1
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
2
|
So EC, Zhou H, Greenwell A, Burch EE, Ji Y, Mérigeon EY, Olsen HS, Bentzen SM, Block DS, Zhang X, Strome SE. Complement component C1q is an immunological rheostat that regulates Fc:Fc
γ
R interactions. Immunogenetics 2023; 75:369-383. [PMID: 37322230 DOI: 10.1007/s00251-023-01311-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Though binding sites for the complement factor C1q and the canonical fragment crystallizable (Fc) gamma receptors (Fcγ Rs) on immunoglobulin G (IgG) molecules overlap, how C1q decoration of immune complexes (ICs) influences their ability to engage Fcγ Rs remains unknown. In this report, we use recombinant human Fc multimers as stable IC mimics to show that C1q engagement of ICs directly and transiently inhibits their interactions with Fcγ RIII (CD16) on human natural killer (NK) cells. This inhibition occurs by C1q engagement alone as well as in concert with other serum factors. Furthermore, the inhibition of Fcγ RIII engagement mediated by avid binding of C1q to ICs is directly associated with IC size and dependent on the concentrations of both C1q and Fc multimers present. Functionally, C1q-mediated Fc blockade limits the ability of NK cells to induce the upregulation of the cosignaling molecule, 4-1BB (CD137), and to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Although C1q is traditionally viewed as a soluble effector molecule, we demonstrate that C1q may also take on the role of an "immunologic rheostat," buffering Fcγ R-mediated activation of immune cells by circulating ICs. These data define a novel role for C1q as a regulator of immune homeostasis and add to our growing understanding that complement factors mediate pleiotropic effects.
Collapse
Affiliation(s)
- Edward C So
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hua Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ariana Greenwell
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yaping Ji
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Søren M Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott E Strome
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), 910 Madison Avenue, 10th floor Suite 1002, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
4
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
5
|
Temming AR, de Taeye SW, de Graaf EL, de Neef LA, Dekkers G, Bruggeman CW, Koers J, Ligthart P, Nagelkerke SQ, Zimring JC, Kuijpers TW, Wuhrer M, Rispens T, Vidarsson G. Functional Attributes of Antibodies, Effector Cells, and Target Cells Affecting NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3126-3135. [PMID: 31748349 DOI: 10.4049/jimmunol.1900985] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Ab-dependent cellular cytotoxicity (ADCC) is one of the most important effector mechanisms of tumor-targeting Abs in current immunotherapies. In ADCC and other Ab-dependent activation of myeloid effector cells, close cell-cell contact (between effector and target cell) and formation of immunological synapses are required. However, we still lack basic knowledge on the principal factors influencing ADCC potential by therapeutic Abs. In this study we investigated the combined roles of five factors affecting human NK cell-mediated ADCC, namely: 1) Ag density, 2) target cell membrane composition, 3) IgG FcγR polymorphism, 4) FcγR-blocking cytophilic Abs, and 5) Ab fucosylation. We demonstrate that the magnitude of NK cell-mediated ADCC responses is predominantly influenced by Ag density and Ab fucosylation. Afucosylation consistently induced efficient ADCC, even at very low Ag density, where fucosylated target Abs did not elicit ADCC. On the side of the effector cell, the FcγRIIIa-Val/Phe158 polymorphism influenced ADCC potency, with NK cells expressing the Val158 variant showing more potent ADCC. In addition, we identified the sialic acid content of the target cell membrane as an important inhibitory factor for ADCC. Furthermore, we found that the presence and glycosylation status of aspecific endogenous Abs bound to NK cell FcγRIIIa (cytophilic Abs) determine the blocking effect on ADCC. These five parameters affect the potency of Abs in vitro and should be further tested as predictors of in vivo capacity.
Collapse
Affiliation(s)
- A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Erik L de Graaf
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Louise A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Gillian Dekkers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Christine W Bruggeman
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Jana Koers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Peter Ligthart
- Erythrocyte Serology, Sanquin, 1066 CX Amsterdam, the Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - James C Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Pediatric Immunology and Infectious diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|
6
|
Levin D, Lagassé HAD, Burch E, Strome S, Tan S, Jiang H, Sauna ZE, Golding B. Modulating immunogenicity of factor IX by fusion to an immunoglobulin Fc domain: a study using a hemophilia B mouse model. J Thromb Haemost 2017; 15:721-734. [PMID: 28166609 DOI: 10.1111/jth.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Essentials Fc-fusion increases a therapeutic's half-life, but FcγR interactions may impact immunogenicity. Species-specific Fc-FcγR interactions allow for mechanistic in vivo studies using mouse models. Fc fusion modulates the immune response to factor IX in hemophilia B mice by eliciting Th1 bias. This model could inform future studies of IgE-associated anaphylaxis in hemophilia B patients. SUMMARY Background Fc fusion is a platform technology used to increase the circulating half-life of protein and peptide therapeutics. However, there are potential immunological consequences with this approach, such as changes in the molecule's immunogenicity as well as possible interactions with a repertoire of Fc receptors (FcR) that can modulate immune responses. Objectives/Methods Using a mouse hemophilia B (HB) model, we compared the immune responses to infusions of recombinant human factor IX (hFIX) and hFIX fused to mouse IgG2a-Fc (hFIX-mFc). The mFc was employed to allow species-specific Fc-FcγR interactions. Results Although treatment with hFIX-mFc altered the early development of anti-FIX IgG, no significant differences in anti-FIX antibody titers were observed at the end of the treatment regimen (5 weeks) or upon anamnestic response (5 months). However, treatment with hFIX-mFc elicited higher FIX-neutralizing antibody levels and resulted in reduced IgE titers compared with the hFIX-treated group. Additionally, differences in plasma cytokine levels and in vitro CD4+ T-cell responses suggest that whereas hFIX treatment triggered a Th2-biased immune response, hFIX-mFc treatment induced Th1-biased CD4+ T cells. We also show that hFIX-mFc bound to soluble FcγRs and engaged with FcγRs on different cell types, which may impact antigen presentation. Conclusions These studies provide a model system to study how Fc-fusion proteins may affect immune mechanisms. We used this model to demonstrate a plausible mechanism by which Fc fusion may modulate the IgE response to hFIX. This model may be appropriate for investigating the rare but severe IgE-mediated anaphylaxis reaction to hFIX infusions in HB patients.
Collapse
Affiliation(s)
- D Levin
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A D Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - E Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Tan
- CRISPR Therapeutics, Cambridge, MA, USA
| | - H Jiang
- Editas Medicine, Cambridge, MA, USA
| | - Z E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - B Golding
- Plasma Derivatives Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
7
|
Zhang X, Olsen HS, Chen S, So E, Zhou H, Burch E, Mérigeon EY, Block DS, Strome SE. Anti-CD20 Antibody with Multimerized Fc Domains: A Novel Strategy To Deplete B Cells and Augment Treatment of Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2015; 196:1165-76. [PMID: 26695368 DOI: 10.4049/jimmunol.1501755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022]
Abstract
We developed a fully recombinant anti-CD20 protein derived from cDNA encoding one Fab domain, two IgG1 Fc regions, the IgG2 hinge, and an isoleucine zipper. This protein, called GB4542, contained both the homodimer and higher-order multimers. Binding studies revealed that GB4542 preferentially bound CD20(+) cells yet also recognized CD20(-)FcγR(+) PBMC. In contrast, a control mAb containing the identical Fab region, GB4500, failed to bind CD20(-)FcγR(+) PBMC. Consistent with these findings, interactions between GB4542 and the canonical FcγRs had substantially lower KD values than correlate interfaces between GB4500 and these receptors. At low concentrations, GB4542 showed enhanced Ab-dependent cellular cytotoxicity, Ab-dependent cellular phagocytosis, and complement-dependent cytotoxicity compared with GB4500. However, at higher concentrations, an Fc analog of GB4542 inhibited anti-CD20 mAb-mediated B cell clearance through direct blocking of both Fc-FcγR interactions and C1q deposition on target cells. Furthermore, the higher-order multimer fraction of GB4542 demonstrated greater binding avidity with the canonical FcγRs and was associated with inhibitory effects observed in Ab-dependent cellular phagocytosis and complement-dependent cytotoxicity assays. These data suggest that GB4542 might have utility in the treatment of autoimmune diseases by combining both mAb-mediated B cell depletion and multimerized Fc-mediated tolerogenic effects.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201
| | | | - Shaodong Chen
- Medical College of Xiamen University, Xiamen 361005, China
| | - Edward So
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Hua Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Erin Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201
| | | | | | - Scott E Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201;
| |
Collapse
|