1
|
Saarenheimo J, Willför H, Wahid N, Jekunen A, Andersén H. Impact of Upfront DPYD Genotyping on Fluoropyrimidine Adjuvant Therapy in Colorectal Cancer: A Real-World Data. Clin Colorectal Cancer 2025; 24:264-271. [PMID: 40000255 DOI: 10.1016/j.clcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The application of fluoropyrimidine-based chemotherapy in colorectal cancer treatment is known to pose significant toxicity risks, which can be mitigated by tailoring treatment according to DPYD gene variants. This study evaluates the impact of DPYD genotype-guided dosing on treatment-related toxicities and patient outcomes. METHODS A retrospective analysis was conducted on CRC patients treated with fluoropyrimidines in adjuvant setting at The Wellbeing Services County of Ostrobothnia. Patients were divided into two cohorts based on the implementation of routine DPYD genotyping: pregenotyping (2016-2018) (n = 80) and postgenotyping (2020-2022) (n = 69). The incidence of side effects, treatment discontinuation, hospitalization, and 90-day mortality were compared between groups. RESULTS The study revealed a reduction in 90-day mortality rates among patients who underwent DPYD genotyping before treatment. Patients with pathogenic DPYD variants received ≥50% reduced doses initially, leading to no severe toxicities (grade ≥3). Class 3 variants showed similar side effect profiles and hospitalization rates as untested patients but had a lower rate of treatment discontinuation. CONCLUSIONS Upfront DPYD genotyping appears to improve patient safety in CRC patients treated with adjuvant fluoropyrimidines, leading to personalized dosing that reduces severe toxicities and early mortality. These findings underscore the importance of integrating pharmacogenetic testing in clinical oncology to optimize treatment regimens and enhance patient care.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Fimlab Laboratoriot Oy, Patologia, Vaasa, Finland.
| | - Hugo Willför
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Umeå University, Umeå, Sweden
| | - Nesna Wahid
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| | - Antti Jekunen
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersén
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
2
|
Trepka KR, Kidder WA, Kyaw TS, Halsey T, Olson CA, Ortega EF, Noecker C, Upadhyay V, Stanfield D, Steiding P, Guthrie BGH, Spanogiannopoulos P, Dumlao D, Turnbaugh JA, Stachler MD, Van Blarigan EL, Venook AP, Atreya CE, Turnbaugh PJ. Expansion of a bacterial operon during cancer treatment ameliorates fluoropyrimidine toxicity. Sci Transl Med 2025; 17:eadq8870. [PMID: 40238917 DOI: 10.1126/scitranslmed.adq8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/15/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Here, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal profiling of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. Substantial shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities were revealed by 16S rRNA gene sequencing. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which was sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA+ bacteria depleted 5-FU in gut microbiota grown ex vivo and in the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA+ Escherichia coli, or preTA-high stool from patients with CRC. Last, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach may be generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
Collapse
Affiliation(s)
- Kai R Trepka
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wesley A Kidder
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taylor Halsey
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine A Olson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edwin F Ortega
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dalila Stanfield
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Paige Steiding
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Benjamin G H Guthrie
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Darren Dumlao
- Department of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessie A Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew D Stachler
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erin L Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan P Venook
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Chloe E Atreya
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Platt JR, Pennycook S, Muthoo CE, Westwood AC, Frood R, Beggs AD, Scarsbrook A, Seligmann JF, Tolan DJM. Colon cancer biology and treatment in the era of precision oncology: A primer for Radiologists. Eur J Radiol 2025; 185:112000. [PMID: 39978239 DOI: 10.1016/j.ejrad.2025.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
In the era of precision oncology, systemic therapies for colon cancer are becoming increasingly biomarker-led, with implications for patients in the neoadjuvant, adjuvant and metastatic settings. As the landscape for colon cancer treatment evolves and becomes more complex, it is important that all members of the multidisciplinary team keep abreast of developments to ensure the most effective care is delivered to patients. As core members of the colorectal multidisciplinary team, Radiologists play a central role throughout the patient journey. This review serves as an educational summary of current and emerging treatment pathways in colon cancer, standards for biomarker testing, mechanisms of action for key drugs, important treatment-related complications, relevant tumour biology that underpins patterns of disease and treatment response, and the specific implications systemic therapies have for cancer imaging and Radiologists. We also highlight the increasing role for radiology in patient stratification and the importance of imaging biomarkers. It is crucial that Radiologists understand the current landscape of colon cancer treatment and emerging strategies on the horizon in clinical trials. Only through engagement across the wider multidisciplinary team will we deliver true personalised medicine for patients with colon cancer.
Collapse
Affiliation(s)
- James R Platt
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Stephanie Pennycook
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Chand E Muthoo
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Alice C Westwood
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Russell Frood
- Leeds Institute of Clinical Trials Research, School of Medicine, University of Leeds, Leeds, UK.
| | - Andrew D Beggs
- Department of Cancer and Genomics, University of Birmingham, Birmingham, UK.
| | - Andrew Scarsbrook
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Damian J M Tolan
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
4
|
Guevara M, de la Cruz CG, Rodrigues-Soares F, Rodríguez E, Manóchio C, Peñas-Lledó E, Dorado P, LLerena A. The Frequency of DPYD c.557A>G in the Dominican Population and Its Association with African Ancestry. Pharmaceutics 2024; 17:8. [PMID: 39861660 PMCID: PMC11768636 DOI: 10.3390/pharmaceutics17010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Genetic polymorphism of the dihydropyrimidine dehydrogenase gene (DPYD) is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The DPYD genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity. The interethnic variability of DPYD gene variants in Afro-Latin Americans is poorly studied, thereby establishing a barrier to the implementation of personalized medicine in these populations. Therefore, the present study aims to analyze the frequency of DPYD variants with clinical relevance in the Dominican population and their association with genomic ancestry components. Methods: For this study, 196 healthy volunteers from the Dominican Republic were genotyped for DPYD variants by qPCR, and individual genomic ancestry analysis was performed in 178 individuals using 90 informative ancestry markers. Data from the 1000 Genomes project were also retrieved for comparison and increased statistical power. Results and Conclusions: The c.557A>G variant (decreased dihydropyrimidine dehydrogenase function) presented a frequency of 2.6% in the Dominican population. Moreover, the frequency of this variant is positively associated with African ancestry (r2 = 0.67, p = 1 × 10-7), which implies that individuals with high levels of African ancestry are more likely to present this variant. HapB3 is completely absent in Dominican, Mexican, Peruvian, Bangladeshi, and all East Asian and African populations, which probably makes its analysis dispensable in these populations. The implementation of pharmacogenetics in oncology, specifically DPYD, in populations of Afro-Latin American ancestry should include c.557A>G, to be able to carry out the safe and effective treatment of patients treated with fluoropyrimidines.
Collapse
Affiliation(s)
- Mariela Guevara
- Research and Development Department, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 10203, Dominican Republic; (M.G.); (E.R.)
| | - Carla González de la Cruz
- Personalized Medicine and Mental Health Unit, University Institute for Bio-Sanitary Research of Extremadura, 06080 Badajoz, Spain; (C.G.d.l.C.); (F.R.-S.); (E.P.-L.); (A.L.)
| | - Fernanda Rodrigues-Soares
- Personalized Medicine and Mental Health Unit, University Institute for Bio-Sanitary Research of Extremadura, 06080 Badajoz, Spain; (C.G.d.l.C.); (F.R.-S.); (E.P.-L.); (A.L.)
- Department of Pathology, Genetic and Evolution, Biological and Natural Sciences Institute, Universidade Federal do Triângulo Mineiro, Uberaba 38025-350, Brazil;
| | - Ernesto Rodríguez
- Research and Development Department, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 10203, Dominican Republic; (M.G.); (E.R.)
| | - Caíque Manóchio
- Department of Pathology, Genetic and Evolution, Biological and Natural Sciences Institute, Universidade Federal do Triângulo Mineiro, Uberaba 38025-350, Brazil;
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eva Peñas-Lledó
- Personalized Medicine and Mental Health Unit, University Institute for Bio-Sanitary Research of Extremadura, 06080 Badajoz, Spain; (C.G.d.l.C.); (F.R.-S.); (E.P.-L.); (A.L.)
| | - Pedro Dorado
- Personalized Medicine and Mental Health Unit, University Institute for Bio-Sanitary Research of Extremadura, 06080 Badajoz, Spain; (C.G.d.l.C.); (F.R.-S.); (E.P.-L.); (A.L.)
| | - Adrián LLerena
- Personalized Medicine and Mental Health Unit, University Institute for Bio-Sanitary Research of Extremadura, 06080 Badajoz, Spain; (C.G.d.l.C.); (F.R.-S.); (E.P.-L.); (A.L.)
| |
Collapse
|
5
|
De Mattia E, Polesel J, Scarabel L, Cecchin E. Clinical implications of a gain-of-function genetic polymorphism in DPYD (rs4294451) in colorectal cancer patients treated with fluoropyrimidines. Front Pharmacol 2024; 15:1516375. [PMID: 39703399 PMCID: PMC11655210 DOI: 10.3389/fphar.2024.1516375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene) is the rate-limiting enzyme for the detoxification of fluoropyrimidines (FLs). Rs4294451 is a regulatory DPYD polymorphism that has recently been functionally characterized and associated with increased DPD expression in the liver. The aim of the present study was to test the clinical implications of being a carrier of rs4294451 in a cohort of 645 FL-treated colorectal cancer patients. Carriers of at least one DPYD rs4294451-T variant allele had a lower risk of developing NCI-CTC grade 4-5 hematological [odds ratio (OR) = 0.39; 95% confidence interval (CI): 0.15-0.98; additive model] and hematological/non-hematological (OR = 0.44; 95% CI: 0.22-0.88; dominant model) FL-related toxicity. Patients with the DPYD rs4294451-T allele also had a longer time to severe toxicity development after starting FL treatment [hematological, Hazard ratio (HR) = 0.27; 95% CI: 0.09-0.79; Fine-Gray test = 0.1569; hematological/non-hematological: HR = 0.38, 95% CI: 0.17-0.85; Fine-Gray test = 0.0444]. It is worth noting that while being at lower risk of toxicity, DPYD rs4294451-T allele carriers also tend to present a shorter overall survival (HR = 1.41; 95% CI: 1.05-1.90; log-rank p = 0.0406). These findings demonstrate a clinical effect of DPYD-rs4294451 polymorphism coherent with the recently described functional effect. Further investigation is warranted to elucidate the potential clinical value to the rs4294451 polymorphism as toxicity and especially as an efficacy marker in colorectal cancer.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Province of Pordenone, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Province of Pordenone, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Province of Pordenone, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Province of Pordenone, Italy
| |
Collapse
|
6
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
7
|
Trepka KR, Kidder WA, Kyaw TS, Halsey T, Olson CA, Ortega EF, Noecker C, Upadhyay V, Stanfield D, Steiding P, Guthrie BGH, Spanogiannopoulos P, Dumlao D, Turnbaugh JA, Stachler MD, Van Blarigan EL, Venook AP, Atreya CE, Turnbaugh PJ. Expansion of a bacterial operon during cancer treatment ameliorates drug toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597471. [PMID: 38895199 PMCID: PMC11185696 DOI: 10.1101/2024.06.04.597471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA + bacteria depleted 5-FU in gut microbiota grown ex vivo and the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA + E. coli, or preTA-high CRC patient stool. Finally, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
Collapse
Affiliation(s)
- Kai R. Trepka
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Wesley A. Kidder
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Than S. Kyaw
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Taylor Halsey
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Christine A. Olson
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Edwin F. Ortega
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Dalila Stanfield
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Paige Steiding
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Benjamin G. H. Guthrie
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Darren Dumlao
- Department of Gastroenterology, University of California San Francisco; San Francisco, USA
| | - Jessie A. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
| | - Matthew D. Stachler
- Department of Pathology, University of California San Francisco; San Francisco, USA
| | - Erin L. Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco; San Francisco, USA
- Department of Urology, University of California San Francisco; San Francisco, USA
| | - Alan P. Venook
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Chloe E. Atreya
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco; San Francisco, USA
- UCSF Helen Diller Family Comprehensive Cancer Center; San Francisco, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, USA
- Chan Zuckerberg Biohub-San Francisco; San Francisco, USA
| |
Collapse
|
8
|
de Moraes FCA, de Almeida Barbosa AB, Sano VKT, Kelly FA, Burbano RMR. Pharmacogenetics of DPYD and treatment-related mortality on fluoropyrimidine chemotherapy for cancer patients: a meta-analysis and trial sequential analysis. BMC Cancer 2024; 24:1210. [PMID: 39350200 PMCID: PMC11441158 DOI: 10.1186/s12885-024-12981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Fluoropyrimidines are chemotherapy drugs utilized to treat a variety of solid tumors. These drugs predominantly rely on the enzyme dihydropyrimidine dehydrogenase (DPD), which is encoded by the DPYD gene, for their metabolism. Genetic mutations affecting this gene can cause DPYD deficiency, disrupting pyrimidine metabolism and increasing the risk of toxicity in cancer patients treated with 5-fluorouracil. The severity and type of toxic reactions are influenced by genetic and demographic factors and, in certain instances, can result in patient mortality. Among the more than 50 identified variants of DPYD, only a subset has clinical significance, leading to the production of enzymes that are either non-functional or impaired. The study aims to examine treatment-related mortality in cancer patients undergoing fluoropyrimidine chemotherapy, comparing those with and without DPD deficiency. METHODS The meta-analysis selected and evaluated 9685 studies from Pubmed, Cochrane, Embase and Web of Science databases. Only studies examining the main DPYD variants (DPYD*2A, DPYD p.D949V, DPYD*13 and DPYD HapB3) were included. Statistical Analysis was performed using R, version 4.2.3. Data were examined using the Mantel-Haenszel method and 95% CIs. Heterogeneity was assessed with I2 statistics. RESULTS There were 36 prospective and retrospective studies included, accounting for 16,005 patients. Most studies assessed colorectal cancer, representing 86.49% of patients. Other gastrointestinal cancers were evaluated by 11 studies, breast cancer by nine studies and head and neck cancers by five studies. Four DPYD variants were identified as predictors of severe fluoropyrimidines toxicity in literature review: DPYD*2A (rs3918290), DPYD p.D949V (rs67376798), DPYD*13 (rs55886062) and DPYD Hap23 (rs56038477). All 36 studies assessed the DPYD*2A variant, while 20 assessed DPYD p.D949V, 7 assessed DPYD*13, and 9 assessed DPYDHap23. Among the 587 patients who tested positive for at least one DPYD variant, 13 died from fluoropyrimidine toxicity. Conversely, in the non-carrier group there were 14 treatment-related deaths. Carriers of DPYD variants was found to be significantly correlated with treatment-related mortality (OR = 34.86, 95% CI 13.96-87.05; p < 0.05). CONCLUSIONS This study improves our comprehension of how the DPYD gene impacts cancer patients receiving fluoropyrimidine chemotherapy. Identifying mutations associated with dihydropyrimidine dehydrogenase deficiency may help predict the likelihood of serious side effects and fatalities. This knowledge can be applied to adjust medication doses before starting treatment, thus reducing the occurrence of these critical outcomes.
Collapse
|
9
|
Hoffmann E, Toepell A, Peter A, Böke S, De-Colle C, Steinle M, Niyazi M, Gani C. Management of patients with reduced dihydropyrimidine dehydrogenase activity receiving combined 5-fluoruracil-/capecitabine-based chemoradiotherapy. Strahlenther Onkol 2024:10.1007/s00066-024-02287-7. [PMID: 39230592 DOI: 10.1007/s00066-024-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND 5‑Fluoruracil (5-FU) and its oral prodrug capecitabine are mainstays in combined chemoradiotherapy regimens. They are metabolized by dihydropyrimidine dehydrogenase (DPYD). Pathogenic variants of the DPYD gene cause a reduction in DPYD activity, leading to possibly severe toxicities. Therefore, patients receiving 5‑FU-/capecitabine-based chemoradiotherapy should be tested for DPYD variants. However, there are limited clinical data on treatment adjustments and tolerability in patients with decreased DPYP activity receiving combined chemoradiotherapy. Therefore, a retrospective analysis of the toxicity profiles of patients with decreased DPYD activity treated at our center was conducted. MATERIALS AND METHODS For all patients receiving 5‑FU-/capecitabine-based chemo(radio)therapy at our department, DPYD activity was routinely tested. Genotyping of four DPYD variants (DPYD*2A, DPYD*13, c.2846A > T, and haplotype B3) was conducted according to the recommendation of the German Society for Hematooncology (DGHO) using TaqMan hydrolysis polymerase chain reaction (PCR; QuantStudy 3, Thermo FisherScientific, Darmstadt). DPYD variants and activity score as well as clinical data (tumor entity, treatment protocol, dose adjustments, and toxicity according to the Common Terminology Criteria for Adverse Events [CTCAE]) were assessed and reported. RESULTS Of 261 tested patients, 21 exhibited DPYD variants, 18 of whom received chemoradiotherapy. All but one patient was treated for rectal or anal carcinoma. The observed rate of DPYD variants was 8.0%, and heterozygous haplotype B3 was the most common (5.75%). One patient exhibited a homozygous DPYD variant. DPYD activity score was at least 0.5 in heterozygous patients; chemotherapy dose was adjusted accordingly, with an applied dose of 50-75%. CTCAE grade 2 skin toxicity (50%) and grade 3 leukopenia (33.3%) were most common. One patient experienced a transient grade 4 increase in transaminases. All high-grade toxicities were manageable with supportive treatment and transient. No CTCAE grade 5 toxicities related to 5‑FU administration were observed. CONCLUSION With dose reduction in heterozygous patients, toxicity was within the range of patients without DPYD variants. Our clinical data suggest that dose-adapted 5‑FU-/capecitabine-chemoradiotherapy regimens can be safely considered in patients with heterozygous clinically relevant DPYD variants, but that the optimal dosage still needs to be determined to avoid both increased toxicity and undertreatment in a curative setting.
Collapse
Affiliation(s)
- E Hoffmann
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany.
| | - A Toepell
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
| | - A Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - S Böke
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
| | - C De-Colle
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
- Department for Radiation Oncology, Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - M Steinle
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
| | - M Niyazi
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
| | - C Gani
- University Hospital for Radiation Oncology and Radiotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Tracksdorf T, Smith DM, Pearse S, Cicali EJ, Aquilante CL, Scott SA, Ho TT, Patel JN, Hicks JK, Hertz DL. Strategies for DPYD testing prior to fluoropyrimidine chemotherapy in the US. Support Care Cancer 2024; 32:497. [PMID: 38980476 DOI: 10.1007/s00520-024-08674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Patients with dihydropyrimidine dehydrogenase (DPD) deficiency are at high risk for severe and fatal toxicity from fluoropyrimidine (FP) chemotherapy. Pre-treatment DPYD testing is standard of care in many countries, but not the United States (US). This survey assessed pre-treatment DPYD testing approaches in the US to identify best practices for broader adoption. METHODS From August to October 2023, a 22-item QualtricsXM survey was sent to institutions and clinicians known to conduct pre-treatment DPYD testing and broadly distributed through relevant organizations and social networks. Responses were analyzed using descriptive analysis. RESULTS Responses from 24 unique US sites that have implemented pre-treatment DPYD testing or have a detailed implementation plan in place were analyzed. Only 33% of sites ordered DPYD testing for all FP-treated patients; at the remaining sites, patients were tested depending on disease characteristics or clinician preference. Almost 50% of sites depend on individual clinicians to remember to order testing without the assistance of electronic alerts or workflow reminders. DPYD testing was most often conducted by commercial laboratories that tested for at least the four or five DPYD variants considered clinically actionable. Approximately 90% of sites reported receiving results within 10 days of ordering. CONCLUSION Implementing DPYD testing into routine clinical practice is feasible and requires a coordinated effort among the healthcare team. These results will be used to develop best practices for the clinical adoption of DPYD testing to prevent severe and fatal toxicity in cancer patients receiving FP chemotherapy.
Collapse
Affiliation(s)
- Tabea Tracksdorf
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, MD, USA
| | - Skyler Pearse
- Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, CA, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA, USA
| | - Teresa T Ho
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - J Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel L Hertz
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
11
|
Centanni M, Reijnhout N, Thijs A, Karlsson MO, Friberg LE. Pharmacogenetic Testing or Therapeutic Drug Monitoring: A Quantitative Framework. Clin Pharmacokinet 2024; 63:871-884. [PMID: 38842789 PMCID: PMC11222190 DOI: 10.1007/s40262-024-01382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Pharmacogenetic profiling and therapeutic drug monitoring (TDM) have both been proposed to manage inter-individual variability (IIV) in drug exposure. However, determining the most effective approach for estimating exposure for a particular drug remains a challenge. This study aimed to quantitatively assess the circumstances in which pharmacogenetic profiling may outperform TDM in estimating drug exposure, under three sources of variability (IIV, inter-occasion variability [IOV], and residual unexplained variability [RUV]). METHODS Pharmacokinetic models were selected from the literature corresponding to drugs for which pharmacogenetic profiling and TDM are both clinically considered approaches for dose individualization. The models were used to simulate relevant drug exposures (trough concentration or area under the curve [AUC]) under varying degrees of IIV, IOV, and RUV. RESULTS Six drug cases were selected from the literature. Model-based simulations demonstrated that the percentage of patients for whom pharmacogenetic exposure prediction is superior to TDM differs for each drug case: tacrolimus (11.0%), tamoxifen (12.7%), efavirenz (49.2%), vincristine (49.6%), risperidone (48.1%), and 5-fluorouracil (5-FU) (100%). Generally, in the presence of higher unexplained IIV in combination with lower RUV and IOV, exposure was best estimated by TDM, whereas, under lower unexplained IIV in combination with higher IOV or RUV, pharmacogenetic profiling was preferred. CONCLUSIONS For the drugs with relatively low RUV and IOV (e.g., tamoxifen and tacrolimus), TDM estimated true exposure the best. Conversely, for drugs with similar or lower unexplained IIV (e.g., efavirenz or 5-FU, respectively) combined with relatively high RUV, pharmacogenetic profiling provided the most accurate estimate for most patients. However, genotype prevalence and the relative influence of genotypes on the PK, as well as the ability of TDM to accurately estimate AUC with a limited number of samples, had an impact. The results could be used to support clinical decision making when considering other factors, such as the probability for severe side effects.
Collapse
Affiliation(s)
- Maddalena Centanni
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Niels Reijnhout
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Abel Thijs
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - Mats O Karlsson
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
| |
Collapse
|
12
|
Nijenhuis M, Soree B, Jama WOM, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, Houwink EJF, Rongen GA, van Schaik RHN, Swen JJ, Touw D, van der Weide J, van Westrhenen R, Deneer VHM, Risselada A. Dutch pharmacogenetics working group (DPWG) guideline for the gene-drug interaction of CYP2D6 and COMT with atomoxetine and methylphenidate. Eur J Hum Genet 2023; 31:1364-1370. [PMID: 36509836 PMCID: PMC10689464 DOI: 10.1038/s41431-022-01262-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) studies the effect of heritable genetic variation on drug response. Clinical adoption of PGx has remained limited, despite progress in the field. To promote implementation, the Dutch Pharmacogenetics Working Group (DPWG) develops evidence-based guidelines on how to optimize pharmacotherapy based on PGx test results. This guideline describes optimization of atomoxetine therapy based on genetic variation in the CYP2D6 gene. The CYP2D6 enzyme is involved in conversion of atomoxetine into the metabolite 4-hydroxyatomoxetine. With decreasing CYP2D6 enzyme activity, the exposure to atomoxetine and the risk of atomoxetine induced side effects increases. So, for patients with genetically absent CYP2D6 enzyme activity (CYP2D6 poor metabolisers), the DPWG recommends to start with the normal initial dose, bearing in mind that increasing this dose probably will not be required. In case of side effects and/or a late response, the DPWG recommends to reduce the dose and check for sustained effectiveness for both poor metabolisers and patients with genetically reduced CYP2D6 enzyme activity (CYP2D6 intermediate metabolisers). Extra vigilance for ineffectiveness is required in patients with genetically increased CYP2D6 enzyme activity (CYP2D6 ultra-rapid metabolisers). No interaction was found between the CYP2D6 and COMT genes and methylphenidate. In addition, no interaction was found between CYP2D6 and clonidine, confirming the suitability of clonidine as a possible alternative for atomoxetine in variant CYP2D6 metabolisers. The DPWG classifies CYP2D6 genotyping as being "potentially beneficial" for atomoxetine. CYP2D6 testing prior to treatment can be considered on an individual patient basis.
Collapse
Affiliation(s)
- Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | - Wafa O M Jama
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | | | | | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisa J F Houwink
- Department of Public Health and Primary Care (PHEG), Leiden University Medical Center, Leiden, The Netherlands
- Department of Family Medicine, Mayo Clinic, Rochester, MIN, USA
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan Touw
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Jan van der Weide
- Department of Clinical Chemistry, St. Jansdal Hospital, Harderwijk, The Netherlands
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute/PsyQ, Amsterdam, The Netherlands
- Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arne Risselada
- Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, The Netherlands
| |
Collapse
|
13
|
De Mattia E, Polesel J, Silvestri M, Roncato R, Scarabel L, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. The burden of rare variants in DPYS gene is a novel predictor of the risk of developing severe fluoropyrimidine-related toxicity. Hum Genomics 2023; 17:99. [PMID: 37946254 PMCID: PMC10633914 DOI: 10.1186/s40246-023-00546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity. METHODS The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework). RESULTS SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity. CONCLUSION This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Marco Silvestri
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
- Department of Medicine, University of Udine, Via Delle Scienze, 206, 33100, Udine, UD, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
14
|
Mihara Y, Hirasaki M, Horita Y, Fujino T, Fukushima H, Kamakura Y, Uranishi K, Hirano Y, Ryozawa S, Yasuda M, Makino Y, Shibazaki S, Hamaguchi T. PTEN-induced kinase 1 gene single-nucleotide variants as biomarkers in adjuvant chemotherapy for colorectal cancer: a retrospective study. BMC Gastroenterol 2023; 23:339. [PMID: 37784019 PMCID: PMC10544379 DOI: 10.1186/s12876-023-02975-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Fluoropyrimidine-based postoperative adjuvant chemotherapy is globally recommended for high-risk stage II and stage III colon cancer. However, adjuvant chemotherapy is often associated with severe adverse events and is not highly effective in preventing recurrence. Therefore, discovery of novel molecular biomarkers of postoperative adjuvant chemotherapy to identify patients at increased risk of recurrent colorectal cancer is warranted. Autophagy (including mitophagy) is activated under chemotherapy-induced stress and contributes to chemotherapy resistance. Expression of autophagy-related genes and their single-nucleotide polymorphisms are reported to be effective predictors of chemotherapy response in some cancers. Our goal was to evaluate the relationship between single-nucleotide variants of autophagy-related genes and recurrence rates in order to identify novel biomarkers that predict the effect of adjuvant chemotherapy in colorectal cancer. METHODS We analyzed surgical or biopsy specimens from 84 patients who underwent radical surgery followed by fluoropyrimidine-based adjuvant chemotherapy at Saitama Medical University International Medical Center between January and December 2016. Using targeted enrichment sequencing, we identified single-nucleotide variants and insertions/deletions in 50 genes, including autophagy-related genes, and examined their association with colorectal cancer recurrence rates. RESULTS We detected 560 single-nucleotide variants and insertions/deletions in the target region. The results of Fisher's exact test indicated that the recurrence rate of colorectal cancer after adjuvant chemotherapy was significantly lower in patients with the single-nucleotide variants (c.1018G > A [p < 0.005] or c.1562A > C [p < 0.01]) of the mitophagy-related gene PTEN-induced kinase 1. CONCLUSIONS The two single-nucleotide variants of PINK1 gene may be biomarkers of non-recurrence in colorectal cancer patients who received postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yoshiaki Mihara
- Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Yosuke Horita
- Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Takashi Fujino
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hisayo Fukushima
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasuo Kamakura
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasumitsu Hirano
- Department of Gastroenterological Surgery, Lower Gastrointestinal Tract Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masanori Yasuda
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yoshinori Makino
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Satomi Shibazaki
- Community Health Science Center, Saitama Medical University, 29 Morohongou, Iruma District, Moroyama Town, Saitama, 350-0495, Japan
| | - Tetsuya Hamaguchi
- Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
- Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
15
|
Fariman SA, Jahangard Rafsanjani Z, Hasanzad M, Niksalehi K, Nikfar S. Upfront DPYD Genotype-Guided Treatment for Fluoropyrimidine-Based Chemotherapy in Advanced and Metastatic Colorectal Cancer: A Cost-Effectiveness Analysis. Value Health Reg Issues 2023; 37:71-80. [PMID: 37329861 DOI: 10.1016/j.vhri.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Fluoropyrimidines are the most widely used chemotherapy drugs for advanced and metastatic colorectal cancer (CRC). Individuals with certain DPYD gene variants are exposed to an increased risk of severe fluoropyrimidine-related toxicities. This study aimed to evaluate the cost-effectiveness of preemptive DPYD genotyping to guide fluoropyrimidine therapy in patients with advanced or metastatic CRC. METHODS Overall survival of DPYD wild-type patients who received a standard dose and variant carriers treated with a reduced dose were analyzed by parametric survival models. A decision tree and a partitioned survival analysis model with a lifetime horizon were designed, taking the Iranian healthcare perspective. Input parameters were extracted from the literature or expert opinion. To address parameter uncertainty, scenario and sensitivity analyses were also performed. RESULTS Compared with no screening, the genotype-guided treatment strategy was cost-saving ($41.7). Nevertheless, due to a possible reduction in the survival of patients receiving reduced-dose regimens, it was associated with fewer quality-adjusted life-years (9.45 vs 9.28). In sensitivity analyses, the prevalence of DPYD variants had the most significant impact on the incremental cost-effectiveness ratio. The genotyping strategy would remain cost-saving, as long as the genotyping cost is < $49 per test. In a scenario in which we assumed equal efficacy for the 2 strategies, genotyping was the dominant strategy, associated with less costs (∼$1) and more quality-adjusted life-years (0.1292). CONCLUSIONS DPYD genotyping to guide fluoropyrimidine treatment in patients with advanced or metastatic CRC is cost-saving from the perspective of the Iranian health system.
Collapse
Affiliation(s)
- Soroush Ahmadi Fariman
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Niksalehi
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Bignucolo A, De Mattia E, Roncato R, Peruzzi E, Scarabel L, D’Andrea M, Sartor F, Toffoli G, Cecchin E. Ten-year experience with pharmacogenetic testing for DPYD in a national cancer center in Italy: Lessons learned on the path to implementation. Front Pharmacol 2023; 14:1199462. [PMID: 37256229 PMCID: PMC10225682 DOI: 10.3389/fphar.2023.1199462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Background: Awareness about the importance of implementing DPYD pharmacogenetics in clinical practice to prevent severe side effects related to the use of fluoropyrimidines has been raised over the years. Since 2012 at the National Cancer Institute, CRO-Aviano (Italy), a diagnostic DPYD genotyping service was set up. Purpose: This study aims to describe the evolution of DPYD diagnostic activity at our center over the last 10 years as a case example of a successful introduction of pharmacogenetic testing in clinical practice. Methods: Data related to the diagnostic activity of in-and out-patients referred to our service between January 2012 and December 2022 were retrieved from the hospital database. Results: DPYD diagnostic activity at our center has greatly evolved over the years, shifting gradually from a post-toxicity to a pre-treatment approach. Development of pharmacogenetic guidelines by national and international consortia, genotyping, and IT technology evolution have impacted DPYD testing uptake in the clinics. Our participation in a large prospective implementation study (Ubiquitous Pharmacogenomics) increased health practitioners' and patients' awareness of pharmacogenetic matters and provided additional standardized infrastructures for genotyping and reporting. Nationwide test reimbursement together with recommendations by regulatory agencies in Europe and Italy in 2020 definitely changed the clinical practice guidelines of fluoropyrimidines prescription. A dramatic increase in the number of pre-treatment DPYD genotyping and in the coverage of new fluoropyrimidine prescriptions was noticed by the last year of observation (2022). Conclusion: The long path to a successful DPYD testing implementation in the clinical practice of a National Cancer Center in Italy demonstrated that the development of pharmacogenetic guidelines and genotyping infrastructure standardization as well as capillary training and education activity for all the potential stakeholders are fundamental. However, only national health politics of test reimbursement and clear recommendations by drug regulatory agencies will definitely move the field forward.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G. Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | |
Collapse
|
17
|
Afolabi BL, Mazhindu T, Zedias C, Borok M, Ndlovu N, Masimirembwa C. Pharmacogenetics and Adverse Events in the Use of Fluoropyrimidine in a Cohort of Cancer Patients on Standard of Care Treatment in Zimbabwe. J Pers Med 2023; 13:588. [PMID: 37108974 PMCID: PMC10141018 DOI: 10.3390/jpm13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Fluoropyrimidines are commonly used in the treatment of colorectal cancer. They are, however, associated with adverse events (AEs), of which gastrointestinal, myelosuppression and palmar-plantar erythrodysesthesia are the most common. Clinical guidelines are used for fluoropyrimidine dosing based on dihydropyrimidine dehydrogenase (DPYD) genetic polymorphism and have been shown to reduce these AEs in patients of European ancestry. This study aimed to evaluate, for the first time, the clinical applicability of these guidelines in a cohort of cancer patients on fluoropyrimidine standard of care treatment in Zimbabwe. DNA was extracted from whole blood and used for DPYD genotyping. Adverse events were monitored for six months using the Common Terminology Criteria for AEs (CTCAE) v.5.0. None of the 150 genotyped patients was a carrier of any of the pathogenic variants (DPYD*2A, DPYD*13, rs67376798, or rs75017182). However, severe AEs were high (36%) compared to those reported in the literature from other populations. There was a statistically significant association between BSA (p = 0.0074) and BMI (p = 0.0001) with severe global AEs. This study has shown the absence of the currently known actionable DPYD variants in the Zimbabwean cancer patient cohort. Therefore, the current pathogenic variants in the guidelines might not be feasible for all populations hence the call for modification of the current DPYD guidelines to include minority populations for the benefit of all diverse patients.
Collapse
Affiliation(s)
- Boluwatife Lawrence Afolabi
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Biotechnology, School of Health Sciences, Chinhoyi University of Technology, Chinhoyi Private Bag 7724, Zimbabwe
| | - Tinashe Mazhindu
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Chikwambi Zedias
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
- Department of Biotechnology, School of Health Sciences, Chinhoyi University of Technology, Chinhoyi Private Bag 7724, Zimbabwe
| | - Margaret Borok
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Ntokozo Ndlovu
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare P.O. Box 2294, Zimbabwe
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology, Harare P.O. Box 2294, Zimbabwe; (B.L.A.)
| | | |
Collapse
|
18
|
Ockeloen CW, Raaijmakers A, Hijmans-van der Vegt M, Bierau J, de Vos-Geelen J, Willemsen AE, van den Bosch BJ, Coenen MJ. Potential added value of combined DPYD/DPD genotyping and phenotyping to prevent severe toxicity in patients with a DPYD variant and decreased dihydropyrimidine dehydrogenase enzyme activity. J Oncol Pharm Pract 2023; 29:5-13. [PMID: 34797200 DOI: 10.1177/10781552211049144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate if dihydropyrimidine dehydrogenase phenotyping has added value when combined with DPYD genotyping in predicting fluoropyrimidine-related toxicity. METHODS Retrospective cohort study in which treatment and toxicity data were collected of 228 patients genotyped for four DPYD variants and phenotyped using an ex vivo peripheral blood mononuclear cell assay. RESULTS Severe toxicity occurred in 25% of patients with a variant and normal dihydropyrimidine dehydrogenase activity, in 21% of patients without a variant and with decreased dihydropyrimidine dehydrogenase activity, and in 29% of patients without a variant and with normal dihydropyrimidine dehydrogenase activity (controls). The majority of patients with a variant or a decreased dihydropyrimidine dehydrogenase activity received an initial dose reduction (68% and 53% vs 19% in controls) and had a lower mean dose intensity (75% and 81% vs 91% in controls). Fifty percent of patients with a variant and decreased enzyme activity experienced severe toxicity, despite the lowest initial dose and whole treatment dose intensity. They also experienced more grade 4/5 toxicities. CONCLUSIONS Our results indicate that a combined genotype-phenotype approach could be useful to identify patients at increased risk for fluoropyrimidine-associated toxicity (e.g. patients with a variant and decreased dihydropyrimidine dehydrogenase activity). Because the group sizes are too small to demonstrate statistically significant differences, this warrants further research in a prospective study in a larger cohort.
Collapse
Affiliation(s)
- Charlotte W Ockeloen
- Department of Human Genetics, 6034Radboud University Medical Center, The Netherlands
| | | | | | - Jörgen Bierau
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Clinical Genetics, 199236Maastricht University Medical Center+, The Netherlands
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, 199236Maastricht University Medical Center+, The Netherlands
| | | | | | - Marieke Jh Coenen
- Department of Human Genetics, 6034Radboud University Medical Center, Radboud Institute for Health Sciences, The Netherlands
| |
Collapse
|
19
|
Hertz DL. Assessment of the Clinical Utility of Pretreatment DPYD Testing for Patients Receiving Fluoropyrimidine Chemotherapy. J Clin Oncol 2022; 40:3882-3892. [PMID: 36108264 DOI: 10.1200/jco.22.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Patients who carry pathogenic variants in DPYD have higher systemic fluoropyrimidine (FP) concentrations and greater risk of severe and fatal FP toxicity. Pretreatment DPYD testing and DPYD-guided FP dosing to reduce toxicity and health care costs is recommended by European clinical oncology guidelines and has been adopted across Europe, but has not been recommended or adopted in the United States. The cochairs of the National Comprehensive Cancer Network Guidelines for colon cancer treatment explained their concerns with recommending pretreatment DPYD testing, particularly the risk that reduced FP doses in DPYD carriers may reduce treatment efficacy. METHODS This special article uses previously published frameworks for assessing the clinical utility of cancer biomarker tests, including for germline indicators of toxicity risk, to assess the clinical utility of pretreatment DPYD testing, with a particular focus on the risk of reducing treatment efficacy. RESULTS There is no direct evidence of efficacy reduction, and the available indirect evidence demonstrates that DPYD-guided FP dosing results in similar systemic FP exposure and toxicity compared with standard dosing in noncarriers, and is well calibrated to the maximum tolerated dose, strongly suggesting there is minimal risk of efficacy reduction. CONCLUSION This article should serve as a call to action for clinicians and clinical guidelines committees in the United States to re-evaluate the clinical utility of pretreatment DPYD testing. If clinical utility has not been demonstrated, further dialogue is needed to clarify what additional evidence is needed and which of the available study designs, also described within this article, would be appropriate. Clinical guideline recommendations for pretreatment DPYD testing would increase clinical adoption and ensure that all patients receive maximally safe and effective FP treatment.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| |
Collapse
|
20
|
Laures N, Konecki C, Brugel M, Giffard AL, Abdelli N, Botsen D, Carlier C, Gozalo C, Feliu C, Slimano F, Djerada Z, Bouché O. Impact of Guidelines Regarding Dihydropyrimidine Dehydrogenase (DPD) Deficiency Screening Using Uracil-Based Phenotyping on the Reduction of Severe Side Effect of 5-Fluorouracil-Based Chemotherapy: A Propension Score Analysis. Pharmaceutics 2022; 14:pharmaceutics14102119. [PMID: 36297556 PMCID: PMC9610761 DOI: 10.3390/pharmaceutics14102119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency is associated with severe fluoropyrimidines-induced toxicity. As of September 2018, French recommendations call for screening for DPD deficiency by plasma uracil quantification prior to all fluoropyrimidine-based chemotherapy. A dose reduction of fluoropyrimidine is recommended when uracil concentration is equal to or greater than 16 ng/mL. This matched retrospective study assessed the impact of DPD screening on the reduction of severe side effects and on the management of DPD-deficient patients. Using a propensity score, we balanced the factors influencing 5-Fluorouracil (5-FU) toxicity. Then, the severity scores (G3 and G4 severity as well as their frequency) of patients who did not benefit from DPD screening were compared with those of patients who benefited from DPD screening for each treatment cycle (from 1 to 4). Among 349 screened patients, 198 treated patients were included. Among them, 31 (15.7%) had DPD deficiency (median uracilemia 19.8 ng/mL (range: 16.1−172.3)). The median toxicity severity score was higher in the unscreened group for each treatment cycle (0 vs. 1, p < 0.001 at each cycle from 1 to 4) as well as the cumulative score during all courses of treatment (p = 0.028). DPD-deficient patients received a significantly lower dose of 5-FU (p < 0.001). This study suggests that pretherapeutic plasmatic uracil assessment, along with 5-FU dosage adjustment, may be beneficial in reducing 5-FU toxicity in real-life patients.
Collapse
Affiliation(s)
- Nicolas Laures
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Céline Konecki
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Mathias Brugel
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier Auban-Moët, 51200 Epernay, France
| | - Anne-Lise Giffard
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Naceur Abdelli
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier de Chalons en Champagne, 51000 Chalons en Champagne, France
| | - Damien Botsen
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Claire Carlier
- Department of Gastroenterology and Digestive Oncology, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Claire Gozalo
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Catherine Feliu
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| | - Florian Slimano
- Department of Pharmacy, CHU Reims, University of Reims Champagne-Ardenne (URCA), 51100 Reims, France
| | - Zoubir Djerada
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
- Correspondence:
| | - Olivier Bouché
- Department of Medical Pharmacology, University of Reims Champagne-Ardenne (URCA), HERVI EA3801, 51097 Reims, France
- Department of Pharmacology and Toxicology, CHU Reims, 51100 Reims, France
| |
Collapse
|
21
|
De Mattia E, Silvestri M, Polesel J, Ecca F, Mezzalira S, Scarabel L, Zhou Y, Roncato R, Lauschke VM, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. Rare genetic variant burden in DPYD predicts severe fluoropyrimidine-related toxicity risk. Biomed Pharmacother 2022; 154:113644. [PMID: 36063648 PMCID: PMC9463069 DOI: 10.1016/j.biopha.2022.113644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Preemptive targeted pharmacogenetic testing of candidate variations in DPYD is currently being used to limit toxicity associated with fluoropyrimidines. The use of innovative next generation sequencing (NGS) approaches could unveil additional rare (minor allele frequency <1%) genetic risk variants. However, their predictive value and management in clinical practice are still controversial, at least partly due to the challenges associated with functional analyses of rare variants. The aim of this study was to define the predictive power of rare DPYD variants burden on the risk of severe fluoropyrimidine-related toxicity. The DPYD coding sequence and untranslated regions were analyzed by NGS in 120 patients developing grade 3–5 (NCI-CTC vs3.0) fluoropyrimidine-related toxicity and 104 matched controls (no-toxicity). The functional impact of rare variants was assessed using two different in silico predictive tools (i.e., Predict2SNP and ADME Prediction Framework) and structural modeling. Plasma concentrations of uracil (U) and dihydrouracil (UH2) were quantified in carriers of the novel variants. Here, we demonstrate that the burden of rare variants was significantly higher in patients with toxicity compared to controls (p = 0.007, Mann-Whitney test). Carriers of at least one rare missense DPYD variant had a 16-fold increased risk in the first cycle and an 11-fold increased risk during the entire course of chemotherapy of developing a severe adverse event compared to controls (p = 0.013 and p = 0.0250, respectively by multinomial regression model). Quantification of plasmatic U/UH2 metabolites and in silico visualization of the encoded protein were consistent with the predicted functional effect for the novel variations. Analysis and consideration of rare variants by DPYD-sequencing could improve prevention of severe toxicity of fluoropyrimidines and improve patients’ quality of life. DPYD genotype-guided dosing reduces fluoropyrimidine (FP) toxicity risk. Rare DPYD variants associate with severe FP toxicities. Carriers of rare DPYD variants have 11-fold increased risk of toxicity. DPYD sequencing and in silico functional prediction could prevent FP toxicity events.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Marco Silvestri
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Department of Applied Research and Technological Development, Via Giacomo Venezian 1, 20133 Milano, Italy.
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Silvia Mezzalira
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany.
| | - Stefano Calza
- University of Brescia, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy.
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, via Franco Gallini n. 2, 33081 Aviano PN, Italy; Department of Medicine, University of Udine, Via delle Scienze, 206, 33100 Udine UD, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini n. 2, 33081 Aviano PN, Italy.
| |
Collapse
|
22
|
Spanogiannopoulos P, Kyaw TS, Guthrie BGH, Bradley PH, Lee JV, Melamed J, Malig YNA, Lam KN, Gempis D, Sandy M, Kidder W, Van Blarigan EL, Atreya CE, Venook A, Gerona RR, Goga A, Pollard KS, Turnbaugh PJ. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol 2022; 7:1605-1620. [PMID: 36138165 PMCID: PMC9530025 DOI: 10.1038/s41564-022-01226-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.
Collapse
Affiliation(s)
- Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ben G H Guthrie
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick H Bradley
- Gladstone Institutes, San Francisco, CA, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Joyce V Lee
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Ysabella Noelle Amora Malig
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Kathy N Lam
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Daryll Gempis
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Moriah Sandy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wesley Kidder
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Erin L Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Chloe E Atreya
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Alan Venook
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
23
|
Brouwer JMJL, Nijenhuis M, Soree B, Guchelaar HJ, Swen JJ, van Schaik RHN, Weide JVD, Rongen GAPJM, Buunk AM, de Boer-Veger NJ, Houwink EJF, van Westrhenen R, Wilffert B, Deneer VHM, Mulder H. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs. Eur J Hum Genet 2022; 30:1114-1120. [PMID: 34782755 PMCID: PMC9553948 DOI: 10.1038/s41431-021-01004-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
The Dutch Pharmacogenetics Working Group (DPWG) guideline presented here, presents the gene-drug interaction between the genes CYP2C19 and CYP2D6 and antidepressants of the selective serotonin reuptake inhibitor type (SSRIs). Both genes' genotypes are translated into predicted normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), or ultra-rapid metabolizer (UM). Evidence-based dose recommendations were obtained, based on a structured analysis of published literature. In CYP2C19 PM patients, escitalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 75% of the normal maximum dose. Escitalopram should be avoided in UM patients. In CYP2C19 PM patients, citalopram dose should not exceed 50% of the normal maximum dose. In CYP2C19 IM patients, this is 70% (65-75%) of the normal maximum dose. In contrast to escitalopram, no action is needed for CYP2C19 UM patients. In CYP2C19 PM patients, sertraline dose should not exceed 37.5% of the normal maximum dose. No action is needed for CYP2C19 IM and UM patients. In CYP2D6 UM patients, paroxetine should be avoided. No action is needed for CYP2D6 PM and IM patients. In addition, no action is needed for the other gene-drug combinations. Clinical effects (increase in adverse events or decrease in efficacy) were lacking for these other gene-drug combinations. DPWG classifies CYP2C19 genotyping before the start of escitalopram, citalopram, and sertraline, and CYP2D6 genotyping before the start of paroxetine as "potentially beneficial" for toxicity/effectivity predictions. This indicates that genotyping prior to treatment can be considered on an individual patient basis.
Collapse
Affiliation(s)
- Jurriaan M J L Brouwer
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands
- GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands
- Department of Psychiatry, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jan van der Weide
- Department of Clinical Chemistry, St. Jansdal Hospital, Harderwijk, The Netherlands
| | - Gerard A P J M Rongen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Elisa J F Houwink
- Department of Public Health and Primary Care (PHEG), Leiden University Medical Centre, Leiden, The Netherlands
- National eHealth Living Lab (NELL), Leiden, The Netherlands
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute/PsyQ, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Bob Wilffert
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Hans Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands
| |
Collapse
|
24
|
Brooks GA, Tapp S, Daly AT, Busam JA, Tosteson ANA. Cost-effectiveness of DPYD Genotyping Prior to Fluoropyrimidine-based Adjuvant Chemotherapy for Colon Cancer. Clin Colorectal Cancer 2022; 21:e189-e195. [PMID: 35668003 PMCID: PMC10496767 DOI: 10.1016/j.clcc.2022.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Adjuvant fluoropyrimidine-based chemotherapy substantially reduces recurrence and mortality after resection of stage 3 colon cancer. While standard doses of 5-fluorouracil and capecitabine are safe for most patients, the risk of severe toxicity is increased for the approximately 6% of patients with dihydropyimidine dehydrogenase (DPD) deficiency caused by pathogenic DPYD gene variants. Pre-treatment screening for pathogenic DPYD gene variants reduces severe toxicity but has not been widely adopted in the United States. METHODS We conducted a cost-effectiveness analysis of DPYD genotyping prior to fluoropyrimidine-based adjuvant chemotherapy for stage 3 colon cancer, covering the c.1129-5923C>G (HapB3), c.1679T>G (*13), c.1905+1G>A (*2A), and c.2846A>T gene variants. We used a Markov model with a 5-year horizon, taking a United States healthcare perspective. Simulated patients with pathogenic DPYD gene variants received reduced-dose fluoropyrimidine chemotherapy. The primary outcome was the incremental cost-effectiveness ratio (ICER) for DPYD genotyping. RESULTS Compared with no screening for DPD deficiency, DPYD genotyping increased per-patient costs by $78 and improved survival by 0.0038 quality-adjusted life years (QALYs), leading to an ICER of $20,506/QALY. In 1-way sensitivity analyses, The ICER exceeded $50,000 per QALY when the cost of the DPYD genotyping assay was greater than $286. In probabilistic sensitivity analysis using a willingness-to-pay threshold of $50,000/QALY DPYD genotyping was preferred to no screening in 96.2% of iterations. CONCLUSION Among patients receiving adjuvant chemotherapy for stage 3 colon cancer, screening for DPD deficiency with DPYD genotyping is a cost-effective strategy for preventing infrequent but severe and sometimes fatal toxicities of fluoropyrimidine chemotherapy.
Collapse
Affiliation(s)
- Gabriel A Brooks
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center/Geisel School of Medicine, Lebanon, NH; The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, NH.
| | - Stephanie Tapp
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, NH
| | - Allan T Daly
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA
| | | | - Anna N A Tosteson
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center/Geisel School of Medicine, Lebanon, NH; The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
25
|
Carriat L, Quaranta S, Solas C, Rony M, Ciccolini J. Renal impairment and DPD testing: watch out for false-positive results! Br J Clin Pharmacol 2022; 88:4928-4932. [PMID: 35939355 DOI: 10.1111/bcp.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Measuring uracil (U) levels in plasma is a convenient surrogate to establish DPD status in patients scheduled with 5-fluorouracil (5-FU) or capecitabine. To what extent renal impairment could impact on U levels and thus be a confounding factor is a rising concern. Here, we report the case of a cancer patient with severe renal impairment scheduled for 5-FU-based regimen. Determination of his DPD status was complicated because of his condition and the influence of intermittent hemodialysis when monitoring U levels. The patient was initially identified as markedly DPD-deficient upon U measurement (i.e., U = 40 ng/ml), but further monitoring between and immediately after dialysis showed mild deficiency only (i.e., U = 34 and U = 19 ng/ml, respectively). Despite this discrepancy, starting dose of 5-FU was cut by 50% upon treatment initiation. Tolerance was good and 5-FU dosing was next shifted to 25% reduction, then further shifted to normal dosing at the 5th course, with still no sign for drug-related toxicities. Further DPYD genotyping showed none of the 4 allelic variants usually associated with loss of DPD activity. Of note, the excellent tolerance upon standard dosing strongly suggests that this patient was actually not DPD-deficient, despite U values always above normal concentrations. This case report highlights how critical is the information regarding the renal function of patients with cancer when phenotyping DPD using U plasma as a surrogate, and that U accumulation in patients with such condition is likely to yield false-positive results.
Collapse
Affiliation(s)
- Laure Carriat
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| | - Sylvie Quaranta
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Maelle Rony
- Oncologie Digestive, CHU Timone, APHM, Marseille, France
| | - Joseph Ciccolini
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| |
Collapse
|
26
|
Alfaro Alfaro ÁE, Murillo Castillo B, Cordero García E, Tascón J, Morales AI. Colon Cancer Pharmacogenetics: A Narrative Review. PHARMACY 2022; 10:95. [PMID: 36005935 PMCID: PMC9413567 DOI: 10.3390/pharmacy10040095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, metastatic colon cancer is treated with monotherapeutic regimens such as folinic acid, fluorouracil, and oxaliplatin (FOLFOX), capecitabine and oxaliplatin (CapeOX), and leucovorin, fluorouracil, and irinotecan hydrochloride (FOLFIRI). Other treatments include biological therapies and immunotherapy with drugs such as bevacizumab, panitumumab, cetuximab, and pembrolizumab. After the research, it was found that some mutations make those treatments not as effective in all patients. In this bibliographic review, we investigated the pharmacogenetic explanations for how mutations in the genes coding for rat sarcoma virus (RAS) and rapidly accelerated fibrosarcoma (RAF) reduce the effectiveness of these treatments and allow the continued proliferation of tumors. Furthermore, we note that patients with mutations in the dihydropyrimidine dehydrogenase (DPDY) gene usually require lower doses of therapies such as 5-fluorouracyl (5-FU) and capecitabine to avoid severe adverse effects. Some other mutations in the thymidylate synthase gene (TSYM), methylenetetrahydrofolate reductase gene (MTHFR), and ATP binding cassette transporter B (ABCB1 and ABCB2) affect efficacy and security of the treatments. It is important to address the clinical implication of the oncologist in the study of gene mutations than can influence in the antitumoral response and safety of colon cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Javier Tascón
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana I. Morales
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
27
|
Wang X, Wang A, Feng W, Wang D, Guo X, Wang X, Miao Q, Liu M, Xia G. Novel 5-Fluorouracil Carbonate-Loaded Liposome: Preparation, In Vitro, and In Vivo Evaluation as an Antitumor Agent. Mol Pharm 2022; 19:2061-2076. [PMID: 35731595 DOI: 10.1021/acs.molpharmaceut.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug against many types of cancers, especially colorectal cancer. However, its short plasma half-life and serious adverse reactions limit its wide clinical applications. To overcome these shortcomings, a novel lipophilic 5-FU carbonate [XL-01, (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl tetradecyl carbonate] was designed, synthesized, and encapsulated into liposome (LipoXL-01) by a thin-film dispersion method through formulation screening and optimization. LipoXL-01 was characterized by a particle size of around 100 nm, polydispersity index of 0.200, ζ-potential value of -41 mV, encapsulation efficiency of 93.9%, and drug-loading efficiency of 11.6%. The cellular uptake of LipoXL-01 was increased in a concentration-dependent manner on HCT15 cells. LipoXL-01 could enhance the induction of cell apoptosis and the inhibition of cell migration and arrest the ability of the cell cycle at the S-phase on HCT15 cells better than 5-FU. Additionally, LipoXL-01 exhibited a slow drug release profile with a cumulative release rate of 12% in 8 h. The results of pharmacokinetic and biodistribution studies revealed that LipoXL-01 had a long plasma half-life (7.21 h) and a high tumor accumulation (733 nmol/g at 8 h). The in vivo antitumor effect study also showed that LipoXL-01 had more potent efficacy than 5-FU (65 vs 48% of the tumor-inhibition rate). Simultaneously, negligible systemic toxicity was observed via analyzing the body weight as well as hematological and pathological parameters in the tested mice. The current study suggested that LipoXL-01 might be a promising nanocandidate for chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoru Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
28
|
Hishinuma E, Narita Y, Obuchi K, Ueda A, Saito S, Tadaka S, Kinoshita K, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Importance of Rare DPYD Genetic Polymorphisms for 5-Fluorouracil Therapy in the Japanese Population. Front Pharmacol 2022; 13:930470. [PMID: 35784703 PMCID: PMC9242541 DOI: 10.3389/fphar.2022.930470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 02/02/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is the rate-limiting enzyme in 5-fluorouracil (5-FU) degradation. In Caucasians, four DPYD risk variants are recognized to be responsible for interindividual variations in the development of 5-FU toxicity. However, these risk variants have not been identified in Asian populations. Recently, 41 DPYD allelic variants, including 15 novel single nucleotide variants, were identified in 3,554 Japanese individuals by analyzing their whole-genome sequences; however, the effects of these variants on DPD enzymatic activity remain unknown. In the present study, an in vitro analysis was performed on 41 DPD allelic variants and three DPD risk variants to elucidate the changes in enzymatic activity. Wild-type and 44 DPD-variant proteins were heterologously expressed in 293FT cells. DPD expression levels and dimerization of DPD were determined by immunoblotting after SDS-PAGE and blue native PAGE, respectively. The enzymatic activity of DPD was evaluated by quantification of dihydro-5-FU, a metabolite of 5-FU, using high-performance liquid chromatography-tandem mass spectrometry. Moreover, we used 3D simulation modeling to analyze the effect of amino acid substitutions on the conformation of DPD. Among the 41 DPD variants, seven exhibited drastically decreased intrinsic clearance (CLint) compared to the wild-type protein. Moreover, R353C and G926V exhibited no enzymatic activity, and the band patterns observed in the immunoblots after blue native PAGE indicated that DPD dimerization is required for its enzymatic activity. Our data suggest that these variants may contribute to the significant inter-individual variability observed in the pharmacokinetics and pharmacodynamics of 5-FU. In our study, nine DPD variants exhibited drastically decreased or no enzymatic activity due to dimerization inhibition or conformational changes in each domain. Especially, the rare DPYD variants, although at very low frequencies, may serve as important pharmacogenomic markers associated with the severe 5-FU toxicity in Japanese population.
Collapse
Affiliation(s)
- Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoko Narita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kai Obuchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Masamitsu Maekawa
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Noriyasu Hirasawa
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- *Correspondence: Masahiro Hiratsuka,
| |
Collapse
|
29
|
Farinango C, Gallardo-Cóndor J, Freire-Paspuel B, Flores-Espinoza R, Jaramillo-Koupermann G, López-Cortés A, Burgos G, Tejera E, Cabrera-Andrade A. Genetic Variations of the DPYD Gene and Its Relationship with Ancestry Proportions in Different Ecuadorian Trihybrid Populations. J Pers Med 2022; 12:jpm12060950. [PMID: 35743735 PMCID: PMC9225136 DOI: 10.3390/jpm12060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Dihydropyrimidine dehydrogenase is one of the main pharmacological metabolizers of fluoropyrimidines, a group of drugs widely used in clinical oncology. Around 20 to 30% of patients treated with fluoropyrimidines experience severe toxicity caused by a partial or total decrease in enzymatic activity. This decrease is due to molecular variants in the DPYD gene. Their prevalence and allelic frequencies vary considerably worldwide, so their description in heterogeneous groups such as the Ecuadorian population will allow for the description of pharmacogenetic variants and proper characterization of this population. Thus, we genotyped all the molecular variants with a predictive value for DPYD in a total of 410 Ecuadorian individuals belonging to Mestizo, Afro-Ecuadorian, and Indigenous ethnic groups. Moreover, we developed a genetic ancestry analysis using 46 autosomal ancestry informative markers. We determined 20 genetic variations in 5 amplified regions, including 3 novel single nucleotide variants. The allele frequencies for DPYD variants c.1627G>A (*5, rs1801159), c.1129-15T>C (rs56293913), c.1218G>A (rs61622928), rs1337752, rs141050810, rs2786783, rs2811178, and g.97450142G>A (chr1, GRCh38.p13) are significantly related to Native American and African ancestry proportions. In addition, the FST calculated from these variants demonstrates the closeness between Indigenous and Mestizo populations, and evidences genetic divergence between Afro-Ecuadorian groups when compared with Mestizo and Indigenous ethnic groups. In conclusion, the genetic variability in the DPYD gene is related to the genetic component of ancestral populations in different Ecuadorian ethnic groups. The absence and low frequency of variants with predictive value for fluoropyrimidine toxicity such as DPYD *2A, HapB3, and c.2846A>T (prevalent in populations with European ancestry) is consistent with the genetic background found.
Collapse
Affiliation(s)
- Camila Farinango
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador; (C.F.); (J.G.-C.); (E.T.)
| | - Jennifer Gallardo-Cóndor
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador; (C.F.); (J.G.-C.); (E.T.)
| | - Byron Freire-Paspuel
- Laboratorios de Investigación, Universidad de Las Américas, Quito 170125, Ecuador; (B.F.-P.); (R.F.-E.)
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Rodrigo Flores-Espinoza
- Laboratorios de Investigación, Universidad de Las Américas, Quito 170125, Ecuador; (B.F.-P.); (R.F.-E.)
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Gabriela Jaramillo-Koupermann
- Laboratorio de Biología Molecular, Subproceso de Anatomía Patológica, Hospital de Especialidades Eugenio Espejo, Quito 170403, Ecuador;
| | - Andrés López-Cortés
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170125, Ecuador; (A.L.-C.); (G.B.)
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain
| | - Germán Burgos
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170125, Ecuador; (A.L.-C.); (G.B.)
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador; (C.F.); (J.G.-C.); (E.T.)
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170125, Ecuador
- Correspondence:
| |
Collapse
|
30
|
White C, Scott RJ, Paul C, Ziolkowski A, Mossman D, Fox SB, Michael M, Ackland S. Dihydropyrimidine Dehydrogenase Deficiency and Implementation of Upfront DPYD Genotyping. Clin Pharmacol Ther 2022; 112:791-802. [PMID: 35607723 DOI: 10.1002/cpt.2667] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Fluoropyrimidines (FP; 5-fluorouracil, capecitabine, and tegafur) are a commonly prescribed class of antimetabolite chemotherapies, used for various solid organ malignancies in over 2 million patients globally per annum. Dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is the critical enzyme implicated in FP metabolism. DPYD variant genotypes can result in decreased DPD production, leading to the development of severe toxicities resulting in hospitalization, intensive care admission, and even death. Management of toxicity incurs financial burden on both patients and healthcare systems alike. Upfront DPYD genotyping to identify variant carriers allows an opportunity to identify patients who are at high risk to suffer from serious toxicities and allow prospective dose adjustment of FP treatment. This approach has been shown to reduce patient morbidity, as well as improve the cost-effectiveness of managing FP treatment. Upfront DPYD genotyping has been recently endorsed by several countries in Europe and the United Kingdom. This review summarizes current knowledge about DPD deficiency and upfront DPYD genotyping, including clinical and cost-effectiveness outcomes, with the intent of supporting implementation of an upfront DPYD genotyping service with individualized dose-personalization.
Collapse
Affiliation(s)
- Cassandra White
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,School of Biomedical Science and Pharmacy, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Christine Paul
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew Ziolkowski
- Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - David Mossman
- Department of Molecular Genetics, Pathology North John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen Ackland
- School of Medicine and Public Health, University of Newcastle, College of Health, Medicine and Wellbeing, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Hunter Cancer Centre, Lake Macquarie Private Hospital, Gateshead, New South Wales, Australia
| |
Collapse
|
31
|
Tsiachristas A, Vallance G, Koleva-Kolarova R, Taylor H, Solomons L, Rizzo G, Chaytor C, Miah J, Wordsworth S, Hassan AB. Can upfront DPYD extended variant testing reduce toxicity and associated hospital costs of fluoropyrimidine chemotherapy? A propensity score matched analysis of 2022 UK patients. BMC Cancer 2022; 22:458. [PMID: 35473510 PMCID: PMC9044697 DOI: 10.1186/s12885-022-09576-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Aim To independently assess the impact of mandatory testing using an extended DPYD variant panel (ToxNav®) and consequent dose adjustment of Capecitabine/5-FU on recorded quantitative toxicity, symptoms of depression, and hospital costs. Methods We used propensity score matching (PSM) to match 466 patients tested with ToxNav® with 1556 patients from a historical cohort, and performed regression analysis to estimate the impact of ToxNav®on toxicity, depression, and hospital costs. Results ToxNav® appeared to reduce the likelihood of experiencing moderate (OR: 0.59; 95%CI: 0.45–0.77) and severe anaemia (OR: 0.55; 95%CI: 0.33–0.90), and experience of pain for more than 4 days a week (OR: 0.50; 95%CI: 0.30–0.83), while it increased the likelihood of mild neutropenia (OR: 1.73; 95%CI: 1.27–2.35). It also reduced the cost of chemotherapy by 12% (95%CI: 3–31) or £9765, the cost of non-elective hospitalisation by 23% (95%CI: 8–36) or £2331, and the cost of critical care by 21% (95%CI: 2–36) or £1219 per patient. For the DPYD variant associated with critical risk of toxicity (rs3918290), the improved non-elective hospital costs were > £20,000, whereas variants associated with hand-foot syndrome toxicity had no detectable cost improvement. Conclusion Upfront testing of DPYD variants appears to reduce the toxicity burden of Capecitabine and 5-FU in cancer patients and can lead to substantial hospital cost savings, only if the dose management of the drugs in response to variants detected is standardised and regulated. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09576-3.
Collapse
Affiliation(s)
- Apostolos Tsiachristas
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| | | | - Rositsa Koleva-Kolarova
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | | | | | | | | | - Junel Miah
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - A Bassim Hassan
- Oxford University Hospitals NHS Trust, Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Koo K, Pasternak AL, Henry NL, Sahai V, Hertz DL. Survey of US Medical Oncologists' Practices and Beliefs Regarding DPYD Testing Before Fluoropyrimidine Chemotherapy. JCO Oncol Pract 2022; 18:e958-e965. [PMID: 35239419 DOI: 10.1200/op.21.00874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Patients who carry reduced-activity DPYD polymorphisms have increased fluoropyrimidine (FP) toxicity risk. Although pretreatment DPYD testing is recommended throughout most of Europe, it is not recommended in the United States, and adoption has been limited. The objective of this survey was to describe the current practice in the United States regarding pretreatment DPYD testing and understand the factors deterring oncologists from ordering testing. METHODS Survey invitations were e-mailed to 325 medical oncologists practicing in the United States who are members of the SWOG Cancer Research Network Gastrointestinal Cancer, Breast Cancer, or Early Therapeutics Committees. Descriptive statistics were used to evaluate survey responses. RESULTS Responses were collected from 59 (18.2%) US medical oncologists, of whom 98% strongly or somewhat agree that patients with dihydropyrimidine dehydrogenase (DPD) deficiency have increased toxicity risk and 96% would modify FP dosing for a patient with known DPD deficiency. However, only 32% strongly or somewhat agree that pretreatment DPYD testing is useful to inform FP treatment, 20% have ever ordered pretreatment testing, and 3% order testing for at least 10% of their FP-treated patients. The most important factors that deter oncologists from ordering testing were low prevalence of DPD deficiency (54%) and lack of clinical practice guideline recommendations (48%). CONCLUSION Clinical adoption of pretreatment DPYD testing is extremely limited in the United States. Utilization may be substantially increased by inclusion in the oncology clinical practice guideline recommendations, coverage through health insurance, and potentially education of medical oncologists regarding available treatment modification guidelines.
Collapse
Affiliation(s)
- Kyoin Koo
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| | - Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| | - N Lynn Henry
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI.,Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI.,Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| |
Collapse
|
33
|
Nagarajan A. Total neoadjuvant therapy: Fact, fantasy, or fallacy? Surg Oncol 2022; 43:101738. [DOI: 10.1016/j.suronc.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022]
|
34
|
Carrato A. Precision Medicine: UGT1A1 Genotyping to Better Manage Irinotecan-Induced Toxicity. JCO Oncol Pract 2022; 18:278-280. [DOI: 10.1200/op.21.00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alfredo Carrato
- Medical Oncology Emeritus Professor, Alcala University, Madrid, Spain
- Pancreatic Cancer Europe—PCE Chairperson, Brussels, Belgium
- Ramon y Cajal Institute for Health Research—IRYCIS Group Head
- Spain Biomedical Research on Cancer Network-CIBERONC
| |
Collapse
|
35
|
Adam C, Bray TL, Pérez-López AM, Tan EH, Rubio-Ruiz B, Baillache DJ, Houston DR, Salji MJ, Leung HY, Unciti-Broceta A. A 5-FU Precursor Designed to Evade Anabolic and Catabolic Drug Pathways and Activated by Pd Chemistry In Vitro and In Vivo. J Med Chem 2022; 65:552-561. [PMID: 34979089 DOI: 10.1021/acs.jmedchem.1c01733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic antimetabolite that is widely administered to cancer patients by bolus injection, especially to those suffering from colorectal and pancreatic cancer. Because of its suboptimal route of administration and dose-limiting toxicities, diverse 5-FU prodrugs have been developed to confer oral bioavailability and increase the safety profile of 5-FU chemotherapy regimens. Our contribution to this goal is presented herein with the development of a novel palladium-activated prodrug designed to evade the metabolic machinery responsible for 5-FU anabolic activation and catabolic processing. The new prodrug is completely innocuous to cells and highly resistant to metabolization by primary hepatocytes and liver S9 fractions (the main metabolic route for 5-FU degradation), whereas it is rapidly converted into 5-FU in the presence of a palladium (Pd) source. In vivo pharmokinetic analysis shows the prodrug is rapidly and completely absorbed after oral administration and exhibits a longer half-life than 5-FU. In vivo efficacy studies in a xenograft colon cancer model served to prove, for the first time, that orally administered prodrugs can be locally converted to active drugs by intratumorally inserted Pd implants.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Thomas L Bray
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ee Hong Tan
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Mark J Salji
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| |
Collapse
|
36
|
Trecarichi A, Duggett NA, Granat L, Lo S, Malik AN, Zuliani-Álvarez L, Flatters SJL. Preclinical evidence for mitochondrial DNA as a potential blood biomarker for chemotherapy-induced peripheral neuropathy. PLoS One 2022; 17:e0262544. [PMID: 35015774 PMCID: PMC8752024 DOI: 10.1371/journal.pone.0262544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting side effect of several first-line chemotherapeutic agents including paclitaxel, oxaliplatin and bortezomib, for which no predictive marker is currently available. We have previously shown that mitochondrial dysfunction is associated with the development and maintenance of CIPN. The aim of this study was to evaluate the potential use of mitochondrial DNA (mtDNA) levels and complex I enzyme activity as blood biomarkers for CIPN. Real-time qPCR was used to measure mtDNA levels in whole blood collected from chemotherapy- and vehicle-treated rats at three key time-points of pain-like behaviour: prior to pain development, at the peak of mechanical hypersensitivity and at resolution of pain-like behaviour. Systemic oxaliplatin significantly increased mtDNA levels in whole blood prior to pain development. Furthermore, paclitaxel- and bortezomib-treated animals displayed significantly higher levels of mtDNA at the peak of mechanical hypersensitivity. Mitochondrial complex I activity in whole blood was assessed with an ELISA-based Complex I Enzyme Activity Dipstick Assay. Complex I activity was not altered by any of the three chemotherapeutic agents, either prior to or during pain-like behaviour. These data demonstrate that blood levels of mtDNA are altered after systemic administration of chemotherapy. Oxaliplatin, in particular, is associated with higher mtDNA levels before animals show any pain-like behaviour, thus suggesting a potential role for circulating mtDNA levels as non-invasive predictive biomarker for CIPN.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Lucy Granat
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samantha Lo
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Afshan N. Malik
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lorena Zuliani-Álvarez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sarah J. L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
37
|
Gmeiner WH. A narrative review of genetic factors affecting fluoropyrimidine toxicity. PRECISION CANCER MEDICINE 2021; 4:38. [PMID: 34901834 PMCID: PMC8664072 DOI: 10.21037/pcm-21-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our objective is to document progress in developing personalized therapy with fluoropyrimidine drugs (FPs) to improve outcomes for cancer patients and to identify areas requiring further investigation. BACKGROUND FPs including 5-fluorouracil (5-FU), are among the most widely used drugs for treating colorectal cancer (CRC) and other gastrointestinal (GI) malignancies. While FPs confer a survival benefit for CRC patients, serious systemic toxicities, including neutropenia, occur in ~30% of patients with lethality in 0.5-1% of patients. While serious systemic toxicities may occur in any patient, patients with polymorphisms in DPYD, which encodes the rate-limiting enzyme for pyrimidine degradation are at very high risk. Other genetic factors affecting risk for 5-FU toxicity, including miR-27a, are under investigation. METHODS Literature used to inform the text of this article was selected from PubMed.gov from the National Library of Medicine while regulatory documents were identified via Google search. CONCLUSIONS Clinical studies to date have validated four DPYD polymorphisms (DPYD*2A, DPYD*13, c.2846A>T, HapB3) associated with serious toxicities in patients treated with 5-FU. Genetic screening for these is being implemented in the Netherlands and the UK and has been shown to be a cost-effective way to improve outcomes. Factors other than DPYD polymorphisms (e.g., miR-27a, TYMS, ENOSF1, p53) also affect 5-FU toxicity. Functional testing for deficient pyrimidine catabolism {defined as [U] >16 ng/mL or [UH2]:[U] <10} is being implemented in France and has demonstrated utility in identifying patients with elevated risk for 5-FU toxicity. Therapeutic drug monitoring (TDM) from plasma levels of 5-FU during first cycle treatment also is being used to improve outcomes and pharmacokinetic-based dosing is being used to increase the percent of patients within optimal area under the curve (AUC) (18-28 mg*h/L) values. Patients maintained in the optimal AUC range experienced significantly reduced systemic toxicities. As understanding the genetic basis for increased risk of 5-FU toxicity becomes more refined, the development of functional-based methods to optimize treatment is likely to become more widespread.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
38
|
Sharma BB, Rai K, Blunt H, Zhao W, Tosteson TD, Brooks GA. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist 2021; 26:1008-1016. [PMID: 34506675 DOI: 10.1002/onco.13967] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic variants of the DPYD gene are strongly associated with grade ≥3 toxicity during fluoropyrimidine chemotherapy. We conducted a systematic review and meta-analysis to estimate the risk of treatment-related death associated with DPYD gene variants. MATERIALS AND METHODS We searched for reports published prior to September 17, 2020, that described patients receiving standard-dose fluoropyrimidine chemotherapy (5-fluorouracil or capecitabine) who had baseline testing for at least one of four pathogenic DPYD variants (c.1129-5923C>G [HapB3], c.1679T>G [*13], c.1905+1G>A [*2A], and c.2846A>T) and were assessed for toxicity. Two reviewers assessed studies for inclusion and extracted study-level data. The primary outcome was the relative risk of treatment-related mortality for DPYD variant carriers versus noncarriers; we performed data synthesis using a Mantel-Haenszel fixed effects model. RESULTS Of the 2,923 references screened, 35 studies involving 13,929 patients were included. DPYD variants (heterozygous or homozygous) were identified in 566 patients (4.1%). There were 14 treatment-related deaths in 13,363 patients without identified DPYD variants (treatment-related mortality, 0.1%; 95% confidence interval [CI], 0.1-0.2) and 13 treatment-related deaths in 566 patients with any of the four DPYD variants (treatment-related mortality, 2.3%; 95% CI, 1.3%-3.9%). Carriers of pathogenic DPYD gene variants had a 25.6 times increased risk of treatment-related death (95% CI, 12.1-53.9; p < .001). After excluding carriers of the more common but less deleterious c.1129-5923C>G variant, carriers of c.1679T>G, c.1905+1G>A, and/or c.2846A>T had treatment-related mortality of 3.7%. CONCLUSION Patients with pathogenic DPYD gene variants who receive standard-dose fluoropyrimidine chemotherapy have greatly increased risk for treatment-related death. IMPLICATIONS FOR PRACTICE The syndrome of dihydropyrimidine dehydrogenase (DPD) deficiency is an uncommon but well-described cause of severe toxicity related to fluoropyrimidine chemotherapy agents (5-fluorouracil and capecitabine). Patients with latent DPD deficiency can be identified preemptively with genotyping of the DPYD gene, or with measurement of the plasma uracil concentration. In this systematic review and meta-analysis, the authors study the rare outcome of treatment-related death after fluoropyrimidine chemotherapy. DPYD gene variants associated with DPD deficiency were linked to a 25.6 times increased risk of fluoropyrimidine-related mortality. These findings support the clinical utility of DPYD genotyping as a screening test for DPD deficiency.
Collapse
Affiliation(s)
| | - Karan Rai
- Geisel School of Medicine at Dartmouth, Lebanon, New Hamphsire, USA
| | - Heather Blunt
- Biomedical Libraries, Dartmouth College, Hanover, New Hampshire, USA
| | - Wenyan Zhao
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Tor D Tosteson
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, New Hampshire, USA.,The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Gabriel A Brooks
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, New Hampshire, USA
| |
Collapse
|
39
|
Fernandes MR, Rodrigues JCG, Dobbin EAF, Pastana LF, da Costa DF, Barra WF, Modesto AAC, de Assumpção PB, da Costa Silva AL, Dos Santos SEB, Burbano RMR, de Assumpção PP, Dos Santos NPC. Influence of FPGS, ABCC4, SLC29A1, and MTHFR genes on the pharmacogenomics of fluoropyrimidines in patients with gastrointestinal cancer from the Brazilian Amazon. Cancer Chemother Pharmacol 2021; 88:837-844. [PMID: 34331561 DOI: 10.1007/s00280-021-04327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Fluoropyrimidines are one of the most used drug class to treat cancer patients, although they show high levels of associated toxicity. This study analyzed 33 polymorphisms in 17 pharmacogenes involved with the pharmacogenomics of fluoropyrimidines, in gastrointestinal cancer patients undergoing fluoropyrimidine-based treatment in the Brazilian Amazon. METHODS The study population was composed of 216 patients, 92 of whom have an anatomopathological diagnosis of gastric cancer and 124 of colorectal cancer. The single nucleotide polymorphisms (SNP) were genotyped by allelic discrimination using the TaqMan OpenArray Genotyping technology, with a panel of 32 customized assays, run in a QuantStudio ™ 12K Flex Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad USA). Ancestry analysis was performed using 61 autosomal ancestry informative markers (AIMs). RESULTS The study population show mean values of 48.1% European, 31.1% Amerindian, and 20.8% African ancestries. A significant risk association for general and severe toxicity was found in the rs4451422 of FPGS (p = 0.001; OR 3.40; CI 95% 1.65-7.00 and p = 0.006; OR 4.63; CI 95% 1.56-13.72, respectively) and the rs9524885 of ABCC4 (p = 0.023; OR 2.74; CI 95% 1.14-6.65 and p = 0.024; OR 5.36; IC 95% 1.24-23.11, respectively) genes. The rs760370 in the SLC29A1 gene (p = 0.009; OR 6.71; CI 95% 1.16-8.21) and the rs1801133 in the MTHFR toxicity (p = 0.023; OR 3.09; CI 95% 1.16-8.21) gene also demonstrated to be significant, although only for severe toxicity. The results found in this study did not have statistics analysis correction. CONCLUSION Four polymorphisms of the ABCC4, FPGS, SLC29A1, and MTHFR genes are likely to be potential predictive biomarkers for precision medicine in fluoropyrimidine-based treatments in the population of the Brazilian Amazon, which is constituted by a unique genetic background.
Collapse
Affiliation(s)
- Marianne Rodrigues Fernandes
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | - Artur Luiz da Costa Silva
- Centro de Genômica E Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | | | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | |
Collapse
|
40
|
Kim S, Kang SI, Kim S, Kim JH. Prognostic implications of chemotherapy-induced neutropenia in stage III colorectal cancer. J Surg Res 2021; 267:391-396. [PMID: 34218138 DOI: 10.1016/j.jss.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Previous studies have reported chemotherapy-induced neutropenia (CIN) as a prognostic factor in stage IV colorectal cancer (CRC). However, only few reports analyzed the prognostic value of CIN in patients with stage III CRC who received adjuvant chemotherapy with oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX). We aimed to investigate the prognostic implications of CIN in patients with stage III CRC who received adjuvant chemotherapy with FOLFOX. MATERIALS AND METHODS We retrospectively analyzed patients with stage III CRC who received adjuvant chemotherapy with FOLFOX at a tertiary hospital between January 2007 and December 2017. Severe CIN was defined as an absolute neutrophil count of less than 1000/mm3. Three-y disease-free survival (DFS) and overall survival (OS) were analyzed as primary endpoints. RESULTS Among the 199 patients included in this study, 110 patients (55.3%) experienced severe CIN. There were no significant differences in survival outcomes between the control and CIN groups (control group versus CIN group: 3-y OS, 82.0 % versus 72.7 %; log rank, P = 0.250 and 3-y DFS, 71.9 % versus 62.7; log rank, P = 0.294). Univariate and multivariate analyses revealed that CIN did not affect DFS and OS in patients with stage III CRC who received adjuvant FOLFOX chemotherapy. CONCLUSIONS Severe CIN occurring during adjuvant FOLFOX chemotherapy did not play a significant role in the prognosis of patients with stage III CRC.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Surgery, Yeungnam University Medical Center, Daegu, Korea
| | - Sung Il Kang
- Department of Surgery, Yeungnam University Medical Center, Daegu, Korea.
| | - Sohyun Kim
- Department of Surgery, Yeungnam University Medical Center, Daegu, Korea
| | - Jae Hwang Kim
- Department of Surgery, Yeungnam University Medical Center, Daegu, Korea
| |
Collapse
|
41
|
Koch EAT, Wessely A, Steeb T, Berking C, Heppt MV. Safety of topical interventions for the treatment of actinic keratosis. Expert Opin Drug Saf 2021; 20:801-814. [PMID: 33834933 DOI: 10.1080/14740338.2021.1915280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Actinic keratosis (AK) are proliferations of atypical keratinocytes that may eventually progress to cutaneous squamous cell carcinoma. Therefore, AK requires consequent and early treatment. Areas covered: A variety of effective approaches is currently available for the clearance of AK. These interventions may be applied either in a lesion-directed or field-directed mode as AK can occur as single or multiple lesions. Field-directed approaches typically comprise topical drug-mediated interventions which aim at eliminating all visible lesions and also at clearing subclinical changes of the actinically damaged field. However, most treatment options are associated with local adverse events such as erythema, scaling, pain, and rarely with systemic symptoms. This expert review provides a comprehensive and up-to-date overview of the safety considerations of the commonly prescribed topical treatment agents cyclooxygenase inhibitors, 5-fluorouracil, imiquimod, ingenol mebutate, and photodynamic therapy. All these therapies have been proven efficient, yet they differ considerably regarding their safety profile. Expert opinion: In the future, safety concerns will relate to long-term and irreversible adverse drug events instead of application site reactions. In particular, the rate of treatment-associated non-melanoma skin cancers will increasingly come into focus and warrant investigation in postmarketing surveillance trials with a long-term follow-up.
Collapse
Affiliation(s)
- Elias A T Koch
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Markus V Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
42
|
Burns KE, Chavani O, Jeong SH, Duley JA, Porter D, Findlay M, Strother RM, Helsby NA. Comparison of a thymine challenge test and endogenous uracil-dihydrouracil levels for assessment of fluoropyrimidine toxicity risk. Cancer Chemother Pharmacol 2021; 87:711-716. [PMID: 33687515 DOI: 10.1007/s00280-021-04240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Standard dosages of fluoropyrimidine chemotherapy result in severe toxicity in a substantial proportion of patients, however, routine pre-therapeutic toxicity prediction remains uncommon. A thymine (THY) challenge test can discriminate risk of severe gastrointestinal toxicity in patients receiving fluoropyrimidine monotherapy. We aimed to measure endogenous plasma uracil (U) and its ratio to dihydrouracil (DHU), and assess the performance of these parameters compared with the THY challenge test to evaluate risk of severe toxicity. METHODS Plasma samples, previously collected from 37 patients receiving 5-fluorouracil (5-FU) or capecitabine monotherapy for a THY challenge test (ACTRN12615000586516; retrospectively registered), were assessed for endogenous plasma concentrations of U and DHU using a validated LC-MS/MS method. Renal function was estimated from blood creatinine, and patients with ≥ grade 3 toxicity (CTCAE v4.0) were classified as cases. RESULTS There were no differences in median endogenous U plasma concentrations or U/DHU ratios between severe toxicity cases and non-cases. Significant differences between cases and non-cases were noted when these measures were normalised to the estimated renal function (CrCL), Unorm p = 0.0004; U/DHUnorm p = 0.0083. These two parameters had a sensitivity of 29%, compared with 57% for the THY challenge test in the same patients. Genotyping for clinically relevant DPYD variants was inferior to either of these pyrimidine phenotyping tests (sensitivity of 14%). CONCLUSIONS The endogenous uracil-based parameters, adjusted to CrCL, were more predictive of increased risk of severe fluoropyrimidine toxicity than DPYD genotyping. However, endogenous U measurement detected fewer cases of severe toxicity than the THY challenge test.
Collapse
Affiliation(s)
- Kathryn E Burns
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Soo Hee Jeong
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John A Duley
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | - David Porter
- Cancer and Blood, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Michael Findlay
- Cancer and Blood, Auckland City Hospital, Grafton, Auckland, New Zealand.,Cancer Trials New Zealand, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R Matthew Strother
- Department of Oncology, Canterbury District Health Board and Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nuala A Helsby
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Johung KL, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Gregory KM, Gurski LA. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:329-359. [PMID: 33724754 DOI: 10.6004/jnccn.2021.0012] [Citation(s) in RCA: 914] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This selection from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Colon Cancer focuses on systemic therapy options for the treatment of metastatic colorectal cancer (mCRC), because important updates have recently been made to this section. These updates include recommendations for first-line use of checkpoint inhibitors for mCRC, that is deficient mismatch repair/microsatellite instability-high, recommendations related to the use of biosimilars, and expanded recommendations for biomarker testing. The systemic therapy recommendations now include targeted therapy options for patients with mCRC that is HER2-amplified, or BRAF V600E mutation-positive. Treatment and management of nonmetastatic or resectable/ablatable metastatic disease are discussed in the complete version of the NCCN Guidelines for Colon Cancer available at NCCN.org. Additional topics covered in the complete version include risk assessment, staging, pathology, posttreatment surveillance, and survivorship.
Collapse
Affiliation(s)
- Al B Benson
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Alan P Venook
- 2UCSF Helen Diller Family Comprehensive Cancer Center
| | | | | | | | | | - Stacey Cohen
- 6Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | - Linda Farkas
- 9UT Southwestern Simmons Comprehensive Cancer Center
| | | | | | | | | | | | | | - Steven Hunt
- 16Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Smitha Krishnamurthi
- 19Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | - Eric D Miller
- 22The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Mary F Mulcahy
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katrina Pedersen
- 16Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sissung TM, Cordes L, Peer CJ, Gandhy S, Redman J, Strauss J, Figg WD. Case report: severe toxicity in an African-American patient receiving FOLFOX carrying uncommon allelic variants in DPYD. Pharmacogenomics 2021; 22:81-85. [PMID: 33305610 PMCID: PMC7831885 DOI: 10.2217/pgs-2020-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Cancers of the colon are commonly treated with fluoropyrimidines, which often cause severe toxicities in patients with certain variants in DPYD. Y186C (rs115232898) and a variant in the 3' untranslated region (rs12132152) are uncommon alleles previously observed in African-Americans. An African-American female underwent 5-fluorouracil-based therapy (400 mg/m2 bolus, 1200 mg/m2/day over 46 h). The patient experienced severe pancytopenia after the first cycle. After 5-fluorouracil (5-FU) dose reduction (600 mg/m2/day), the steady-state 5-FU plasma concentration became 474 ng/ml (range 301-619 ng/ml) and increased following a subsequence dose increase (800 mg/m2/day; 1248 ng/ml). After a 1000 mg/m2/day dose resulted in myelosuppression, 5-FU was again de-escalated for the remaining cycles (600 mg/m2). The observed complications are likely a function of uncommon genetic variants that affect DPYD metabolism.
Collapse
Affiliation(s)
- Tristan M Sissung
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shruti Gandhy
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jason Redman
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology & Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Deng X, Hou J, Deng Q, Zhong Z. Predictive value of clinical toxicities of chemotherapy with fluoropyrimidines and oxaliplatin in colorectal cancer by DPYD and GSTP1 gene polymorphisms. World J Surg Oncol 2020; 18:321. [PMID: 33280607 PMCID: PMC7720377 DOI: 10.1186/s12957-020-02103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fluoropyrimidines and platinum are still widely used for colorectal cancer (CRC) management. Several studies have reported that mutations of dihydropyrimidine dehydrogenase (DPYD) and glutathione S-transferase pi-1 (GSTP1) polymorphisms are related to chemotherapy-related adverse events. In the present study, we purposed to assess the impact of DPYD and GSTP1 variants on the toxicity of adjuvant chemotherapy risk among the Hakka population, minimize adverse events, and to maximize therapy outcome for individualized treatment. METHODS Genotyping was examined in 104 patients diagnosed with CRC cases and receiving fluoropyrimidine and platinum drug-based chemotherapy regimen by direct sequencing of DPYD and GSTP1 polymorphisms. Three DPYD variants including *2A, *5A, *9A, and GSTP1 c.313A>G were analyzed and clinical outcomes were assessed. RESULTS The data suggest that the incidence of DPYD*5A, DPYD*9A, and GSTP1 c.313A>G variants were 38.4%, 24%, and 32.7%, respectively. DPYD*2A variant was not found. A total of 23 patients (22.1%) suffered severe vomiting and 19 patients (18.3%) suffered severe anemia. DPYD*5A polymorphism was found significantly associated with grade 3/4 ulceration (p = 0.001). GSTP1 was determined to be an independent risk factor for severe vomiting and skin ulceration (p = 0.042 and p = 0.018, respectively). Patients with GSTP1 c. 313A>G mutant type contributed to a higher risk for grade severe toxicity compared with wild genotype (p = 0.027). Nevertheless, no significant difference was found between patients with DPYD*2A, *5A, and *9A for chemotherapeutic toxicity. CONCLUSIONS The results demonstrated that GSTP1 polymorphisms were useful predictors of severe events. Screening of single-nucleotide polymorphisms of GSTP1 in colorectal cancer patients before chemotherapy may help to realize personalized therapy.
Collapse
Affiliation(s)
- Xunwei Deng
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Jingyuan Hou
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Qiaoting Deng
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China
| | - Zhixiong Zhong
- Department of Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-Sen University, No. 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People's Republic of China.
| |
Collapse
|
46
|
Bruera G, Ricevuto E. Pharmacogenomic Assessment of Patients with Colorectal Cancer and Potential Treatments. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:601-617. [PMID: 33235483 PMCID: PMC7678498 DOI: 10.2147/pgpm.s253586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Evolving intensiveness of colorectal cancer (CRC) treatment, including chemotherapeutics and targeted agents associations, in adjuvant and metastatic CRC (MCRC) settings, increased overall survival (OS) with individual variability of toxicity. Pharmacogenomic guidelines recommended pre-treatment identification of at-risk patients suggesting dose adjustment of fluoropyrimidines based on dihydropyrimidine dehydrogenase (DPYD), and irinotecan on UDP glucuronosyl-transferase 1 family polypeptide A1 (UGT1A1) genetic variants, but they are poorly applied in clinical practice. This review highlighted clinically validated pharmacogenetic markers, to underline the need of their implementation in the multidisciplinary molecular board for individual CRC patients in clinical practice. Five clinically relevant DPYD variants with different prevalence impair enzymatic effectiveness and significantly increase toxicity: c.1236 G>A (c.1129–5923 C>G, HapB3), 4.1–4.8%; c.1679 T>G (DPYD*13), c.1905+1G>A (DPYD*2A), c.2846 A>T, c.2194 A>T (DPYD*6) 1% each. c.1679T>G and c.1905+1G>A are most deleterious on DPD effectiveness, moderately reduced in c.1236/HapB3 and c.2846A>T. Cumulatively, these variants explain approximately half of the estimated 10–15% fluoropyrimidine-related gastrointestinal and hematological toxicities due to DPD. Prevalent UGT1A1 gene [TA]7TAA promoter allelic variant UGT1A1*28, characterized by an extra TA repeat, is associated with low transcriptional and reduced enzymatic effectiveness, decreased SN38 active irinotecan metabolite glucuronidation, vs wild-type UGT1A1*1 [A(TA)6TAA]. Homozygote UGT1A1*28 alleles patients are exposed to higher hematological and gastrointestinal toxicities, even more than heterozygote, at >150 mg/m2 dose. Dose reduction is recommended for homozygote variant. Wild-type UGT1A1*28 alleles patients could tolerate increased doses, potentially affecting favorable outcomes. Implementation of up-front evaluation of the five validated DPYD variants and UGT1A1*28 in the multidisciplinary molecular tumor board, also including CRC genetic characterization, addresses potential treatments with fluoropyrimidines and irinotecan associations at proper doses and schedules, particularly for early CRC, MCRC patients fit for intensive regimens or unfit for conventional regimens, requiring treatment modulations, and also for patients who experience severe, unexpected toxicities. Integration of individual evaluation of toxicity syndromes (TS), specifically limiting TS (LTS), an innovative indicator of toxicity burden in individual patients, may be useful to better evaluate relationships between pharmacogenomic analyses with safety profiles and clinical outcomes.
Collapse
Affiliation(s)
- Gemma Bruera
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Enrico Ricevuto
- Oncology Territorial Care, S. Salvatore Hospital, Oncology Network ASL1 Abruzzo, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
47
|
Innocenti F, Mills SC, Sanoff H, Ciccolini J, Lenz HJ, Milano G. All You Need to Know About DPYD Genetic Testing for Patients Treated With Fluorouracil and Capecitabine: A Practitioner-Friendly Guide. JCO Oncol Pract 2020; 16:793-798. [PMID: 33197222 DOI: 10.1200/op.20.00553] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluoropyrimidines (fluorouracil, capecitabine, and other analogs) are highly used anticancer drugs worldwide. However, patients with cancer treated with these drugs might experience severe, life-threatening toxicity because of germline genetic variation in the DPYD gene. This is a genetic predisposition with an established mechanistic basis that links genetic variation in the DPYD gene to an increase in systemic drug exposure, resulting in an increased risk of toxicity. Pharmacology guidelines provide recommendations on avoiding treatment with fluoropyrimidines or reducing their dose in patients carrying DPYD genetic variants conferring an increased risk of toxicity. However, oncology societies in the United States do not recommend systematic testing. Instead, on April 30, 2020, the European Society for Medical Oncology issued a document recommending genetic testing. In this scenario of contradicting information, practicing oncologists struggle with reaching an informed decision on whether genetic testing should be applied before treatment. This is mostly due to uncertainty about the clinical relevance of genetic testing from the perspective of a practicing oncologist. To reach an informed decision, practicing oncologists need access to concise information on the genetic variants to be tested and a practitioner-friendly interpretation of the test results. We believe this information is currently lacking. To our knowledge, for the first time, we provide a single guide for health care professionals to make an evidence-based decision about DPYD testing for patients with cancer. This article provides the essential knowledge base for oncologists to have an informed discussion with their patients about the genetic testing for DPYD. This document assists practitioners in quickly evaluating whether, when, where, and how to order a DPYD genetic test.
Collapse
Affiliation(s)
- Federico Innocenti
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC
| | - Sarah C Mills
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC
| | - Hanna Sanoff
- Department of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Joseph Ciccolini
- SMARTc unit, CRCM Institut National de la Santé et de la Recherche Médicale U1068, Aix Marseille University, Marseille, France
| | - Heinz-Josef Lenz
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | |
Collapse
|
48
|
Varughese LA, Lau-Min KS, Cambareri C, Damjanov N, Massa R, Reddy N, Oyer R, Teitelbaum U, Tuteja S. DPYD and UGT1A1 Pharmacogenetic Testing in Patients with Gastrointestinal Malignancies: An Overview of the Evidence and Considerations for Clinical Implementation. Pharmacotherapy 2020; 40:1108-1129. [PMID: 32985005 PMCID: PMC8796462 DOI: 10.1002/phar.2463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) malignancies are among the most commonly diagnosed cancers worldwide. Despite the introduction of targeted and immunotherapy agents in the treatment landscape, cytotoxic agents, such as fluoropyrimidines and irinotecan, remain as the cornerstone of chemotherapy for many of these tumors. Pharmacogenetics (PGx) is a rapidly evolving field that accounts for interpatient variability in drug metabolism to predict therapeutic response and toxicity. Given the significant incidence of severe treatment-related adverse events associated with cytotoxic agents, utilizing PGx can allow clinicians to better anticipate drug tolerability while minimizing treatment interruptions or delays. In this review, the PGx profiles of drug-gene pairs with potential impact in GI malignancy therapy - DPYD-5-fluorouracil/capecitabine and UGT1A1-irinotecan - and the available clinical evidence of their roles in reducing severe adverse events are discussed. Considerations for clinical implementation, such as optimal laboratory workflows, electronic health record integration, and stakeholder engagement, as well as provider education, are addressed. Last, exploratory PGx markers in GI malignancy treatment are described. As the PGx knowledge base rapidly evolves, pharmacists will be vital in leveraging their pharmacology knowledge and clinical skills to implement PGx testing in the clinic.
Collapse
Affiliation(s)
- Lisa A. Varughese
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelsey S. Lau-Min
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Cambareri
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nevena Damjanov
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Massa
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nandi Reddy
- Ann B. Barshinger Cancer Institute, Penn Medicine at Lancaster General Health, Lancaster, Pennsylvania
| | - Randall Oyer
- Ann B. Barshinger Cancer Institute, Penn Medicine at Lancaster General Health, Lancaster, Pennsylvania
| | - Ursina Teitelbaum
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Wörmann B, Bokemeyer C, Burmeister T, Köhne CH, Schwab M, Arnold D, Blohmer JU, Borner M, Brucker S, Cascorbi I, Decker T, de Wit M, Dietz A, Einsele H, Eisterer W, Folprecht G, Hilbe W, Hoffmann J, Knauf W, Kunzmann V, Largiadèr CR, Lorenzen S, Lüftner D, Moehler M, Nöthen MM, Pox C, Reinacher-Schick A, Scharl A, Schlegelberger B, Seufferlein T, Sinn M, Stroth M, Tamm I, Trümper L, Wilhelm M, Wöll E, Hofheinz RD. Dihydropyrimidine Dehydrogenase Testing prior to Treatment with 5-Fluorouracil, Capecitabine, and Tegafur: A Consensus Paper. Oncol Res Treat 2020; 43:628-636. [PMID: 33099551 DOI: 10.1159/000510258] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND 5-Fluorouracil (FU) is one of the most commonly used cytostatic drugs in the systemic treatment of cancer. Treatment with FU may cause severe or life-threatening side effects and the treatment-related mortality rate is 0.2-1.0%. SUMMARY Among other risk factors associated with increased toxicity, a genetic deficiency in dihydropyrimidine dehydrogenase (DPD), an enzyme responsible for the metabolism of FU, is well known. This is due to variants in the DPD gene (DPYD). Up to 9% of European patients carry a DPD gene variant that decreases enzyme activity, and DPD is completely lacking in approximately 0.5% of patients. Here we describe the clinical and genetic background and summarize recommendations for the genetic testing and tailoring of treatment with 5-FU derivatives. The statement was developed as a consensus statement organized by the German Society for Hematology and Medical Oncology in cooperation with 13 medical associations from Austria, Germany, and Switzerland. Key Messages: (i) Patients should be tested for the 4 most common genetic DPYD variants before treatment with drugs containing FU. (ii) Testing forms the basis for a differentiated, risk-adapted algorithm with recommendations for treatment with FU-containing drugs. (iii) Testing may optionally be supplemented by therapeutic drug monitoring.
Collapse
Affiliation(s)
- Bernhard Wörmann
- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie, Berlin, Germany, .,Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany,
| | - Carsten Bokemeyer
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Burmeister
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany
| | | | - Markus Borner
- Onkologisches Zentrum, Oncocare, Engeriedspital, Bern, Switzerland
| | - Sara Brucker
- Department für Frauengesundheit, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingolf Cascorbi
- Institut für Experimentelle und Klinische Pharmakologie, Universitätsklinikum Kiel, Kiel, Germany
| | | | - Maike de Wit
- Klinik für Innere Medizin, Hämatologie, Onkologie und Palliativmedizin, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Andreas Dietz
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hermann Einsele
- Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Wolfgang Eisterer
- Abteilung für Innere Medizin und Onkologie, Klinikum Klagenfurt, Klagenfurt am Wörthersee, Austria
| | - Gunnar Folprecht
- Medizinische Klinik I, Universitätsklinikum Dresden, Dresden, Germany
| | - Wolfgang Hilbe
- Medizinische Abteilung am Wilhelminenspital, Wien, Austria
| | - Jürgen Hoffmann
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Wolfgang Knauf
- Centrum für Hämatologie und Onkologie, Bethanien-Krankenhaus, Frankfurt/Main, Germany
| | - Volker Kunzmann
- Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Carlo R Largiadèr
- Universitätsinstitut für Klinische Chemie, Inselspital Bern, Bern, Switzerland
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, München, Germany
| | - Diana Lüftner
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany
| | - Markus Moehler
- I. Medizinische Klinik, Universitätsmedizin Mainz, Mainz, Germany
| | - Markus M Nöthen
- Institut für Humangenetik, Universitätsklinikum Bonn, Bonn, Germany
| | - Christian Pox
- Medizinische Klinik, Krankenhaus St. Joseph-Stift, Bremen, Germany
| | - Anke Reinacher-Schick
- Hämatologie, Onkologie und Palliativmedizin, Katholisches Klinikum, Ruhr-Universität, Bochum, Germany
| | - Anton Scharl
- Frauenkliniken Amberg-Tirschenreuth-Weiden, Amberg, Germany
| | | | | | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ingo Tamm
- Onkologische Schwerpunktpraxis Kurfürstendamm, Berlin, Germany
| | - Lorenz Trümper
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Wilhelm
- Klinik für Innere Medizin 5, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Ewald Wöll
- Klinik für Innere Medizin, Klinikum St. Vinzenz, Zams, Austria
| | - Ralf-Dieter Hofheinz
- Interdisziplinäres Tumorzentrum, Universitätsmedizin Mannheim, Mannheim, Germany
| |
Collapse
|
50
|
Hulshof EC, Deenen MJ, Guchelaar HJ, Gelderblom H. Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for prime time. Eur J Cancer 2020; 141:9-20. [PMID: 33125947 DOI: 10.1016/j.ejca.2020.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pre-therapeutic UGT1A1 genotyping is not yet routinely performed in most hospitals in patients starting irinotecan chemotherapy. The aim of this position paper was to evaluate the available evidence and to assess the potential value of genotyping of UGT1A1∗28 and UGT1A1*6 in patients before starting treatment with irinotecan to reduce the risk of severe toxicity. METHODS The literature was selected and assessed based on five pre-specified criteria: 1) the level of evidence for associations between UGT1A1 polymorphisms and irinotecan-induced severe toxicity, 2) clinical validity and utility of pre-therapeutic genotyping of UGT1A1, 3) safety and tolerability of irinotecan in carriers of UGT1A1 polymorphisms, 4) availability of specific dose recommendations for irinotecan in carriers of UGT1A1 polymorphisms, 5) evidence of cost benefits of pre-therapeutic genotyping of UGT1A1. RESULTS On all five criteria, study results were favourable for pre-therapeutic genotyping of UGT1A1. A high level of evidence (level I) was found for a higher incidence of irinotecan-induced severe toxicity in homozygous carriers of UGT1A1*28 or UGT1A1*6. The clinical validity and utility of this genetic test proved to be acceptable. Dose-finding studies showed a lower maximum tolerated dose in homozygous variant allele carriers, and most of the drug labels and guidelines recommend a dose reduction of 25-30% in these patients. In addition, pre-therapeutic genotyping of UGT1A1 is likely to save costs. CONCLUSION Pre-therapeutic genotyping of UGT1A1 in patients initiating treatment with irinotecan improves patient safety, is likely to be cost-saving, and should, therefore, become standard of care.
Collapse
Affiliation(s)
- Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network of Personalized Therapeutics, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|