1
|
Xian L, Xiong Y, Qin L, Wei L, Zhou S, Wang Q, Fu Q, Chen M, Qin Y. Jun/Fos promotes migration and invasion of hepatocellular carcinoma cells by enhancing BORIS promoter activity. Int J Biochem Cell Biol 2024; 169:106540. [PMID: 38281696 DOI: 10.1016/j.biocel.2024.106540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The Brother of the Regulator of Imprinted Sites (BORIS), as a specific indicator of hepatocellular carcinoma, exhibits a significant increase in expression. However, its upstream regulatory network remains enigmatic. Previous research has indicated a strong correlation between the Hippo pathway and the progression of hepatocellular carcinoma. It is well established that the Activator Protein-1 (AP-1) frequently engages in interactions with the Hippo pathway. Thus, we attempt to prove whether Jun and Fos, a major member of the AP-1 family, are involved in the regulation of BORIS expression. Bioinformatics analysis revealed the existence of binding sites for Jun and Fos within the BORIS promoter. Through a series of overexpression and knockdown experiments, we corroborated that Jun and Fos have the capacity to augment BORIS expression, thereby fostering the migration and invasion of hepatocellular carcinoma cells. Moreover, Methylation-Specific PCR and Bisulfite Sequencing PCR assays revealed that Jun and Fos do not have a significant impact on the demethylation of the BORIS promoter. However, luciferase reporter and chromatin immunoprecipitation experiments substantiated that Jun and Fos could directly bind to the BORIS promoter, thereby enhancing its transcription. In conclusion, these results suggest that Jun and Fos can promote the development of hepatocellular carcinoma by directly regulating the expression of BORIS. These findings may provide experimental evidence positioning BORIS as a novel target for the clinical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qinda Wang
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Mingmei Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
2
|
Munteanu R, Tomuleasa C, Iuga CA, Gulei D, Ciuleanu TE. Exploring Therapeutic Avenues in Lung Cancer: The Epigenetic Perspective. Cancers (Basel) 2023; 15:5394. [PMID: 38001653 PMCID: PMC10670535 DOI: 10.3390/cancers15225394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung cancer, primarily non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), is distinguished by its high prevalence and marked mortality rates. Traditional therapeutic approaches, encompassing chemotherapy, radiation, and targeted therapies, frequently show limited efficacy due to acquired resistance and notable side effects. The objective of this review is to introduce a fresh perspective on the therapeutic strategies for lung cancer, emphasizing interventions targeting the epigenetic alterations often seen in this malignancy. This review presents the most recent advancements in the field, focusing on both past and current clinical trials related to the modulation of methylation patterns using diverse molecular agents. Furthermore, an in-depth analysis of the challenges and advantages of these methylation-modifying drugs will be provided, assessing their efficacy as individual treatments and their potential for synergy when integrated with prevailing therapeutic regimens.
Collapse
Affiliation(s)
- Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
| | - Tudor Eliade Ciuleanu
- Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Oncology, Prof. Dr. Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Akhtar MS, Akhter N, Talat A, Alharbi RA, Sindi AA, Klufah F, Alyahyawi HE, Alruwetei A, Ahmad A, Zamzami MA, Deo SVS, Husain SA, Badi OA, Khan MJ. Association of mutation and expression of the brother of the regulator of imprinted sites (BORIS) gene with breast cancer progression. Oncotarget 2023; 14:528-541. [PMID: 37235839 PMCID: PMC10219660 DOI: 10.18632/oncotarget.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION The BORIS, 11 zinc-finger transcription factors, is a member of the cancer-testis antigen (CTA) family. It is mapped to chromosome number 20q13.2 and this region is genetically linked to the early onset of breast cancer. The current study analyzed the correlation between BORIS mutations and the expression of the protein in breast cancer cases. MATERIALS AND METHODS A population-based study including a total of 155 breast cancer tissue samples and an equal number of normal adjacent tissues from Indian female breast cancer patients was carried out. Mutations of the BORIS gene were detected by polymerase chain reaction-single standard confirmation polymorphisms (PCR-SSCP) and automated DNA sequencing and by immunohistochemistry for BORIS protein expression were performed. The observed findings were correlated with several clinicopathological parameters to find out the clinical relevance of associations. RESULTS Of all the cases 16.12% (25/155) showed mutations in the BORIS gene. The observed mutations present on codon 329 are missense, leading to Val> Ile (G>A) change on exon 5 of the BORIS gene. A significant association was observed between mutations of the BORIS gene and some clinicopathological features like nodal status (p = 0.013), estrogen receptor (ER) expression (p = 0.008), progesterone receptor (PR) expression (p = 0.039), clinical stage (p = 0.010) and menopausal status (p = 0.023). The protein expression analysis showed 20.64% (32/155) samples showing low or no expression (+), 34.19% (53/155) with moderate expression (++), and 45.17% (70/155) showing high expression (+++) of BORIS protein. A significant association was observed between the expression of BORIS protein and clinicopathological features like clinical stage (p = 0.013), nodal status (p = 0.049), ER expression (p = 0.039), and PR expression (p = 0.027). When mutation and protein expression were correlated in combination with clinicopathological parameters a significant association was observed in the category of high (+++) level of BORIS protein expression (p = 0.017). CONCLUSION The BORIS mutations and high protein expression occur frequently in carcinoma of the breast suggesting their association with the onset and progression of breast carcinoma. Further, the BORIS has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naseem Akhter
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Arshi Talat
- Department of Orthodontics and Dentofacial Orthopedics, ITS Dental College, Hospital and Research Centre, Greater Noida, Delhi-NCR, India
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A.A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Faisal Klufah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hanan E. Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - SVS Deo
- Department of Surgical Oncology, BRA- IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Osama A. Badi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Zhou S, Li L, Zhang M, Qin Y, Li B. The function of brother of the regulator of imprinted sites in cancer development. Cancer Gene Ther 2023; 30:236-244. [PMID: 36376421 DOI: 10.1038/s41417-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
As Douglas Hanahan and Robert Weinberg compiled, there are nine hallmarks of cancer that are conducive to cancer cell development and survival. Previous studies showed that brother of the regulator of imprinted sites (BORIS) might promote cancer progression through these aspects. The competition between BORIS and CCCTC-binding factor (CTCF), which is crucial in the formation of chromatin loops, affects the normal function of CTCF and leads to neoplasia and deformity. In addition, BORIS belongs to the cancer-testis antigen families, which are potential targets in cancer diagnosis and treatment. Herein, we discuss the function and mechanisms of BORIS, especially in cancer development.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, 37 Guo Xue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
5
|
Zuo BW, Yao WX, Fang MD, Ren J, Tu LL, Fan RJ, Zhang YM. Boris knockout eliminates AOM/DSS-induced in situ colorectal cancer by suppressing DNA damage repair and inflammation. Cancer Sci 2023; 114:1972-1985. [PMID: 36692143 PMCID: PMC10154901 DOI: 10.1111/cas.15732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.
Collapse
Affiliation(s)
- Bo-Wen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Wan-Xin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Meng-Die Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ling-Lan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Run-Jie Fan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yan-Mei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Zhang Y, Fang M, Li S, Xu H, Ren J, Tu L, Zuo B, Yao W, Liang G. BTApep-TAT peptide inhibits ADP-ribosylation of BORIS to induce DNA damage in cancer. Mol Cancer 2022; 21:158. [PMID: 35918747 PMCID: PMC9344678 DOI: 10.1186/s12943-022-01621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brother of regulator of imprinted sites (BORIS) is expressed in most cancers and often associated with short survival and poor prognosis in patients. BORIS inhibits apoptosis and promotes proliferation of cancer cells. However, its mechanism of action has not been elucidated, and there is no known inhibitor of BORIS. METHODS A phage display library was used to find the BORIS inhibitory peptides and BTApep-TAT was identified. The RNA sequencing profile of BTApep-TAT-treated H1299 cells was compared with that of BORIS-knockdown cells. Antitumor activity of BTApep-TAT was evaluated in a non-small cell lung cancer (NSCLC) xenograft mouse model. BTApep-TAT was also used to investigate the post-translational modification (PTM) of BORIS and the role of BORIS in DNA damage repair. Site-directed mutants of BORIS were constructed and used for investigating PTM and the function of BORIS. RESULTS BTApep-TAT induced DNA damage in cancer cells and suppressed NSCLC xenograft tumor progression. Investigation of the mechanism of action of BTApep-TAT demonstrated that BORIS underwent ADP ribosylation upon double- or single-strand DNA damage. Substitution of five conserved glutamic acid (E) residues with alanine residues (A) between amino acids (AAs) 198 and 228 of BORIS reduced its ADP ribosylation. Inhibition of ADP ribosylation of BORIS by a site-specific mutation or by BTApep-TAT treatment blocked its interaction with Ku70 and impaired the function of BORIS in DNA damage repair. CONCLUSIONS The present study identified an inhibitor of BORIS, highlighted the importance of ADP ribosylation of BORIS, and revealed a novel function of BORIS in DNA damage repair. The present work provides a practical method for the future screening or optimization of drugs targeting BORIS.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shouye Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, 311258, Zhejiang, China
| | - Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wanxin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Guang Liang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China. .,College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
AMPKα2/HNF4A/BORIS/GLUT4 pathway promotes hepatocellular carcinoma cell invasion and metastasis in low glucose microenviroment. Biochem Pharmacol 2022; 203:115198. [DOI: 10.1016/j.bcp.2022.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
8
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. NPJ Syst Biol Appl 2022; 8:5. [PMID: 35132075 PMCID: PMC8821627 DOI: 10.1038/s41540-022-00214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy due to the lack of reliable biomarkers, effective treatment, and chemoresistance. Improving the diagnosis and the development of targeted therapies is still needed. The molecular pathomechanisms driving HGSC progression are not fully understood though crucial for effective diagnosis and identification of novel targeted therapy options. The oncogene CTCFL (BORIS), the paralog of CTCF, is a transcriptional factor highly expressed in ovarian cancer (but in rarely any other tissue in females) with cancer-specific characteristics and therapeutic potential. In this work, we seek to understand the regulatory functions of CTCFL to unravel new target genes with clinical relevance. We used in vitro models to evaluate the transcriptional changes due to the presence of CTCFL, followed by a selection of gene candidates using de novo network enrichment analysis. The resulting mechanistic candidates were further assessed regarding their prognostic potential and druggability. We show that CTCFL-driven genes are involved in cytoplasmic membrane functions; in particular, the PI3K-Akt initiators EGFR1 and VEGFA, as well as ITGB3 and ITGB6 are potential drug targets. Finally, we identified the CTCFL targets ACTBL2, MALT1 and PCDH7 as mechanistic biomarkers to predict survival in HGSC. Finally, we elucidated the value of CTCFL in combination with its targets as a prognostic marker profile for HGSC progression and as putative drug targets.
Collapse
|
10
|
Li Z, Zhou X, Cai S, Fan J, Wei Z, Chen Y, Cao G. Key roles of CCCTC-binding factor in cancer evolution and development. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The processes of cancer and embryonic development have a partially overlapping effect. Several transcription factor families, which are highly conserved in the evolutionary history of biology, play a key role in the development of cancer and are often responsible for the pivotal developmental processes such as cell survival, expansion, senescence, and differentiation. As an evolutionary conserved and ubiquitously expression protein, CCCTC-binding factor (CTCF) has diverse regulatory functions, including gene regulation, imprinting, insulation, X chromosome inactivation, and the establishment of three-dimensional (3D) chromatin structure during human embryogenesis. In various cancers, CTCF is considered as a tumor suppressor gene and plays homeostatic roles in maintaining genome function and integrity. However, the mechanisms of CTCF in tumor development have not been fully elucidated. Here, this review will focus on the key roles of CTCF in cancer evolution and development (Cancer Evo-Dev) and embryogenesis.
Collapse
Affiliation(s)
- Zishuai Li
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xinyu Zhou
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shiliang Cai
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Junyan Fan
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Zhimin Wei
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yifan Chen
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Elastic Correlation Adjusted Regression (ECAR) scores for high dimensional variable importance measuring. Sci Rep 2021; 11:23354. [PMID: 34857823 PMCID: PMC8640025 DOI: 10.1038/s41598-021-02706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Investigation of the genetic basis of traits or clinical outcomes heavily relies on identifying relevant variables in molecular data. However, characteristics such as high dimensionality and complex correlation structures of these data hinder the development of related methods, resulting in the inclusion of false positives and negatives. We developed a variable importance measure method, termed the ECAR scores, that evaluates the importance of variables in the dataset. Based on this score, ranking and selection of variables can be achieved simultaneously. Unlike most current approaches, the ECAR scores aim to rank the influential variables as high as possible while maintaining the grouping property, instead of selecting the ones that are merely predictive. The ECAR scores' performance is tested and compared to other methods on simulated, semi-synthetic, and real datasets. Results showed that the ECAR scores improve the CAR scores in terms of accuracy of variable selection and high-rank variables' predictive power. It also outperforms other classic methods such as lasso and stability selection when there is a high degree of correlation among influential variables. As an application, we used the ECAR scores to analyze genes associated with forced expiratory volume in the first second in patients with lung cancer and reported six associated genes.
Collapse
|
12
|
Rao GK, Makani VKK, Mendonza JJ, Edathara PM, Patel N, Ramakrishna M, Cilamkoti P, Chiring Phukon J, Jose J, Bhadra U, Bhadra MP. Downregulation of BORIS/CTCFL leads to ROS-dependent cellular senescence and drug sensitivity in MYCN-amplified neuroblastoma. FEBS J 2021; 289:2915-2934. [PMID: 34854238 DOI: 10.1111/febs.16309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Brother of Regulator of Imprinted Sites (BORIS) or CCCTC-binding factor like (CTCFL) is a nucleotide-binding protein, aberrantly expressed in various malignancies. Expression of BORIS has been found to be associated with the expression of oncogenes which regulate the reactive oxygen species (ROS) biogenesis, DNA double-strand break repair, regulation of stemness, and induction of cellular senescence. In the present study, we have analyzed the effects of knockdown of BORIS, a potential oncogene, on the induction of senescence and tumor suppression. Loss of BORIS downregulated the expression of critical oncogenes such as BMI1, Akt, MYCN, and STAT3, whereas overexpression increased their respective expression levels in MYCN-amplified neuroblastoma cells. BORIS knockdown exhibited high levels of ROS biogenesis, indicating an upregulated mitochondrial superoxide production and thereby induction of senescence. Our study also showed that the loss of BORIS facilitated cellular senescence through the disruption of telomere integrity via altering the expression of various proteins required for telomere capping (POT1, TRF2, and TIN1). In addition to affecting ROS production and DNA damage, BORIS knockdown sensitized the cells toward chemotherapeutic drugs and induced apoptosis. Tumor induction studies on in vivo xenograft mouse models showed that cells with loss of BORIS/CTCFL failed to induce tumors. From our study, we conclude that silencing BORIS/CTCFL influences tumor growth and proliferation by regulating key oncogenes. The results also indicated that the BORIS knockdown can cause cellular senescence and upon a combinatorial treatment with chemotherapeutic drugs can induce enhanced drug sensitivity in MYCN-amplified neuroblastoma cells.
Collapse
Affiliation(s)
- Garikapati Koteswara Rao
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Venkata Krishna Kanth Makani
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Jolly Janette Mendonza
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | | | - Nibedita Patel
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Maresha Ramakrishna
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Priyanka Cilamkoti
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Jedy Jose
- Animal House Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
13
|
Rivero-Hinojosa S, Pugacheva EM, Kang S, Méndez-Catalá CF, Kovalchuk AL, Strunnikov AV, Loukinov D, Lee JT, Lobanenkov VV. The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nat Commun 2021; 12:3846. [PMID: 34158481 PMCID: PMC8219828 DOI: 10.1038/s41467-021-24140-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.
| | - Elena M Pugacheva
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sungyun Kang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Claudia Fabiola Méndez-Catalá
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Genetics and Molecular Oncology, Building A4, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, State of Mexico, Mexico
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, Guangzhou, China
| | - Dmitri Loukinov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Victor V Lobanenkov
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Sati L, Soygur B, Goksu E, Bassorgun CI, McGrath J. CTCFL expression is associated with cerebral vascular abnormalities. Tissue Cell 2021; 72:101528. [PMID: 33756271 DOI: 10.1016/j.tice.2021.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/06/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
CTCFL is expressed in testis, oocytes and embryonic stem cells, and is aberrantly expressed in malignant cells, and is classified as a cancer-testis gene. We have previously shown by using a tetracycline-inducible Ctcfl transgene that inappropriate expression of Ctcfl negatively impacts fetal development and causes early postnatal lethality in the mouse. The affected pups displayed severe vascular abnormalities and localized hemorrhages in the brain evocative of cerebral cavernous malformations (CCM) and arteriovenous malformations (AVM) in humans. Thus, we aim to analyze; a) the presence of CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 in Ctcfl transgenic animals and, b) whether there is CTCFL expression in human CCM and AVM tissues. Ctcfl transgenic animals exhibited increased CD31 expression in vascular areas of the dermis and periadnexal regions but no difference was observed for vWF and α-SMA expressions. CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 were aberrantly expressed in coronal sections of the head in transgenic animals. We also observed CTCFL expression in human CCMs and AVMs. The induced expression of CTCFL resulting in vascular brain malformations in mice combined with the presence of CTCFL in human vascular malformations provide new insights into the role of this gene in vascular development in humans.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ethem Goksu
- Department of Neurosurgery, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - James McGrath
- Departments of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
16
|
Wu X, Lu M, Yun D, Gao S, Chen S, Hu L, Wu Y, Wang X, Duan E, Cheng CY, Sun F. Single cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet 2021; 31:321-333. [PMID: 33438010 DOI: 10.1093/hmg/ddab006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
During human spermatogenesis, germ cells undergo dynamic changes in chromatin organization/re-packaging and in transcriptomes. In order to better understand the underlying mechanism(s), scATAC-Seq of 5376 testicular cells from 3 normal men were performed. Data were analyzed in parallel with the scRNA-Seq data of human testicular cells. Ten germ cell types associated with spermatogenesis and 6 testicular somatic cell types were identified, along with 142 024 peaks located in promoter, genebody and CpG Island. We had examined chromatin accessibility of all chromosomes, with chromosomes 19 and 17 emerged as the leading chromosomes that displayed high chromatin accessibility. In accessible chromatin regions, transcription factor (TF)-binding sites were identified and specific motifs with high frequencies at different spermatogenesis stages were detected, including CTCF, BORIS, NFY, DMRT6, EN1, ISL1 and GLI3. Two most notable observations were noted. First, TLE3 was specifically expressed in differentiating spermatogonia. Second, PFN4 was found to be involved in actin cytoskeletal organization during meiosis. More important, unique regions upstream of PFN4 and TLE3 were shown to display high accessibility, illustrating their significance in supporting human spermatogenesis.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Mujun Lu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Shitao Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, China
| | - Yunhao Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaorong Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
17
|
Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, Goldman AR, Wickramasinghe J, Tang HY, Speicher DW, Showe L, Kossenkov AV, Lieberman PM. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog 2021; 17:e1009208. [PMID: 33497421 PMCID: PMC7864721 DOI: 10.1371/journal.ppat.1009208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/05/2021] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-lymphocytes through a highly orchestrated reprogramming of host chromatin structure, transcription and metabolism. Here, we use a multi-omics-based approach to investigate these underlying mechanisms. ATAC-seq analysis of cellular chromatin showed that EBV alters over a third of accessible chromatin during the infection time course, with many of these sites overlapping transcription factors such as PU.1, Interferon Regulatory Factors (IRFs), and CTCF. Integration of RNA-seq analysis identified a complex transcriptional response and associations with EBV nuclear antigens (EBNAs). Focusing on EBNA1 revealed enhancer-binding activity at gene targets involved in nucleotide metabolism, supported by metabolomic analysis which indicated that adenosine and purine metabolism are significantly altered by EBV immortalization. We further validated that adenosine deaminase (ADA) is a direct and critical target of the EBV-directed immortalization process. These findings reveal that purine metabolism and ADA may be useful therapeutic targets for EBV-driven lymphoid cancers.
Collapse
Affiliation(s)
| | - Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Aaron R. Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Louise Showe
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
19
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Zhang Y, Song Y, Li C, Ren J, Fang M, Fang J, Wang X. Brother of regulator of imprinted sites inhibits cisplatin-induced DNA damage in non-small cell lung cancer. Oncol Lett 2020; 20:251. [PMID: 32994814 PMCID: PMC7509674 DOI: 10.3892/ol.2020.12114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin (DDP) chemotherapy is the primary modality of treatment for non-small cell lung cancer (NSCLC). However, due to the occurrence of DDP resistance, only a limited number of patients benefit from this treatment regimen. Brother of Regulator of Imprinted Sites (BORIS) is expressed elevated in NSCLC. Whether BORIS is involved in the DDP resistance of NSCLC is currently undetermined. The association between BORIS expression and overall survival rate of 156 patients with NSCLC who received DDP chemotherapy was analyzed in the present study. In order to investigate the function of BORIS in DDP chemotherapy, BORIS was silenced or overexpressed in four NSCLC cell lines. The cell viabilities, apoptosis and DNA damage induced by DDP were evaluated in these cell lines. In addition, the regulations of DNA repair genes were assessed, including POLH, ERCC1, BRCA1, MSH6 and XPA. The present study demonstrated that high BORIS expression was associated with decreased overall survival rate in patients with NSCLC who received DDP chemotherapy. The patients who benefited and went into remission following DDP therapy expressed a relatively low level of BORIS, suggesting the potential function of BORIS in DDP resistance. Cell experiments revealed that NSCLC cells that had a higher proliferation rate and resisted DDP treatment expressed a relatively higher level of BORIS. Knockdown of BORIS in NSCLC cells induced DNA damage; inhibiting cell proliferation and sensitizing cells to DDP treatment. In contrast, BORIS overexpression suppressed DDP-induced DNA damage. Notably, the mismatch repair factor mutS homolog 6 (MSH6) was regulated by BORIS, indicating its association with BORIS-associated DDP resistance in NSCLC. The findings of the present study suggest that BORIS suppresses DNA damage and promotes the progression of NSCLC and DDP resistance. The present study indicates the potential application of BORIS in NSCLC therapy and prognosis.
Collapse
Affiliation(s)
- Yanmei Zhang
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongfei Song
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Chao Li
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Ren
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Mengdie Fang
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Jianfei Fang
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China.,Department of Pathology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaoju Wang
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
21
|
Context-Dependent Tumorigenic Effect of Testis-Specific Mitochondrial Protein Tiny Tim 2 in Drosophila Somatic Epithelia. Cells 2020; 9:cells9081842. [PMID: 32781577 PMCID: PMC7465004 DOI: 10.3390/cells9081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
We have undertaken a study towards understanding the effect of ectopic expression of testis proteins in the soma in Drosophila. Here, we show that in the larval neuroepithelium, ectopic expression of the germline-specific component of the inner mitochondrial translocation complex tiny tim 2 (ttm2) brings about cell autonomous hyperplasia and extension of G2 phase. In the wing discs, cells expressing ectopic ttm2 upregulate Jun N-terminal kinase (JNK) signaling, present extended G2, become invasive, and elicit non-cell autonomous G2 extension and overgrowth of the wild-type neighboring tissue. Ectopic tomboy20, a germline-specific member of the outer mitochondrial translocation complex is also tumorigenic in wing discs. Our results demonstrate the tumorigenic potential of unscheduled expression of these two testis proteins in the soma. They also show that a unique tumorigenic event may trigger different tumor growth pathways depending on the tissular context.
Collapse
|
22
|
Debaugny RE, Skok JA. CTCF and CTCFL in cancer. Curr Opin Genet Dev 2020; 61:44-52. [PMID: 32334335 PMCID: PMC7893514 DOI: 10.1016/j.gde.2020.02.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
Abstract
CTCF plays a key role in organizing chromatin into TAD structures but it can also function as a transcription factor. CTCFL (CTCF-like), the paralog of CTCF, is normally transiently expressed in pre-meiotic male germ cells together with ubiquitously expressed CTCF. It plays a unique role in spermatogenesis by regulating expression of testis-specific genes. Genetic alterations in CTCF and its paralog CTCFL have both been found in numerous cancers, but it remains unknown to what extent CTCFL deregulates transcription on its own or by opposing CTCF. Here, we discuss some of the potential mechanisms by which these two proteins could alter gene regulation and contribute to oncogenic transcriptional programs.
Collapse
Affiliation(s)
- Roxanne E Debaugny
- Dept. of Pathology, New York University Langone Health, New York, NY 10016, USA
| | - Jane A Skok
- Dept. of Pathology, New York University Langone Health, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Source of Dietary Fat in Pig Diet Affects Adipose Expression of Genes Related to Cancer, Cardiovascular, and Neurodegenerative Diseases. Genes (Basel) 2019; 10:genes10120948. [PMID: 31756991 PMCID: PMC6947373 DOI: 10.3390/genes10120948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
It has been known for many years that excessive consumption of saturated fats has proatherogenic properties, contrary to unsaturated fats. However, the molecular mechanism covering these effects is not fully understood. In this paper, we aimed to identify differentially expressed genes (DEGs) using RNA-sequencing, following feeding pigs with different sources of fat. After comparison of adipose samples from three dietary groups (rapeseed oil (n = 6), beef tallow (n = 5), coconut oil (n = 5)), we identified 29 DEGs (adjusted p-value < 0.05, fold change > 1.3) between beef tallow and rapeseed oil and 2 genes between coconut oil and rapeseed oil groups. No differentially expressed genes were observed between coconut oil and beef tallow groups. Almost all 29 DEGs between rapeseed oil and beef tallow groups are connected to neurodegenerative, cardiovascular diseases, or cancer (e.g., PLAU, CYBB, NCF2, ZNF217, CHAC1, CTCFL). Functional analysis of these genes revealed that they are associated with fluid shear stress response, complement and coagulation cascade, ROS signaling, neurogenesis, and regulation of protein binding and protein catabolic processes. Furthermore, gene set enrichment analysis (GSEA) of the whole datasets from all three comparisons suggests that both beef tallow and coconut oil may trigger changes in the expression level of genes crucial in the pathogenesis of civilization diseases.
Collapse
|
24
|
Yadav S, Bhagat SD, Gupta A, Samaiya A, Srivastava A, Shukla S. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer 2019; 19:1031. [PMID: 31675998 PMCID: PMC6823945 DOI: 10.1186/s12885-019-6257-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The deregulated alternative splicing of key glycolytic enzyme, Pyruvate Kinase muscle isoenzyme (PKM) is implicated in metabolic adaptation of cancer cells. The splicing switch from normal PKM1 to cancer-specific PKM2 isoform allows the cancer cells to meet their energy and biosynthetic demands, thereby facilitating the cancer cells growth. We have investigated the largely unexplored epigenetic mechanism of PKM splicing switch in head and neck cancer (HNC) cells. Considering the reversible nature of epigenetic marks, we have also examined the utility of dietary-phytochemical in reverting the splicing switch from PKM2 to PKM1 isoform and thereby inhibition of HNC tumorigenesis. METHODS We present HNC-patients samples, showing the splicing-switch from PKM1-isoform to PKM2-isoform analyzed via immunoblotting and qRT-PCR. We performed methylated-DNA-immunoprecipitation to examine the DNA methylation level and chromatin-immunoprecipitation to assess the BORIS (Brother of Regulator of Imprinted Sites) recruitment and polII enrichment. The effect of dietary-phytochemical on the activity of denovo-DNA-methyltransferase-3b (DNMT3B) was detected by DNA-methyltransferase-activity assay. We also analyzed the Warburg effect and growth inhibition using lactate, glucose uptake assay, invasion assay, cell proliferation, and apoptosis assay. The global change in transcriptome upon dietary-phytochemical treatment was assayed using Human Transcriptome Array 2.0 (HTA2.0). RESULTS Here, we report the role of DNA-methylation mediated recruitment of the BORIS at exon-10 of PKM-gene regulating the alternative-splicing to generate the PKM2-splice-isoform in HNC. Notably, the reversal of Warburg effect was achieved by employing a dietary-phytochemical, which inhibits the DNMT3B, resulting in the reduced DNA-methylation at exon-10 and hence, PKM-splicing switch from cancer-specific PKM2 to normal PKM1. Global-transcriptome-analysis of dietary-phytochemical-treated cells revealed its effect on alternative splicing of various genes involved in HNC. CONCLUSION This study identifies the epigenetic mechanism of PKM-splicing switch in HNC and reports the role of dietary-phytochemical in reverting the splicing switch from cancer-specific PKM2 to normal PKM1-isoform and hence the reduced Warburg effect and growth inhibition of HNC. We envisage that this approach can provide an effective way to modulate cancer-specific-splicing and thereby aid in the treatment of HNC.
Collapse
Affiliation(s)
- Sandhya Yadav
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Somnath D Bhagat
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Amit Gupta
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Atul Samaiya
- Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India
| | - Aasheesh Srivastava
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
25
|
Campbell MJ. Tales from topographic oceans: topologically associated domains and cancer. Endocr Relat Cancer 2019; 26:R611-R626. [PMID: 31505466 PMCID: PMC7664306 DOI: 10.1530/erc-19-0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
The 3D organization of the genome within the cell nucleus has come into sharp focus over the last decade. This has largely arisen because of the application of genomic approaches that have revealed numerous levels of genomic and chromatin interactions, including topologically associated domains (TADs). The current review examines how these domains were identified, are organized, how their boundaries arise and are regulated, and how genes within TADs are coordinately regulated. There are many examples of the disruption to TAD structure in cancer and the altered regulation, structure and function of TADs are discussed in the context of hormone responsive cancers, including breast, prostate and ovarian cancer. Finally, some aspects of the statistical insight and computational skills required to interrogate TAD organization are considered and future directions discussed.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Gong M, Yan C, Jiang Y, Meng H, Feng M, Cheng W. Genome-wide bioinformatics analysis reveals CTCFL is upregulated in high-grade epithelial ovarian cancer. Oncol Lett 2019; 18:4030-4039. [PMID: 31516605 PMCID: PMC6732990 DOI: 10.3892/ol.2019.10736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy that threatens the health of females. Previous studies have demonstrated that the survival outcomes of patients with different EOC grades varied. Therefore, the EOC grade is considered to serve as a distinctive prognostic factor. To date, the evaluation of ovarian cancer grade relies on pathological examination and a quantitative index for diagnosis is lacking. Furthermore, the dysregulation of genes has been demonstrated to exert pivotal functions in the carcinogenesis of EOCs. Therefore, the identification of effective biomarkers associated with EOC grade is of importance for the development of therapeutic regimens, and also contributes to the prediction of EOC prognosis. Microarrays have been increasingly applied for the identification of potential molecular biomarkers for numerous diseases including EOC. In the present study, four public microarray datasets (GSE26193, GSE63885, GSE30161 and GSE9891) were analyzed. A total of 6,103 upregulated probes corresponding to 5,766 genes, and 4,004 downregulated probes corresponding to 3,707 genes were identified in the GSE26193, GSE63885 and GSE30161 datasets. ALK and LTK ligand 2 was the most downregulated gene associated with the tumor grade, while CCCTC-binding factor like (CTCFL), EGF like domain multiple 6, radical S-adenosyl methionine domain containing 2 and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 were the most upregulated genes associated with EOC grade. The GSE9891 dataset was added for further analysis. Only one probe (1552368_at) encoding for CTCFL was identified to be consistently upregulated in the four examined datasets. Immunohistochemical analysis was used to detect the expression of CTCFL between low- and high-grade EOC tissues and revealed that the EOC grade was closely associated with CTCFL level. This was corroborated via the reverse transcription-quantitative polymerase chain reaction. Taken together, the results of the present study suggested that CTCFL is upregulated in high-grade epithelial ovarian cancer.
Collapse
Affiliation(s)
- Mi Gong
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingming Feng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
27
|
BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature 2019; 572:676-680. [PMID: 31391581 DOI: 10.1038/s41586-019-1472-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/11/2019] [Indexed: 11/09/2022]
Abstract
The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.
Collapse
|
28
|
Bergmaier P, Weth O, Dienstbach S, Boettger T, Galjart N, Mernberger M, Bartkuhn M, Renkawitz R. Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference. Nucleic Acids Res 2019; 46:7097-7107. [PMID: 29860503 PMCID: PMC6101590 DOI: 10.1093/nar/gky483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
Abstract
The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome. Here, we addressed the molecular features for this binding specificity. In contrast to CTCF we found CTCFL highly enriched at ‘open’ chromatin marked by H3K27 acetylation, H3K4 di- and trimethylation, H3K79 dimethylation and H3K9 acetylation plus the histone variant H2A.Z. CTCFL is enriched at transcriptional start sites and regions bound by transcription factors. Consequently, genes deregulated by CTCFL are highly cell specific. In addition to a chromatin-driven choice of binding sites, we determined nucleotide positions critical for DNA binding by CTCFL, but not by CTCF.
Collapse
Affiliation(s)
- Philipp Bergmaier
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Oliver Weth
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Sven Dienstbach
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Thomas Boettger
- Department Cardiac Development and Remodelling, Max-Planck-Institute, D61231 Bad Nauheim, Germany
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
29
|
Hillman JC, Pugacheva EM, Barger CJ, Sribenja S, Rosario S, Albahrani M, Truskinovsky AM, Stablewski A, Liu S, Loukinov DI, Zentner GE, Lobanenkov VV, Karpf AR, Higgins MJ. BORIS Expression in Ovarian Cancer Precursor Cells Alters the CTCF Cistrome and Enhances Invasiveness through GALNT14. Mol Cancer Res 2019; 17:2051-2062. [PMID: 31292201 DOI: 10.1158/1541-7786.mcr-19-0310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
High-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecologic cancer-related death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 coexpression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy. IMPLICATIONS: These studies provide evidence that aberrant expression of BORIS may play a role in the progression to HGSC by enhancing the migratory and invasive properties of FTSEC.
Collapse
Affiliation(s)
- Joanna C Hillman
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Carter J Barger
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sirinapa Sribenja
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Spencer Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mustafa Albahrani
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Dmitri I Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Adam R Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
30
|
Kim TN, Kim WT, Jeong MS, Mun MH, Kim MH, Lee JZ, Leem SH. Short rare minisatellite variant of BORIS-MS2 is related to bladder cancer susceptibility. Genes Genomics 2018; 41:249-256. [PMID: 30499053 DOI: 10.1007/s13258-018-0771-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND BORIS/CTCFL, a paralog of CTCF and member of the cancer-testicular antigen family, is abnormally activated in multiple cancers. OBJECTIVE We investigated the relationship between polymorphic variants of the BORIS minisatellite 2 (BORIS-MS2), located within the 5' upstream promoter region of BORIS, and bladder cancer. METHODS We used case-control study with 516 controls and 113 bladder cancer patients. To evaluate whether minisatellite variants play a role in BORIS expression, we examined the transcript levels of a reporter gene linked to these minisatellites in cell lines. We also examined BORIS expression in cancerous and non-cancerous bladder tissue. RESULTS A statistically significant association was identified between the short rare allele (13-repeat) and bladder cancer incidence (odds ratio (OR) 2.97, 95% confidence interval (CI) [1.14, 7.74]; P = 0.020). In particular, short rare alleles in the younger group (aged < 65) were associated with statistically significant increase in bladder cancer risk (OR 5.38, CI [1.32, 21.87]; P = 0.01). The BORIS-MS2 region acted as a negative regulator, and the expression level of the luciferase reporter in bladder cancer cells was less effectively inhibited than in normal cells. Furthermore, the expression of BORIS mRNA significantly differed (P < 0.05) between normal and cancerous muscle-invasive bladder cancer tissues, and relationship to clinical parameters was observed. CONCLUSIONS The short rare allele of BORIS-MS2 could be used to identify bladder cancer risk. BORIS expression levels have been shown to increase with the progression of bladder cancer, could be used as a biomarker for its progression.
Collapse
Affiliation(s)
- Tae Nam Kim
- Department of Urology, Medical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Won-Tae Kim
- Department of Biological Sciences, Dong-A University, Busan, 49315, South Korea
| | - Mi-So Jeong
- Department of Biological Sciences, Dong-A University, Busan, 49315, South Korea
| | - Mi-Hye Mun
- Department of Biological Sciences, Dong-A University, Busan, 49315, South Korea
| | - Min-Hye Kim
- Department of Biological Sciences, Dong-A University, Busan, 49315, South Korea
| | - Jeong Zoo Lee
- Department of Urology, Medical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Sun-Hee Leem
- Department of Biological Sciences, Dong-A University, Busan, 49315, South Korea.
| |
Collapse
|
31
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
32
|
Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in Cancer: An Analysis from Published Genomic Studies. High Throughput 2018; 7:ht7040030. [PMID: 30275357 PMCID: PMC6306835 DOI: 10.3390/ht7040030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
CTCF (CCCTC-binding factor) is a transcription regulator with hundreds of binding sites in the human genome. It has a main function as an insulator protein, defining together with cohesins the boundaries of areas of the genome called topologically associating domains (TADs). TADs contain regulatory elements such as enhancers which function as regulators of the transcription of genes inside the boundaries of the TAD while they are restricted from regulating genes outside these boundaries. This paper will examine the most common genetic lesions of CTCF as well as its related protein CTCFL (CTCF-like also called BORIS) in cancer using publicly available data from published genomic studies. Cancer types where abnormalities in the two genes are more common will be examined for possible associations with underlying repair defects or other prevalent genetic lesions. The putative functional effects in CTCF and CTCFL lesions will also be explored.
Collapse
|
33
|
Cheng D, He Z, Zheng L, Xie D, Dong S, Zhang P. PRMT7 contributes to the metastasis phenotype in human non-small-cell lung cancer cells possibly through the interaction with HSPA5 and EEF2. Onco Targets Ther 2018; 11:4869-4876. [PMID: 30147338 PMCID: PMC6098420 DOI: 10.2147/ott.s166412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) constitutes the leading cause of cancer death in humans. Previous studies revealed the essential role of the protein arginine methyltransferase 7 (PRMT7) in promoting metastasis in breast cancer. However, its function and potential mechanism in NSCLC remain unclear. Materials and methods The gene expression of PRMT7 between lung cancer tissues and normal tissues was studied with online database (http://medicalgenome.kribb.re.kr/GENT/). NSCLC cell lines with specific gene overexpression were constructed with lentivirus transduction. Matrigel invasion and colony formation assays were performed to evaluate the invasion and colony formation abilities. Co-immunoprecipitation coupled with mass spectrometry analysis was performed to explore the potential interaction proteins of PRMT7. Bioinformatic analysis was performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Results Online analysis of gene expression patterns revealed the relatively high expression of PRMT7 in lung cancer tissues. PRMT7 overexpression was able to promote the invasion and colony formation of A549 and SPC-A1 cells. A total of 19 in-common proteins shared by both NSCLC cell lines were identified to be interacting with PRMT7 and found to participate in a wide variety of pathways and protein–protein interactions according to bioinformatic analysis. Among them, HSPA5 and EEF2 were further investigated for their essential roles in PRMT7-promoted NSCLC cell invasion. Conclusion Our results suggested PRMT7 overexpression was able to promote metastasis in NSCLC possibly through the interaction with HSPA5 and EEF2, which provides the potential mechanism of oncogenesis in lung cancer.
Collapse
Affiliation(s)
- Dezhi Cheng
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China, .,Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifeng He
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangcheng Zheng
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyao Xie
- Department of Thoracic Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangwen Dong
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Peng Zhang
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
34
|
Abstract
CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.
Collapse
Affiliation(s)
- Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
35
|
Zhang Y, Ren J, Fang M, Wang X. Investigation of fusion gene expression in HCT116 cells. Oncol Lett 2017; 14:6962-6968. [PMID: 29181107 DOI: 10.3892/ol.2017.7055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/14/2017] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is the most common type of gastrointestinal cancer. A number of specific and sensitive biomarkers facilitate the diagnosis and monitoring of patients with colon cancer. Fusion genes are typically identified in cancer and a majority of the newly identified fusion genes are oncogenic in nature. Therefore, fusion genes are potential biomarkers and/or therapy targets in cancer. In the present study, the regulation of specific candidate fusion genes were investigated using Brother of the Regulator of Imprinted Sites (BORIS) in the HCT116 colon cancer cell line, which is a paralog of the fusion gene regulator CCCTC-binding factor (CTCF). The copy number of BORIS increased correspondingly to the progression of colorectal carcinoma from the M0 to the M1a stage. It was identified that EIF3E(e1)-RSPO2(e2), EIF3E(e1)-RSPO2(e3), PTPRK(e1)-RSPO3(e2), PTPRK(e7)-RSPO3(e2), TADA2A-MEF2B and MED13L-CD4 are fusion transcripts present in the transcriptome of the HCT116 colon cancer cell line. CDC42SE2-KIAAO146 is a genomic fusion transcript, which originates from DNA arrangement in HCT116 cells. BORIS suppresses the expression of EIF3E, RSPO2, PTPRK, RSPO3, TADA2A and CD4 to inhibit the expression of fusion transcripts in HCT116 cells. It was hypothesized that the fusion transcripts investigated in the present study may not be oncogenic in HCT116 cells. As BORIS is not colorectal carcinoma-specific, the fusion genes investigated may be a biomarker assemblage for monitoring the progression of colorectal carcinoma.
Collapse
Affiliation(s)
- Yanmei Zhang
- Molecular Medical Center, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Ren
- Molecular Medical Center, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang 310012, P.R. China
| | - Mengdie Fang
- Molecular Medical Center, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoju Wang
- Molecular Medical Center, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
36
|
Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci U S A 2017; 114:11440-11445. [PMID: 29073069 PMCID: PMC5664520 DOI: 10.1073/pnas.1708447114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in cancer epigenetics have shown the involvement of epigenetic abnormalities in the initiation and progression of cancer, but their role in cancer-specific aberrant splicing is not clear. The identification of upstream epigenetic regulators of cancer-specific splicing will enable us to therapeutically target aberrant splicing and provide an approach to cancer therapy. Here we have demonstrated a mechanism of intragenic DNA methylation-mediated regulation of alternative splicing by Brother of Regulator of Imprinted Sites (BORIS), which can contribute to breast cancer tumorigenesis by favoring the Warburg effect. The reversal of the Warburg effect was achieved by the inhibition of DNA methylation or down-regulation of BORIS, which may serve as a useful approach to inhibit the growth of breast cancer cells. Aberrant alternative splicing and epigenetic changes are both associated with various cancers, but epigenetic regulation of alternative splicing in cancer is largely unknown. Here we report that the intragenic DNA methylation-mediated binding of Brother of Regulator of Imprinted Sites (BORIS) at the alternative exon of Pyruvate Kinase (PKM) is associated with cancer-specific splicing that promotes the Warburg effect and breast cancer progression. Interestingly, the inhibition of DNA methylation, BORIS depletion, or CRISPR/Cas9-mediated deletion of the BORIS binding site leads to a splicing switch from cancer-specific PKM2 to normal PKM1 isoform. This results in the reversal of the Warburg effect and the inhibition of breast cancer cell growth, which may serve as a useful approach to inhibit the growth of breast cancer cells. Importantly, our results show that in addition to PKM splicing, BORIS also regulates the alternative splicing of several genes in a DNA methylation-dependent manner. Our findings highlight the role of intragenic DNA methylation and DNA binding protein BORIS in cancer-specific splicing and its role in tumorigenesis.
Collapse
|
37
|
Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells. Sci Rep 2017; 7:41279. [PMID: 28145452 PMCID: PMC5286509 DOI: 10.1038/srep41279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Despite sharing the same sequence specificity in vitro and in vivo, CCCTC-binding factor (CTCF) and its paralog brother of the regulator of imprinted sites (BORIS) are simultaneously expressed in germ cells. Recently, ChIP-seq analysis revealed two classes of CTCF/BORIS-bound regions: single CTCF target sites (1xCTSes) that are bound by CTCF alone (CTCF-only) or double CTCF target sites (2xCTSes) simultaneously bound by CTCF and BORIS (CTCF&BORIS) or BORIS alone (BORIS-only) in germ cells and in BORIS-positive somatic cancer cells. BORIS-bound regions (CTCF&BORIS and BORIS-only sites) are, on average, enriched for RNA polymerase II (RNAPII) binding and histone retention in mature spermatozoa relative to CTCF-only sites, but little else is known about them. We show that subsets of CTCF&BORIS and BORIS-only sites are occupied by several testis-specific transcriptional regulators (TSTRs) and associated with highly expressed germ cell-specific genes and histone retention in mature spermatozoa. We also demonstrate a physical interaction between BORIS and one of the analyzed TSTRs, TATA-binding protein (TBP)-associated factor 7-like (TAF7L). Our data suggest that CTCF and BORIS cooperate with additional TSTRs to regulate gene expression in developing male gametes and histone retention in mature spermatozoa, potentially priming certain regions of the genome for rapid activation following fertilization.
Collapse
|
38
|
Zhang Y, Fang M, Song Y, Ren J, Fang J, Wang X. Brother of Regulator of Imprinted Sites (BORIS) suppresses apoptosis in colorectal cancer. Sci Rep 2017; 7:40786. [PMID: 28098226 PMCID: PMC5241680 DOI: 10.1038/srep40786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022] Open
Abstract
Identifying oncogenes that promote cancer cell proliferation or survival is critical for treatment of colorectal cancer. The Brother of Regulator of Imprinted Sites (BORIS) is frequently expressed in most types of cancer, but rarely in normal tissues. Aberrantly expressed BORIS relates to colorectal cancer, but its function in colorectal cancer cells remains unclear. In addition, previous studies indicated the significance of cytoplasm-localized BORIS in cancer cells. However, none of them investigated its function. Herein, we investigated the functions of BORIS in cancer cell proliferation and apoptosis and the role of cytoplasm-localized BORIS in colorectal cancer. BORIS expression correlated with colorectal cancer proliferation. BORIS overexpression promoted colorectal cancer cell growth, whereas BORIS knockdown suppressed cell proliferation. Sensitivity of colorectal cancer cells to 5-fluorouracil (5-FU) was inversely correlated with BORIS expression. These data suggest that BORIS functions as an oncogene in colorectal cancer. BORIS silencing induced reactive oxygen species (ROS) production and apoptosis, whereas BORIS supplementation inhibited apoptosis induced by BORIS short interfering RNA (siRNA), hydrogen peroxide (H2O2) or 5-FU. Introduction of BORIS-ZFdel showed that cytoplasmic localization of BORIS inhibited apoptosis but not ROS production. Our study highlights the anti-apoptotic function of BORIS in colorectal cancer.
Collapse
Affiliation(s)
- Yanmei Zhang
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| | - Mengdie Fang
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| | - Yongfei Song
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| | - Juan Ren
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| | - Jianfei Fang
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| | - Xiaoju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Science, Hangzhou, Zhejiang Province, 310012, P.R. China
| |
Collapse
|
39
|
Garikapati KR, Patel N, Makani VKK, Cilamkoti P, Bhadra U, Bhadra MP. Down-regulation of BORIS/CTCFL efficiently regulates cancer stemness and metastasis in MYCN amplified neuroblastoma cell line by modulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2017; 484:93-99. [PMID: 28104398 DOI: 10.1016/j.bbrc.2017.01.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 11/15/2022]
Abstract
BORIS/CTCFL is a vital nucleotide binding protein expressed during embryogenesis and gametogenesis. BORIS/CTCFL is the paralogue of transcriptional repressor protein CTCF, which is aberrantly expressed in various malignancies and primarily re-expressed in cancer stem cells (CSCs). The mechanism behind regulation of BORIS in various cancer conditions and tumor metastases is so far not explored in detail. The aim of the study was to understand the influence of BORIS/CTCFL on stemness and metastasis by regulating well-known oncogenes and related signaling pathways. In our study, we have identified a cross-talk between expression of BORIS/CTCFL and Wnt/β-catenin signaling pathway, which plays a crucial role in various processes including ontogenesis, embryogenesis and maintenance of stem cell properties. Upon knockdown of BORIS/CTCFL, we observed an upregulation of Mesenchymal to Epithelial transition markers such as E-cad and downregulation of Epithelial to Mesenchymal transition markers such as N-CAD, Vimentin, SNAIL, etc. This transition was accomplished by activation of Wnt/β-catenin signaling pathway by regulating upstream and downstream Wnt associated proteins including β-catenin, Wnt3a/5a, CD44, MYC etc. We also identified that BMI1, an oncogene belonging to polycomb group expressed positively with levels of BORIS/CTCFL. Our study implicates the role of BORIS/CTCFL in maintenance of stemness and in transition from mesenchymal to epithelial state in MYC amplified neuroblastoma IMR-32 cells. Effectively controlling BORIS/CTCFL levels can inhibit disease establishment and hence can be considered as a potent target for cancer therapy.
Collapse
Affiliation(s)
- Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Nibedita Patel
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Priyanka Cilamkoti
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
40
|
In Vitro Assessment of the Expression and T Cell Immunogenicity of the Tumor-Associated Antigens BORIS, MUC1, hTERT, MAGE-A3 and Sp17 in Uterine Cancer. Int J Mol Sci 2016; 17:ijms17091525. [PMID: 27618037 PMCID: PMC5037800 DOI: 10.3390/ijms17091525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Background: While immunotherapy moved to the forefront of treatment of various cancers, it remains underexplored for uterine cancer. This might be due to the small patient population with advanced endometrial carcinoma and uterine sarcoma. Data about immunotherapeutic targets are scarce in endometrial carcinoma and lacking in uterine sarcoma. Methods: Expression of five tumor-associated antigens (TAA) (BORIS, MUC1, hTERT, MAGE-A3 and Sp17) was validated in uterine tumor samples by immunohistochemistry (IHC) and/or quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). TAA immunogenicity was analyzed by determining spontaneous T cell responses towards overlapping peptide pools covering the whole TAA in patient blood. Results: At mRNA level, MAGE-A3 and Sp17 were overexpressed in a minority of patients and BORIS was moderately overexpressed (26% in endometrial carcinoma and 62% in uterine sarcoma). hTERT was overexpressed in the vast majority of tumors. On protein level, MUC1 was upregulated in primary, recurrent and metastatic EMCAR and in metastatic US tumors. hTERT protein was highly expressed in both normal and malignant tissue. Spontaneous TAA-specific T cell responses were detected in a minority of patients, except for hTERT to which T cell responses occurred more frequently. Conclusions: These data point to MUC1 and hTERT as most suitable targets based on expression levels and T cell immunogenicity for use in immunotherapeutic regimens.
Collapse
|
41
|
Yoon SL, Roh YG, Chu IS, Heo J, Kim SI, Chang H, Kang TH, Chung JW, Koh SS, Larionov V, Leem SH. A polymorphic minisatellite region of BORIS regulates gene expression and its rare variants correlate with lung cancer susceptibility. Exp Mol Med 2016; 48:e246. [PMID: 27416782 PMCID: PMC4973313 DOI: 10.1038/emm.2016.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression of BORIS/CTCFL (Brother of the Regulator of Imprinted Sites/CTCF-like protein) is reported in different malignancies. In this study, we characterized the entire promoter region of BORIS/CTCFL, including the CpG islands, to assess the relationship between BORIS expression and lung cancer. To simplify the construction of luciferase reporter cassettes with various-sized portions of the upstream region, genomic copies of BORIS were isolated using TAR cloning technology. We analyzed three promoter blocks: the GATA/CCAAT box, the CpG islands and the minisatellite region BORIS-MS2. Polymorphic minisatellite sequences were isolated from genomic DNA prepared from the blood of controls and cases. Of the three promoter blocks, the GATA/CCAAT box was determined to be a critical element of the core promoter, while the CpG islands and the BORIS-MS2 minisatellite region were found to act as regulators. Interestingly, the polymorphic minisatellite region BORIS-MS2 was identified as a negative regulator that repressed the expression levels of luciferase reporter cassettes less effectively in cancer cells compared with normal cells. We also examined the association between the size of BORIS-MS2 and lung cancer in a case–control study with 590 controls and 206 lung cancer cases. Rare alleles of BORIS-MS2 were associated with a statistically significantly increased risk of lung cancer (odds ratio, 2.04; 95% confidence interval, 1.02–4.08; and P=0.039). To conclude, our data provide information on the organization of the BORIS promoter region and gene regulation in normal and cancer cells. In addition, we propose that specific alleles of the BORIS-MS2 region could be used to identify the risk for lung cancer.
Collapse
Affiliation(s)
- Se-Lyun Yoon
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Yun-Gil Roh
- Department of Biological Science, Dong-A University, Busan, Korea
| | - In-Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jeonghoon Heo
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Korea
| | - Seung Il Kim
- Drug & Disease Target Team, Korea Basic Science Institute, Daejeon, Korea
| | - Heekyung Chang
- Department of Pathology, Kosin University College of Medicine, Busan, Korea
| | - Tae-Hong Kang
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Sang Seok Koh
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Vladimir Larionov
- Developmental Therapeutic Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan, Korea
| |
Collapse
|
42
|
El-Sharkawy NM, Radwan WM, Essa ES, Kandeel EZ, Abd El-Fattah EK, Kandil SH, Kamel AM. Increased expression of brother of the regulator of imprinted sites in peripheral blood neutrophils is associated with both benign and malignant breast lesions. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:355-360. [PMID: 27219508 DOI: 10.1002/cyto.b.21378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND BORIS, a paralog of the multifunctional CCCTC-binding factor (CTCF) gene is restricted to testis and normally not present in females. It is aberrantly activated in various human cancers including cancer breast. Using immunohistochemistry, western blot and/or RT-PCR, significantly higher levels of BORIS expression were reported in the neutrophils of cancer breast patients. We hypothesized that Flow Cytometry might be a better technique for objective quantitative evaluation of BORIS in neutrophils and we wanted to investigate if BORIS would discriminate between benign and malignant breast lesions. METHODS The study included 85 females; 52 breast cancer, 13 benign breast lesions and 20 age-matched healthy controls. BORIS expression in the neutrophils was detected by Flow Cytometry. RESULTS High level of BORIS was detected in all malignant (64.4 ± 16.6%) and benign cases (67 ± 12.3), mean florescent intensity ratio (MFIR) of 7.2 ± 4.1 and 7 ± 3.5, median 5.8 and 6.6%; and staining index (SI) 8.3 ± 3.9 and 8.2 ± 3.4, median 7.6 and 7.9 respectively vs.13.4 ± 11.5% MFI 1.8 ± 0.7, median1.6 and SI 2.6 ± 0.69, median 2.5 for the control. BORIS level was comparable in the malignant and benign group (P = 0.934) and significantly higher than control (P = 0.0001). There was no correlation between neutrophil BORIS expression and ER/PR status, HER-2/neu expression or tumor stage or size. CONCLUSIONS Increased BORIS expression in peripheral blood neutrophils is associated with both benign and malignant breast lesions; apparently, increased proliferation of breast tissue is the determining factor. This excludes BORIS as a tumor marker but it does not jeopardize its value as a potential therapeutic target. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Wafaa M Radwan
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Enas S Essa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Eman Z Kandeel
- Clinical Pathology Department, NCI, Cairo University, Cairo, Egypt
| | | | - Samia H Kandil
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebein ElKom, Menoufia, Egypt
| | - Azza M Kamel
- Clinical Pathology Department, NCI, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Haag T, Richter AM, Schneider MB, Jiménez AP, Dammann RH. The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms. BMC Cancer 2016; 16:49. [PMID: 26833217 PMCID: PMC4736155 DOI: 10.1186/s12885-016-2087-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022] Open
Abstract
Background Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis. It has been shown that the epigenetic factor CTCF is involved in the regulation of tumor suppressor genes. Methods We analyzed the promoter hypermethylation of DUSP2 in human cancer, including primary Merkel cell carcinoma by bisulfite restriction analysis and pyrosequencing. Moreover we analyzed the impact of a DNA methyltransferase inhibitor (5-Aza-dC) and CTCF on the epigenetic regulation of DUSP2 by qRT-PCR, promoter assay, chromatin immuno-precipitation and methylation analysis. Results Here we report a significant tumor-specific hypermethylation of DUSP2 in primary Merkel cell carcinoma (p = 0.05). An increase in methylation of DUSP2 was also found in 17 out of 24 (71 %) cancer cell lines, including skin and lung cancer. Treatment of cancer cells with 5-Aza-dC induced DUSP2 expression by its promoter demethylation, Additionally we observed that CTCF induces DUSP2 expression in cell lines that exhibit silencing of DUSP2. This reactivation was accompanied by increased CTCF binding and demethylation of the DUSP2 promoter. Conclusions Our data show that aberrant epigenetic inactivation of DUSP2 occurs in carcinogenesis and that CTCF is involved in the epigenetic regulation of DUSP2 expression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanja Haag
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Martin B Schneider
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Adriana P Jiménez
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany.
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58-62, D-35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany.
| |
Collapse
|
44
|
Baldwin RM, Haghandish N, Daneshmand M, Amin S, Paris G, Falls TJ, Bell JC, Islam S, Côté J. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget 2015; 6:3013-32. [PMID: 25605249 PMCID: PMC4413634 DOI: 10.18632/oncotarget.3072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 12/05/2022] Open
Abstract
Recent evidence points to the protein arginine methyltransferase (PRMT) family of enzymes playing critical roles in cancer. PRMT7 has been identified in several gene expression studies to be associated with increased metastasis and decreased survival in breast cancer patients. However, this has not been extensively studied. Here we report that PRMT7 expression is significantly upregulated in both primary breast tumour tissues and in breast cancer lymph node metastases. We have demonstrated that reducing PRMT7 levels in invasive breast cancer cells using RNA interference significantly decreased cell invasion in vitro and metastasis in vivo. Conversely, overexpression of PRMT7 in non-aggressive MCF7 cells enhanced their invasiveness. Furthermore, we show that PRMT7 induces the expression of matrix metalloproteinase 9 (MMP9), a well-known mediator of breast cancer metastasis. Importantly, we significantly rescued invasion of aggressive breast cancer cells depleted of PRMT7 by the exogenous expression of MMP9. Our results demonstrate that upregulation of PRMT7 in breast cancer may have a significant role in promoting cell invasion through the regulation of MMP9. This identifies PRMT7 as a novel and potentially significant biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nasim Haghandish
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Manijeh Daneshmand
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shahrier Amin
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Geneviève Paris
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Theresa J Falls
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shahidul Islam
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, Méndez-Catalá CF, Kang S, Suzuki T, Kosaka-Suzuki N, Robinson S, Nagarajan V, Ye Z, Boukaba A, Rasko JEJ, Strunnikov AV, Loukinov D, Ren B, Lobanenkov VV. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biol 2015; 16:161. [PMID: 26268681 PMCID: PMC4562119 DOI: 10.1186/s13059-015-0736-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. Results Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. Conclusions We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0736-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Samuel Rivero-Hinojosa
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Celso A Espinoza
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Claudia Fabiola Méndez-Catalá
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sungyun Kang
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Teruhiko Suzuki
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.,Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Natsuki Kosaka-Suzuki
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Susan Robinson
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Vijayaraj Nagarajan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Abdelhalim Boukaba
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
46
|
Expression of the CTCFL Gene during Mouse Embryogenesis Causes Growth Retardation, Postnatal Lethality, and Dysregulation of the Transforming Growth Factor β Pathway. Mol Cell Biol 2015; 35:3436-45. [PMID: 26169830 DOI: 10.1128/mcb.00381-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
CTCFL, a paralog of CTCF, also known as BORIS (brother of regulator of imprinted sites), is a testis-expressed gene whose function is largely unknown. Its product is a cancer testis antigen (CTA), and it is often expressed in tumor cells and also seen in two benign human vascular malformations, juvenile angiofibromas and infantile hemangiomas. To understand the function of Ctcfl, we created tetracycline-inducible Ctcfl transgenic mice. We show that Ctcfl expression during embryogenesis results in growth retardation, eye malformations, multiorgan pathologies, vascular defects, and neonatal death. This phenotype resembles prior mouse models that perturb the transforming growth factor β (TGFB) pathway. Embryonic stem (ES) cells with the Ctcfl transgene reproduce the phenotype in ES cell-tetraploid chimeras. Transcriptome sequencing of the Ctcfl ES cells revealed 14 genes deregulated by Ctcfl expression. Bioinformatic analysis revealed the TGFB pathway as most affected by embryonic Ctcfl expression. Understanding the consequence of Ctcfl expression in nontesticular cells and elucidating downstream targets of Ctcfl could explain the role of its product as a CTA and its involvement in two, if not more, human vascular malformations.
Collapse
|
47
|
Morettin A, Baldwin RM, Cote J. Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 2015; 30:177-89. [DOI: 10.1093/mutage/geu039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Zambrano-Galván G, Reyes-Romero M, Bologna-Molina R, Almeda-Ojeda OE, Lemus-Rojero O. CTCFL (BORIS) mRNA Expression in a Peripheral Giant Cell Granuloma of the Oral Cavity. Case Rep Dent 2014; 2014:792615. [PMID: 25114808 PMCID: PMC4120782 DOI: 10.1155/2014/792615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
Peripheral giant cell granuloma (PGCG) is a relatively common benign reactive lesion of the oral cavity which can occur at any age. CTCFL/BORIS (CTCF like/Brother of the Regulator of Imprinted Sites) and CTCF (CCCTC-binding factor) are paralogous genes with an important role in the regulation of gene expression, genomic imprinting, and nuclear chromatin insulators regulation. BORIS expression promotes cell immortalization and growth while CTCF has tumor suppressor activity; the expression pattern may reflect the reverse transcription silencing of BORIS. The aim of this work was to describe a histopathological and molecular approach of an 8-year-old pediatric male patient with PGCG diagnosis. It was observed that the PGCG under study expressed CTCF as well as BORIS mRNAs alongside with the housekeeping gene GAPDH, which may be related to possible genetic and epigenetic changes in normal cells of oral cavity.
Collapse
Affiliation(s)
- Graciela Zambrano-Galván
- Laboratory of Molecular Stomatology, Faculty of Dentistry, Universidad Juárez de Estado de Durango, Predio Canoas Street, 34067 Durango, Mexico
| | - Miguel Reyes-Romero
- Department of Molecular Medicine, Faculty of Medicine and Nutrition, Universidad Juárez de Estado del Durango, Universidad Avenue, 34000 Durango, Mexico
| | - Ronell Bologna-Molina
- Laboratory of Pathology and Bucal Medicine, Faculty of Dentistry, Universidad Juárez del Estado de Durango, Predio Canoas Street, 34067 Durango, Mexico
| | - Oscar Eduardo Almeda-Ojeda
- Laboratory of Pathology and Bucal Medicine, Faculty of Dentistry, Universidad Juárez del Estado de Durango, Predio Canoas Street, 34067 Durango, Mexico
| | - Obed Lemus-Rojero
- Faculty of Dentistry, Universidad Autónoma de Zacatecas, Begonias Street, Guadalupe, 98600 Zacatecas, Mexico
| |
Collapse
|
49
|
Joosse SA, Müller V, Steinbach B, Pantel K, Schwarzenbach H. Circulating cell-free cancer-testis MAGE-A RNA, BORIS RNA, let-7b and miR-202 in the blood of patients with breast cancer and benign breast diseases. Br J Cancer 2014; 111:909-17. [PMID: 24983365 PMCID: PMC4150270 DOI: 10.1038/bjc.2014.360] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MAGE-A (melanoma-associated antigen-A) are promising targets for specific immunotherapy and their expression may be induced by the epigenetic factor BORIS. METHODS To determine their relevance for breast cancer, we quantified the levels of MAGE-A1, -A2, -A3, -A12 and BORIS mRNA, as well as microRNAs let-7b and miR-202 in pre- and postoperative serum of 102 and 34 breast cancer patients, respectively, and in serum of 26 patients with benign breast diseases and 37 healthy women by real-time PCR. The mean follow-up time of the cancer patients was 6.2 years. RESULTS The serum levels of MAGE-A and BORIS mRNA, as well as let-7b were significantly higher in patients with invasive carcinomas than in patients with benign breast diseases or healthy women (P<0.001), whereas the levels of miR-202 were elevated in both patient cohorts (P<0.001). In uni- and multivariate analyses, high levels of miR-202 significantly correlated with poor overall survival (P=0.0001). Transfection of breast cancer cells with synthetic microRNAs and their inhibitors showed that let-7b and miR-202 did not affect the protein expression of MAGE-A1. CONCLUSIONS Based on their cancer-specific increase in breast cancer patients, circulating MAGE-A and BORIS mRNAs may be further explored for early detection of breast cancer and monitoring of MAGE-directed immunotherapies. Moreover, serum miR-202 is associated with prognosis.
Collapse
Affiliation(s)
- S A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - V Müller
- Clinic of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Zampieri M, Ciccarone F, Palermo R, Cialfi S, Passananti C, Chiaretti S, Nocchia D, Talora C, Screpanti I, Caiafa P. The epigenetic factor BORIS/CTCFL regulates the NOTCH3 gene expression in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:813-25. [PMID: 24984200 DOI: 10.1016/j.bbagrm.2014.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
Abstract
Aberrant upregulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its upregulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell acute lymphoblastic leukemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumors overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Samantha Cialfi
- Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Passananti
- Institute of Molecular Biology & Pathology CNR, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Chiaretti
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Nocchia
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabella Screpanti
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy; Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy.
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|