland damage in a murine model. Sci Rep 2019; 9:15752. [PMID: 31673085 PMCID: PMC6823479 DOI: 10.1038/s41598-019-51775-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
After radioiodine (RI) therapy, patients with thyroid cancer frequently suffer from painful salivary gland (SG) swelling, xerostomia, taste alterations, and oral infections. This study was aimed to determine whether adipose-derived mesenchymal stem cells (AdMSCs) might restore RI-induced SG dysfunction in a murine model. Forty -five mice were divided into three groups; a PBS sham group, a RI+ PBS sham group (0.01 mCi/g mouse, orally), and an RI+AdMSCs (1 × 105 cells/150 uL, intraglandular injection on experimental day 28) treated group. At 16 weeks after RI treatment, body weights, SG weight, salivary flow rates (SFRs), and salivary lag times were measured. Morphologic and histologic examinations and immunohistochemistry (IHC) were performed and the activities of amylase and EGF in saliva were also measured. Changes in salivary 99mTc pertechnetate excretion were followed by SPECT and TUNEL assays were performed. The body and SG weights were similar in the AdMSCs and sham groups. Hematoxylin and eosin staining revealed the AdMSCs group had more mucin-containing acini than the RI group. Furthermore, AdMSCs treatment resulted in tissue remodeling and elevated expressions of epithelial (AQP5) and endothelial (CD31) markers, and increased SFRs. The activities of amylase and EGF were higher in the AdMSCs group than in the RI treated group. 99mTc pertechnetate excretions were similar in the AdMSCs and sham group. Also, TUNEL positive apoptotic cell numbers were less in the AdMSCs group than in the RI group. Local delivery of AdMSCs might regenerate SG damage induced by RI.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Jeong Mi Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Mi Eun Choi
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Young-Mo Kim
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otolaryngology, Inha University, College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
10
|
Beyond N-Cadherin, Relevance of Cadherins 5, 6 and 17 in Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:ijms20133373. [PMID: 31324051 PMCID: PMC6651558 DOI: 10.3390/ijms20133373] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-cell adhesion molecules (cadherins) and cell-extracellular matrix adhesion proteins (integrins) play a critical role in the regulation of cancer invasion and metastasis. Although significant progress has been made in the characterization of multiple members of the cadherin superfamily, most of the published work continues to focus in the switch E-/N-cadherin and its role in the epithelial-mesenchymal transition. Here, we will discuss the structural and functional properties of a subset of cadherins (cadherin 17, cadherin 5 and cadherin 6) that have an RGD motif in the extracellular domains. This RGD motif is critical for the interaction with α2β1 integrin and posterior integrin pathway activation in cancer metastatic cells. However, other signaling pathways seem to be affected by RGD cadherin interactions, as will be discussed. The range of solid tumors with overexpression or "de novo" expression of one or more of these three cadherins is very wide (gastrointestinal, gynaecological and melanoma, among others), underscoring the relevance of these cadherins in cancer metastasis. Finally, we will discuss different evidences that support the therapeutic use of these cadherins by blocking their capacity to work as integrin ligands in order to develop new cures for metastatic patients.
Collapse
|
11
|
Telomerase and Telomeres Biology in Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20122887. [PMID: 31200515 PMCID: PMC6627113 DOI: 10.3390/ijms20122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.
Collapse
|
12
|
Kuhn E, Ragazzi M, Ciarrocchi A, Torricelli F, de Biase D, Zanetti E, Bisagni A, Corrado S, Uccella S, La Rosa S, Bongiovanni M, Losito S, Piana S. Angiosarcoma and anaplastic carcinoma of the thyroid are two distinct entities: a morphologic, immunohistochemical, and genetic study. Mod Pathol 2019; 32:787-798. [PMID: 30723294 DOI: 10.1038/s41379-018-0199-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Angiosarcoma and anaplastic carcinoma are the most lethal neoplasms of the thyroid worldwide and share some similarities, which have led to a longstanding controversy on their etiopathological relationship. Thyroid angiosarcomas are characterized by vessel formation and an immunophenotype common to endothelial cells, while anaplastic carcinomas are partially or wholly composed of mesenchymal-like cells that have lost the morphologic and functional features of normal thyroid follicular cells. To investigate whether angiosarcomas represent the endothelial extreme of the differentiation spectrum of carcinomas or they are bona fide vascular neoplasms, we studied the clinico-morphologic and genetic characteristics of a series of 10 angiosarcomas and 22 anaplastic carcinomas. Immunohistochemically, among the endothelial markers, CD31 and ERG were the most consistently expressed in angiosarcomas. Among the markers of thyroid origin, PAX8 was the most reliable in anaplastic carcinomas, while TTF-1 reactivity was found in only 5% of anaplastic carcinomas and thyroglobulin was always negative. Pankeratin reacted with most angiosarcomas and anaplastic carcinomas and is therefore not useful in the differential diagnosis. Interestingly a mutated pattern of p53 immunostaining prompted a diagnosis of anaplastic carcinoma. To compare the genetic profile, we used the NGS approach to sequence hotspot regions within a panel of 57 genes. As a result, only a few mutations were found in angiosarcomas and all of them were single events (no TP53 or TERT mutation). On the other hand, anaplastic carcinomas were characterized by a higher number of mutations, and TP53 and TERT promoter mutations were the most frequent genetic alterations. The lack in angiosarcomas of the common mutations identified in anaplastic carcinomas supports a different genetic origin and strongly suggests that, in spite of a shared sarcomatous morphology and a similar clinical aggressiveness, angiosarcomas and anaplastic carcinomas rely on a completely different set of genetic alterations during their evolution.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Pathology Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Eleonora Zanetti
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Stefania Corrado
- Department of Anatomic Pathology, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Silvia Uccella
- Department of Medicine and Surgery, University of Insumbria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | | | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
13
|
Gallo C, Fragliasso V, Donati B, Torricelli F, Tameni A, Piana S, Ciarrocchi A. The bHLH transcription factor DEC1 promotes thyroid cancer aggressiveness by the interplay with NOTCH1. Cell Death Dis 2018; 9:871. [PMID: 30158530 PMCID: PMC6115386 DOI: 10.1038/s41419-018-0933-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Aberrant re-activation of transcription factors occurs frequently in cancer. Recently, we found the basic helix-loop-helix transcription factors DEC1 and DEC2 significantly up-regulated in a model of highly aggressive thyroid cancer, raising the hypothesis that these factors might be part of the program driving progression of these tumors. Here, we investigated for the first time the function of DEC1 and DEC2 in thyroid cancer. Using both gain- and loss-of-function approaches, we showed that DEC1 more than DEC2 sustains progression of thyroid cancer by promoting cell growth and invasiveness. We demonstrated that DEC1 controls NOTCH1 expression and that the interplay with the NOTCH pathway is relevant for DEC1 function in thyroid cancer. We confirmed this observation in vivo showing that DEC1 expression is a specific feature of tumor cells, that this transcription factor is significantly over-expressed in all major thyroid cancer histotypes and that its expression correlated with NOTCH1 in these tumors. Finally, we performed RNA-sequencing to define the DEC1-associated gene expression profile in thyroid cancer cells and we discovered that DEC1 drives the expression of many cell cycle-related genes, uncovering a potential new function for this transcription factor in cancer.
Collapse
Affiliation(s)
- Cristina Gallo
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| |
Collapse
|
14
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
15
|
Cadherin 6 is activated by Epstein-Barr virus LMP1 to mediate EMT and metastasis as an interplay node of multiple pathways in nasopharyngeal carcinoma. Oncogenesis 2017; 6:402. [PMID: 29284791 PMCID: PMC5865538 DOI: 10.1038/s41389-017-0005-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/23/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy, which is notorious among head-and-neck cancers with its metastatic feature. Epstein–Barr virus (EBV) infection plays a fundamental role in NPC development with the mechanism is not well understood. Here we demonstrate that EBV oncoprotein LMP1 drives EMT and metastasis of NPC by reactivating the adhesion molecule, cadherin 6 (CDH6), which normally occurs in embryogenesis with unknown role in NPC. CDH6 was found to be upregulated in LMP1-positive NPC tissues, and was identified as a target of the epithelium-specific miR-203. LMP1-activated NF-κB transcriptionally repressed the miR-203 expression by binding to the promoter region of miR-203 gene. CDH6 activation in turn induced EMT and promoted metastasis in NPC. CDH6 depletion, NF-κB inhibitor and miR-203 overexpression were able to impair the EMT effects. The miR-203 downregulation in NPC tissues was strongly associated with metastasis clinically. The CDH6 activator, Runt-related transcription factor 2 (RUNX2), was also activated by EBV in the event. For both CDH6 and RUNX2 are components at TGF-β downstream, CDH6 became a node protein for the interplay of multiple signalings including NF-κB and TGF-β. Therefore, the switch-on of miR-203 was important for nasopharyngeal epithelial cells to maintain normal phenotype. This study demonstrates that EBV has evolved sophisticated strategies by driving epithelial cells to obtain malignant features, particularly in NPC metastasis, providing novel biomarkers for the therapy and prognosis of EBV-associated NPC.
Collapse
|
16
|
Hu XM, Lin T, Huang XY, Gan RH, Zhao Y, Feng Y, Ding LC, Su BH, Zheng DL, Lu YG. ID1 contributes to cell growth invasion and migration in salivary adenoid cystic carcinoma. Mol Med Rep 2017; 16:8907-8915. [PMID: 29039489 PMCID: PMC5779972 DOI: 10.3892/mmr.2017.7744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/01/2017] [Indexed: 12/28/2022] Open
Abstract
Previous studies have reported that inhibitor of DNA binding 1 (ID1) exerts an oncogenic role in a number of tumors. In the present study, the role of ID1 in the growth, invasion and migration of salivary adenoid cystic carcinoma (SACC) cells was investigated. ID1 expression in clinical SACC samples was compared with that in normal salivary tissues using immunohistochemical staining, and the correlation between ID1 expression and clinical pathological characteristics was then determined. Subsequently, ID1 was overexpressed or silenced to investigate the effects of ID1 expression on SACC cell proliferation, invasion and migration. In addition, the gene expression levels of known ID1 target genes, including S100A9, CDKN2A and matrix metalloproteinase 1 (MMP1) was measured using reverse transcription-quantitative polymerase chain reaction to elucidate the potential mechanisms of ID1 in SACC. The results of the present study indicated that the protein expression levels of ID1 were significantly increased in the SACC tissues compared with that in the normal salivary tissues (P<0.001), and a positive correlation between ID1 expression and tumor stage (P=0.001), tumor invasion (P=0.002) and metastasis (P=0.019) in SACC was observed. Knockdown of ID1 in SACC cells significantly inhibited cell growth, invasion and migration (all P<0.01), whereas overexpression of ID1 promoted cell proliferation, invasion and migration (all P<0.01). The gene expression level of MMP1 was significantly reduced following ID1 knockdown in SACC-83 cells when compared with negative controls (P<0.05), whereas S100A9 and CDKN2A expression levels were significantly upregulated (both P<0.05). The results suggest that ID1 may regulate the growth, invasion and migration of SACC cells, and that MMP1, S100A9 and CDKN2A may serve as target genes of ID1 and mediate the effects of ID1 in SACC cells. Therefore, ID1 may present a potential target gene for the treatment of patients with SACC to inhibit cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Ting Lin
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Xiao-Yu Huang
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Yong Zhao
- Department of Pathology, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Yan Feng
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Lin-Can Ding
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Bo-Hua Su
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - You-Guang Lu
- Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
17
|
Zheng B, Zhu YJ, Wang HY, Chen L. Gender disparity in hepatocellular carcinoma (HCC): multiple underlying mechanisms. SCIENCE CHINA-LIFE SCIENCES 2017; 60:575-584. [PMID: 28547581 DOI: 10.1007/s11427-016-9043-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
On the global scale, hepatitis B virus (HBV) infection is the main cause of hepatocellular carcinoma (HCC) especially in regions of Asia where HBV infection is endemic. Epidemiological studies show that the incidence of inflammation-driven HCC in males is three times as high as in females. Recent studies suggest that sex hormones have a crucial role in the pathogenesis and development of HBV-induced HCC. We found that the estrogen/androgen signaling pathway is associated with decreased/increased transcription and replication of HBV genes and can promote the development of HBV infections by up/downregulating HBV RNA transcription and inflammatory cytokines levels, which in turn slow down the progression of HBV-induced HCC. Additionally, sex hormones can also affect HBV-related HCC by inducing epigenetic changes. The evidence that both morphology and function of the human liver are affected by sex hormones was found over 60 years ago. However, the underlying molecular mechanism largely remains to be elucidated. This review focuses mainly on the molecular mechanisms behind the sex difference in HCC associated with HBV and other factors. In addition, several potential treatment and therapeutic strategies for inflammation-driven HCC will be introduced in this review.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Yan-Jing Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China. .,State Key Laboratory of Oncogenes and related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China.
| |
Collapse
|
18
|
Li DN, Wang L, Wang L, Li S, Wang YB. Expression of Inhibitor of Differentiation-1 and Its Effects on Angiogenesis in Gastric Cancer. Cancer Biother Radiopharm 2017; 31:233-7. [PMID: 27610466 DOI: 10.1089/cbr.2016.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To explore the effects of recombinant human endostatin (endostar, ES) and cisplatin on the growth of gastric cancer-transplanted tumor in nude mice and the expression of microvessel density (MVD). METHODS Human gastric cancer SGC-7901 cells were subcutaneously injected into the armpit of nude mice to prepare cancer-bearing nude mice. A total of 32 cancer-bearing nude mice were divided into four groups (each group with 8 mice). The four groups included control group and other three groups in which mice were treated with 5 mg/kg of ES (group E), 5 mg/kg of cisplatin (group Ci), and 5 mg/kg of ES combined with 5 mg/kg of cisplatin (group C), respectively. MVD was determined by immunohistochemistry, and the expressions of mRNA and protein of inhibitor of differentiation-1 (ID1) and vascular endothelial growth factor (VEGF) were detected with reverse transcription polymerase chain reaction (RT-PCR) and western blot, respectively. Apoptosis was observed with transmission electron microscope. RESULTS Compared with control group, the sizes and weights of tumors were significantly decreased in other three groups (all p < 0.05). MVD was significantly lower in groups E, Ci, and C than in control group, and in groups E and C than in group Ci (all p < 0.05). Compared with control group, the expressions of mRNA and protein of ID1 and VEGF significantly decreased in groups E and C (all p < 0.05). There were no significant differences in the expressions of mRNA and protein of ID1 and VEGF between group Ci and control group. There was apoptosis in groups E and C, but no apoptosis was found in group Ci and control group. CONCLUSION ES can inhibit the growth of gastric cancer cells through suppressing angiogenesis and promoting apoptosis of tumor cell. This study provides a new idea for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Di-Nuo Li
- 1 Department of Medicine, Shandong University , Shandong, China .,2 Department of General Surgery, the First Affiliated Hospital, Jinzhou Medical University , Jinzhou, China
| | - Liang Wang
- 3 Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinzhou Medical University , Jinzhou, China
| | - Lei Wang
- 4 Department of Cardiology, the First Affiliated Hospital, Jinzhou Medical University , Jinzhou, China
| | - Shen Li
- 5 BioBank, the First Affiliated Hospital, Jinzhou Medical University , Jinzhou, China
| | - Yu-Bing Wang
- 2 Department of General Surgery, the First Affiliated Hospital, Jinzhou Medical University , Jinzhou, China
| |
Collapse
|
19
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
20
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
21
|
Autophagy and epithelial-mesenchymal transition: an intricate interplay in cancer. Cell Death Dis 2016; 7:e2520. [PMID: 27929542 PMCID: PMC5260980 DOI: 10.1038/cddis.2016.415] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
Abstract
Autophagy and epithelial to mesenchymal transition (EMT) are major biological processes in cancer. Autophagy is a catabolic pathway that aids cancer cells to overcome intracellular or environmental stress, including nutrient deprivation, hypoxia and drugs effect. EMT is a complex transdifferentiation through which cancer cells acquire mesenchymal features, including motility and metastatic potential. Recent observations indicate that these two processes are linked in a complex relationship. On the one side, cells that underwent EMT require autophagy activation to survive during the metastatic spreading. On the other side, autophagy, acting as oncosuppressive signal, tends to inhibit the early phases of metastasization, contrasting the activation of the EMT mainly by selectively destabilizing crucial mediators of this process. Currently, still limited information is available regarding the molecular hubs at the interplay between autophagy and EMT. However, a growing number of evidence points to the functional interaction between cytoskeleton and mitochondria as one of the crucial regulatory center at the crossroad between these two biological processes. Cytoskeleton and mitochondria are linked in a tight functional relationship. Controlling mitochondria dynamics, the cytoskeleton cooperates to dictate mitochondria availability for the cell. Vice versa, the number and structure of mitochondria, which are primarily affected by autophagy-related processes, define the energy supply that cancer cells use to reorganize the cytoskeleton and to sustain cell movement during EMT. In this review, we aim to revise the evidence on the functional crosstalk between autophagy and EMT in cancer and to summarize the data supporting a parallel regulation of these two processes through shared signaling pathways. Furthermore, we intend to highlight the relevance of cytoskeleton and mitochondria in mediating the interaction between autophagy and EMT in cancer.
Collapse
|
22
|
Carr FE, Tai PWL, Barnum MS, Gillis NE, Evans KG, Taber TH, White JH, Tomczak JA, Jaworski DM, Zaidi SK, Lian JB, Stein JL, Stein GS. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology 2016; 157:3278-92. [PMID: 27253998 PMCID: PMC4967127 DOI: 10.1210/en.2015-2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.
Collapse
Affiliation(s)
- Frances E Carr
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Phillip W L Tai
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Michael S Barnum
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Noelle E Gillis
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Katherine G Evans
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Thomas H Taber
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jeffrey H White
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jennifer A Tomczak
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Diane M Jaworski
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jane B Lian
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Janet L Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Gary S Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
23
|
Gugnoni M, Sancisi V, Gandolfi G, Manzotti G, Ragazzi M, Giordano D, Tamagnini I, Tigano M, Frasoldati A, Piana S, Ciarrocchi A. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene 2016; 36:667-677. [PMID: 27375021 DOI: 10.1038/onc.2016.237] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
The transdifferentiation of epithelial cells toward a mesenchymal condition (EMT) is a complex process that allows tumor cells to migrate to ectopic sites. Cadherins are not just structural proteins, but they act as sensors of the surrounding microenvironment and as signaling centers for cellular pathways. However, the molecular mechanisms underlying these signaling functions remain poorly characterized. Cadherin-6 (CDH6) is a type 2 cadherin, which drives EMT during embryonic development and it is aberrantly re-activated in cancer. We recently showed that CDH6 is a TGFβ target and an EMT marker in thyroid cancer, suggesting a role for this protein in the progression of this type of tumor. Papillary thyroid carcinomas (PTCs) are usually indolent lesions. However, metastatic spreading occurs in about 5% of the cases. The identification of molecular markers that could early predict the metastatic potential of these lesions would be strategic to design more tailored approaches and reduce patients overtreatment. In this work, we assessed the role of CDH6 in the metastatic progression of thyroid cancer. We showed that loss of CDH6 expression profoundly changes cellular architecture, alters the inter-cellular interaction modalities and attenuates EMT features in thyroid cancer cells. Using a yeast two-hybrid screening approach, based on a thyroid cancer patients library, we showed that CDH6 directly interacts with GABARAP, BNIP3 and BNIP3L, and that through these interactions CDH6 restrains autophagy and promotes re-organization of mitochondrial network through a DRP1-mediated mechanism. Analysis of the LIR domains suggests that the interaction with the autophagic machinery may be a common feature of many cadherin family members. Finally, the analysis of CDH6 expression in a unique cohort of human PTCs showed that CDH6 expression marks specifically EMT cells. and it is strongly associated with metastatic behavior and worse outcome of PTCs.
Collapse
Affiliation(s)
- M Gugnoni
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - V Sancisi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - G Gandolfi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - G Manzotti
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - M Ragazzi
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - D Giordano
- Otolaryngology Unit, Department of General Surgery and Specialistic Unit, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - I Tamagnini
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - M Tigano
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - A Frasoldati
- Endocrinology Unit, Department of General Surgery and Specialistic Unit, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - S Piana
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - A Ciarrocchi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| |
Collapse
|
24
|
Zhou S, Tang X, Tang F. Krüppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis. Tumour Biol 2016; 37:1505-1513. [PMID: 26662959 PMCID: PMC4842221 DOI: 10.1007/s13277-015-4588-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factor (KLF) family is highly conserved zinc finger transcription factors that regulate cell proliferation, differentiation, apoptosis, and migration. KLF17 is a member of the KLF family. Recent studies have demonstrated that KLF17 low expression and inactivation are caused by microRNA, gene mutation, and loss of heterozygosity in human tumors, which participates in tumor progression. KLF17 low expression increases cancer metastatic viability; its mechanism is that low KLF17 mediates epithelial-mesenchymal transition (EMT) through regulating EMT-related genes expression; the reduced-KLF17 also increases cancer metastasis though upregulating inhibitor of DNA binding 1 (ID1). Additionally, mutant p53 proteins are capable of developing a complex with KLF17, which mediate the depletion of KLF17 inhibiting EMT gene transcription and increases cancer metastasis. KLF17 downregulation also mediates the activation of TGF-β pathway.
Collapse
Affiliation(s)
- Shan Zhou
- Medical Research Center and Clinical Laboratory, Zhuhai People’s Hospital and Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000 Guangdong China
| | - Xiaowei Tang
- Metallurgical Science and Engineering, Central South University, 21# Lushan South Road, Changsha, 410083 China
| | - Faqing Tang
- Medical Research Center and Clinical Laboratory, Zhuhai People’s Hospital and Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000 Guangdong China
| |
Collapse
|
25
|
Zane M, Scavo E, Catalano V, Bonanno M, Todaro M, De Maria R, Stassi G. Normal vs cancer thyroid stem cells: the road to transformation. Oncogene 2015; 35:805-15. [PMID: 25961919 DOI: 10.1038/onc.2015.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023]
Abstract
Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells, responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs) remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that occur during thyroid cancer development. Understanding the fine mechanisms that regulate tumour transformation may provide new ground for clinical intervention in terms of prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- M Zane
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - E Scavo
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - V Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - M Bonanno
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - M Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - G Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther 2014; 22:1407-1415. [PMID: 24827908 DOI: 10.1038/mt.2014.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The inhibitor of differentiation (ID) proteins are helix-loop-helix transcriptional repressors with established roles in stem cell self-renewal, lineage commitment, and niche interactions. While deregulated expression of ID proteins in cancer was identified more than a decade ago, emerging evidence has revealed a central role for ID proteins in neoplastic progression of multiple tumor types that often mirrors their function in physiological stem and progenitor cells. ID proteins are required for the maintenance of cancer stem cells, self-renewal, and proliferation in a range of malignancies. Furthermore, ID proteins promote metastatic dissemination through their role in remodeling the tumor microenvironment and by promoting tumor-associated endothelial progenitor cell proliferation and mobilization. Here, we discuss the latest findings in this area and the clinical opportunities that they provide.
Collapse
|
27
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
28
|
Abstract
The family of inhibitor of differentiation (Id) proteins is a group of evolutionarily conserved molecules, which play important regulatory roles in organisms ranging from Drosophila to humans. Id proteins are small polypeptides harboring a helix-loop-helix (HLH) motif, which are best known to mediate dimerization with other basic HLH proteins, primarily E proteins. Because Id proteins do not possess the basic amino acids adjacent to the HLH motif necessary for DNA binding, Id proteins inhibit the function of E protein homodimers, as well as heterodimers between E proteins and tissue-specific bHLH proteins. However, Id proteins have also been shown to have E protein-independent functions. The Id genes are broadly but differentially expressed in a variety of cell types. Transcription of the Id genes is controlled by transcription factors such as C/EBPβ and Egr as well as by signaling pathways triggered by different stimuli, which include bone morphogenic proteins, cytokines, and ligands of T cell receptors. In general, Id proteins are capable of inhibiting the differentiation of progenitors of different cell types, promoting cell-cycle progression, delaying cellular senescence, and facilitating cell migration. These properties of Id proteins enable them to play significant roles in stem cell maintenance, vasculogenesis, tumorigenesis and metastasis, the development of the immune system, and energy metabolism. In this review, we intend to highlight the current understanding of the function of Id proteins and discuss gaps in our knowledge about the mechanisms whereby Id proteins exert their diverse effects in multiple cellular processes.
Collapse
Affiliation(s)
- Flora Ling
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bin Kang
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiao-Hong Sun
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
29
|
Sancisi V, Gandolfi G, Ragazzi M, Nicoli D, Tamagnini I, Piana S, Ciarrocchi A. Cadherin 6 is a new RUNX2 target in TGF-β signalling pathway. PLoS One 2013; 8:e75489. [PMID: 24069422 PMCID: PMC3772092 DOI: 10.1371/journal.pone.0075489] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/15/2013] [Indexed: 01/07/2023] Open
Abstract
Modifications in adhesion molecules profile may change the way tumor cells interact with the surrounding microenvironment. The Cadherin family is a large group of transmembrane proteins that dictate the specificity of the cellular interactions. The Cadherin switch that takes place during epithelial-mesenchymal transition (EMT) contributes to loosening the rigid organization of epithelial tissues and to enhancing motility and invasiveness of tumor cells. Recently, we found Cadherin-6 (CDH6, also known as K-CAD) highly expressed in thyroid tumor cells that display mesenchymal features and aggressive phenotype, following the overexpression of the transcriptional regulator Id1. In this work, we explored the possibility that CDH6 is part of the EMT program in thyroid tumors. We demonstrate that CDH6 is a new transforming growth factor-β (TGF-β) target and that its expression is modulated similarly to other EMT mesenchymal markers, both in vitro and in thyroid tumor patients. We show for the first time that CDH6 is expressed in human thyroid carcinomas and that its expression is enhanced at the invasive front of the tumor. Finally, we show that CDH6 is under the control of the transcription factor RUNX2, which we previously described as a crucial mediator of the Id1 pro-invasive function in thyroid tumor cells. Overall, these observations provide novel information on the mechanism of the EMT program in tumor progression and indicate CDH6 as a potential regulator of invasiveness in thyroid tumors.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Nicoli
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Ione Tamagnini
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
- * E-mail:
| |
Collapse
|
30
|
Guo P, Lan J, Ge J, Mao Q, Qiu Y. ID1 regulates U87 human cell proliferation and invasion. Oncol Lett 2013; 6:921-926. [PMID: 24137437 PMCID: PMC3796389 DOI: 10.3892/ol.2013.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/08/2013] [Indexed: 12/24/2022] Open
Abstract
Despite therapeutic advances, the prognosis of patients diagnosed with malignant glioma has not improved in recent years. In particular, the molecular mechanisms that mediate glioma invasion remain poorly understood. The importance of ID1 in promoting tumor invasion and metastasis has recently emerged and a role for ID1 as a possible molecular marker of tumor aggressiveness has been proposed. To investigate the biological function of ID1 in glioblastomas, ID1-silenced U87 glioblastoma multiforme (GBM) cells were constructed using a small hairpin RNA (shRNA) sequence. The effect of the knockdown of ID1 on proliferation and invasion in these cells was analyzed using the 5-bromo-2′-deoxy-uridine cell proliferation, Transwell invasion, scratch and cell adhesion assays. Compared with the controls, the U87 cells expressing ID1-shRNA exhibited a significantly decreased proliferation and invasion capacity (P<0.05), as well as increased cell adhesion. Furthermore, silencing ID1 reduced the expression of c-Myc, cyclin D1 and β-catenin, while increasing E-cadherin expression in U87 cells. This study showed that ID1 regulates the metastatic potential of GBM cells by controlling the epithelial-mesenchymal transition. Therefore, ID1 is a potential prognostic indicator and therapeutic target in glioblastomas.
Collapse
Affiliation(s)
- Pin Guo
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | | | | | | | | |
Collapse
|
31
|
Strong N, Millena AC, Walker L, Chaudhary J, Khan SA. Inhibitor of differentiation 1 (Id1) and Id3 proteins play different roles in TGFβ effects on cell proliferation and migration in prostate cancer cells. Prostate 2013; 73:624-33. [PMID: 23060149 PMCID: PMC4018743 DOI: 10.1002/pros.22603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND In prostate cancer cells, transforming growth factor β (TGFβ) inhibits proliferation in earlier stages of the disease; however, the cancer cells become refractory to growth inhibitory effects in advanced stages where TGFβ promotes cancer progression and metastasis. Inhibitor of differentiation (Id) family of closely related proteins (Id1-Id4) are dominant negative regulators and basic helix loop helix (bHLH) transcription factors and in general promote proliferation, and inhibit differentiation. In the present study, we have investigated the role of Id1 and Id3 proteins in the growth inhibitory effects of TGFβ on prostate cancer cells. METHODS The effect of TGF β on proliferation and Id1 and Id3 expression were investigated in PZ-HPV7, DU145, and PC3 cells. Id1 silencing through siRNA was also used in DU145 and PC3 cells to examine its role in anti-proliferative and migratory effects of TGFβ. RESULTS TGFβ increased expression of Id1 and Id3 in all cell lines followed by a later down regulation of Id1 in PZ-HPV7 expression and DU145 cells but not in PC3 cells. Id3 expression remained elevated in all three cell lines. This loss of Id1 protein correlated with an increase of CDKNI p21. Id1 knockdown in both DU145 and PC3 cells resulted in decreased proliferation. However, while TGFβ caused a further decrease in proliferation of DU145, but had no further effects in PC3 cells. Knockdown of Id1 or Id3 inhibited TGFβ1induced migration in PC3 cells. CONCLUSIONS These findings suggest an essential role of Id1 and Id3 in TGFβ1 effects on proliferation and migration in prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Shafiq A. Khan
- Correspondence to: Shafiq A. Khan, PhD, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA 30314.
| |
Collapse
|
32
|
Sancisi V, Borettini G, Maramotti S, Ragazzi M, Tamagnini I, Nicoli D, Piana S, Ciarrocchi A. Runx2 isoform I controls a panel of proinvasive genes driving aggressiveness of papillary thyroid carcinomas. J Clin Endocrinol Metab 2012; 97:E2006-15. [PMID: 22821892 PMCID: PMC3462932 DOI: 10.1210/jc.2012-1903] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT The ability of tumor cells to invade adjacent tissues is governed by a complicated network of molecular signals, most of which have not yet been identified. In a recent work, we reported that the transcriptional regulator Id1 contributes to thyroid cancer progression by powering the invasion capacity of tumor cells. OBJECTIVE The intent of this work was to further investigate the biology of invasive thyroid tumors, through the analysis of the molecular interactions existing between Id1 and some of its target genes and through the characterization of the function of these factors in the progression of thyroid tumors. RESULTS We showed that Id1 controls the expression of the Runx2 isoform I and that this transcription factor plays a central role in mediating the Id1 proinvasive function in thyroid tumor cells. We demonstrated that Runx2 regulates proliferation, migration, and invasiveness by activating a panel of genes involved in matrix degradation and cellular invasion, which we previously identified as Id1 target genes in thyroid tumor cells. Finally, we show that Runx2 is strongly expressed in metastatic human thyroid tumors both at the primary site and in metastases. CONCLUSION Overall, our experiments demonstrate the existence of a previously unknown molecular axis that controls thyroid tumor invasiveness by altering the ability of tumor cells to interact with the surrounding microenvironment. These factors could prove to be valuable markers that permit early diagnosis of aggressive thyroid tumors.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Molecular Biology, Department of Oncology, Azienda Ospedaliera Arcispedale S. Maria Nuova, Istituto di Ricovero e Cura a Carattere Scientifico, viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ao J, Meng J, Zhu L, Nie H, Yang C, Li J, Gu J, Lin Q, Long W, Dong X, Li C. Activation of androgen receptor induces ID1 and promotes hepatocellular carcinoma cell migration and invasion. Mol Oncol 2012; 6:507-15. [PMID: 22819717 DOI: 10.1016/j.molonc.2012.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 02/07/2023] Open
Abstract
Androgen receptor (AR) activity is associated with cancer development and progression. In hepatocellular carcinoma (HCC), AR contributes to HCC incidence, but the role of AR in HCC cell migration and invasion remains largely unknown. In this study, we found that AR was expressed at high levels in a subgroup of HCC cell lines with high metastatic potential. Experiments using lentiviral overexpression or small hairpin RNA knockdown of AR as well as activation of AR by its ligand indicated that AR activation promoted HCC cell migration and invasion. We also found that AR activation enhanced the expression of a metastasis-promoting gene, ID1, which led to increased HCC cell migration and invasion. An AR antagonist was able to block this process, suggesting that AR activation in AR-positive HCC may be therapeutically inhibited as a potential intervention strategy.
Collapse
Affiliation(s)
- Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|