1
|
Monteleone G, Cameli P, Bonella F. The role of heat shock protein 90 in idiopathic pulmonary fibrosis: state of the art. Eur Respir Rev 2025; 34:240147. [PMID: 40107664 PMCID: PMC11920893 DOI: 10.1183/16000617.0147-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular matrix (ECM) remodelling, myofibroblast differentiation and apoptosis, HSP 90 has been investigated as a key player in the pathogenesis of lung fibrosis. Idiopathic pulmonary fibrosis (IPF) is the most common and deadly interstitial lung disease, due to the progressive distortion of lung parenchyma related to the overproduction and deposition of altered ECM, driven by transforming growth factor-β (TGF-β) dependent and independent pathways. The inhibition or induction of HSP 90 is associated with a reduced or increased expression of TGF-β receptors, respectively, suggesting a role for HSP 90 as a biomarker and therapeutic target in IPF. Experimental drugs such as geldanamycin and its derivatives 17-AAG (17-N-allylamino-17-demethoxygeldanamicin) and 17-DMAG (17-dimethylaminoethylamino-17-demethoxigeldanamycin), along with AUY-922, 1G6-D7, AT-13387, TAS-116 and myricetin, have been found to reduce lung fibrosis in both in vivo and in vitro models, supporting the role of this emerging target. This review aims to illustrate the structure and biological function of HSP 90 in the context of IPF pathobiology, as well as perspective application of this molecule as a biomarker and therapeutic target for IPF.
Collapse
Affiliation(s)
- Giorgio Monteleone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Liu Y, Li C, Liu H, Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Arch Pharm Res 2024; 47:442-464. [PMID: 38632167 DOI: 10.1007/s12272-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Yajun Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Panjin, 124221, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
- Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
3
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
4
|
Jiang Q, Fu M, Tang Y, Li G, Tu G, Wu X, Wu Q, Huang X, Xu J, Liu Y, Wu L. Discovery of X10g as a selective PROTAC degrader of Hsp90α protein for treating breast cancer. Eur J Med Chem 2023; 260:115690. [PMID: 37619298 DOI: 10.1016/j.ejmech.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Heat shock protein 90 (Hsp90), a highly conserved and widely expressed molecular chaperone, is mainly responsible for maintaining the correct folding of client proteins and is closely related to the stability and activation of tumour-related proteins. Hsp90α, the major isoform of Hsp90, can promote tumour cell migration and metastasis, and is abundantly secreted in highly invasive tumours. To date, most pan-Hsp90 inhibitors have been limited in their applications due to high toxicity. Herein, we described the candidate compound X10g based on a proteolysis-targeting chimaera (PROTAC) strategy that potently and selectively degraded Hsp90α. The results showed that X10g inhibited tumours better with lower toxicity in vivo. These findings demonstrate that synthesized selective Hsp90α degrader X10g provides a new strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Qingna Jiang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Minghai Fu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yuanling Tang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Ge Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Guihui Tu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xinhua Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Qiurong Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xiuwang Huang
- Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, PR China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yang Liu
- Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University (FMU), Fuzhou, PR China.
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China.
| |
Collapse
|
5
|
Naito Y, Nishida T, Doi T. Current status of and future prospects for the treatment of unresectable or metastatic gastrointestinal stromal tumours. Gastric Cancer 2023; 26:339-351. [PMID: 36913072 PMCID: PMC10115693 DOI: 10.1007/s10120-023-01381-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Gastrointestinal stromal tumours (GISTs) are soft-tissue sarcomas of the gastrointestinal tract. Surgery is the standard treatment for localised disease, but the risk of relapse and progression to more advanced disease is substantial. Following the discovery of the molecular mechanisms underlying GISTs, targeted therapies for advanced GIST were developed, with the first being the tyrosine kinase inhibitor (TKI) imatinib. Imatinib is recommended in international guidelines as first-line therapy to reduce the risk of GIST relapse in high-risk patients, and for locally advanced, inoperable and metastatic disease. Unfortunately, imatinib resistance frequently occurs and, therefore, second-line (sunitinib) and third-line (regorafenib) TKIs have been developed. Treatment options are limited for patients with GIST that has progressed despite these therapies. A number of other TKIs for advanced/metastatic GIST have been approved in some countries. Ripretinib is approved as fourth-line treatment of GIST and avapritinib is approved for GIST harbouring specific genetic mutations, while larotrectinib and entrectinib are approved for solid tumours (including GIST) with specific genetic mutations. In Japan, pimitespib, a heat shock protein 90 (HSP90) inhibitor, is now available as a fourth-line therapy for GIST. Clinical studies of pimitespib have indicated that it has good efficacy and tolerability, importantly not displaying the ocular toxicity of previously developed HSP90 inhibitors. Additional approaches for advanced GIST have been investigated, including alternative uses of currently available TKIs (such as combination therapy), novel TKIs, antibody-drug conjugates, and immunotherapies. Given the poor prognosis of advanced GIST, the development of new therapies remains an important goal.
Collapse
Affiliation(s)
- Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
- National Cancer Center Hospital, Tsukiji, Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
6
|
Gao J, Zhou C, Zhong Y, Shi L, Luo X, Su H, Li M, Xu Y, Zhang N, Zhou H. Dipyridamole interacts with the N-terminal domain of HSP90 and antagonizes the function of the chaperone in multiple cancer cell lines. Biochem Pharmacol 2023; 207:115376. [PMID: 36513142 DOI: 10.1016/j.bcp.2022.115376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Molecular chaperone HSP90 has been considered as a promising target for anti-cancer drug development for years. However, due to the heat shock response induced by the ATP competitive inhibitors against HSP90, the therapeutic efficacies of the compounds are compromised, which consequently restricts the clinical use of HSP90-targeted inhibitors. Therefore, there is a need to discover novel HSP90-targeted modulators which exhibit acceptable inhibition activity against the chaperone and do not induce significant heat shock response in the meantime. Here in this study, we firstly developed a tip-based affinity selection-mass spectrometry platform with optimized experimental conditions/parameters for HSP90-targeted active compound screening, and then applied it to fish out inhibitors against HSP90 from a collection of 2,395 compounds composed of FDA-approved drugs and drug candidates. Dipyridamole, which acts as an anti-thrombotic agent by modulating multiple targets and has a long history of safe use, was identified to interact with HSP90's N-terminal domain. The following conducted biophysical and biochemical experiments demonstrated that Dipyridamole could bind to HSP90's ATP binding pocket and function as an ATP competitive inhibitor of the chaperone. Finally, cellular-based assays including CESTA, cell viability assessment and proteomic analysis etc. were performed to evaluate whether the interaction between HSP90 and Dipyridamole contributes to the anti-tumor effects of the compound. We then found that Dipyridamole inhibits the growth and proliferation of human cancer cells by downregulating cell cycle regulators and upregulating apoptotic cell signaling, which are potentially mediated by the binding of Dipyridamole to HSP90 and to PDEs (phosphodiesterases), respectively.
Collapse
Affiliation(s)
- Jing Gao
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yan Zhong
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuanyang Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
7
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
8
|
A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene 2022; 41:3289-3297. [PMID: 35501463 PMCID: PMC9166677 DOI: 10.1038/s41388-022-02269-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Despite recent advances, there remains a significant unmet need for the development of new targeted therapies for triple-negative breast cancer (TNBC). Although the heat shock protein HSP90 is a promising target, previous inhibitors have had issues during development including undesirable induction of the heat shock response (HSR) and off-target effects leading to toxicity. SL-145 is a novel, rationally-designed C-terminal HSP90 inhibitor that induces apoptosis in TNBC cells via the suppression of oncogenic AKT, MEK/ERK, and JAK2/STAT3 signaling and does not trigger the HSR, in contrast to other inhibitors. In an orthotopic allograft model incorporating breast cancer stem cell-enriched TNBC tumors, SL-145 potently suppressed tumor growth, angiogenesis, and metastases concomitant with dysregulation of the JAK2/STAT3 signaling pathway. Our findings highlight the potential of SL-145 in suppressing metastatic TNBC independent of the HSR.
Collapse
|
9
|
Abstract
INTRODUCTION Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation. HSP expression is induced by heat shock or other stressors including cellular damage and hypoxia. The major groups, which are classified based on their molecular weight, include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSP (HSP110 and glucose-regulated protein 170). HSPs play a significant role in cellular proliferation, differentiation, survival, apoptosis, and carcinogenesis. The human HSP90 family consists of five members and has a strong association with cancer. OBJECTIVES The primary objective is to review the important functions of heat shock protein 90 in cancer, especially as an anti-cancer drug target. RESULTS The HSP90 proteins not only play important roles in cancer development, progression, and metastasis, but also have potential clinical use as biomarkers for cancer diagnosis or assessing disease progression, and as therapeutic targets for cancer therapy. In this chapter, we discuss the roles of HSP90 in cancer biology and pharmacology, focusing on HSP90 as an anti-cancer drug target. An understanding of the functions and molecular mechanisms of HSP90 is critical for enhancing the accuracy of cancer diagnosis as well as for developing more effective and less toxic chemotherapeutic agents. CONCLUSION We have provided an overview of the complex relationship between cancer and HSP90. HSP90 proteins play an important role in tumorigenesis and may be used as potential clinical biomarkers for the diagnosis and predicting prognostic outcome of patients with cancer. HSP90 proteins may be used as therapeutic targets for cancer therapy, prompting discovery and development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Anthony Aswad
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States.
| |
Collapse
|
10
|
Marcyk PT, LeBlanc EV, Kuntz DA, Xue A, Ortiz F, Trilles R, Bengtson S, Kenney TM, Huang DS, Robbins N, Williams NS, Krysan DJ, Privé GG, Whitesell L, Cowen LE, Brown LE. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J Med Chem 2021; 64:1139-1169. [PMID: 33444025 PMCID: PMC8493596 DOI: 10.1021/acs.jmedchem.0c01777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.
Collapse
Affiliation(s)
- Paul T. Marcyk
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Stephen Bengtson
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Tristan M.G. Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Huang DS, LeBlanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro J, Whitesell L, Cowen LE, Brown LE. Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. J Med Chem 2020; 63:2139-2180. [PMID: 31513387 PMCID: PMC7069776 DOI: 10.1021/acs.jmedchem.9b00826] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular chaperone Hsp90, essential in all eukaryotes, plays a multifaceted role in promoting survival, virulence, and drug resistance across diverse pathogenic fungal species. The chaperone is also critically important, however, to the pathogen's human host, preventing the use of known clinical Hsp90 inhibitors in antifungal applications due to concomitant host toxicity issues. With the goal of developing Hsp90 inhibitors with acceptable therapeutic indices for the treatment of invasive fungal infections, we initiated a program to design and synthesize potent inhibitors with selective activity against fungal Hsp90 isoforms over their human counterparts. Building on our previously reported derivatization of resorcylate natural products to produce fungal-selective compounds, we have developed a series of synthetic aminopyrazole-substituted resorcylate amides with broad, potent, and fungal-selective Hsp90 inhibitory activity. Herein we describe the synthesis of this series, as well as biochemical structure-activity relationships driving selectivity for the Hsp90 isoforms expressed by Cryptococcus neoformans and Candida albicans, two pathogenic fungi of major clinical importance.
Collapse
Affiliation(s)
- David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Coordinated targeting of CK2 and KIT in gastrointestinal stromal tumours. Br J Cancer 2019; 122:372-381. [PMID: 31776458 PMCID: PMC7000686 DOI: 10.1038/s41416-019-0657-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/26/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Most gastrointestinal stromal tumours (GIST) are driven by activating oncogenic mutations of KIT/PDGFRA, which provide a compelling therapeutic target. Our previous studies showed that CDC37, regulated by casein kinase 2 (CK2), is a crucial HSP90 cofactor for KIT oncogenic function and a promising and more selective therapeutic target in GIST. Methods Biologic mechanisms of CK2-mediated CDC37 regulation were assessed in GISTs by immunoblotting, immunoprecipitations, knockdown and inactivation assays. The effects of a combination of KIT and CK2 inhibition were assessed by immunoblotting, cell viability, colony growth, cell cycle analysis, apoptosis, migration and invasiveness. Results CK2 overexpression was demonstrated by immunoblotting in GIST cell lines and patient biopsies. Treatment with a specific CK2 inhibitor, CX4945, leads to CDC37 dephosphorylation and inhibits KIT signalling in imatinib-sensitive and in imatinib-resistant GIST cell lines. Immunoprecipitation demonstrated that CK2 inhibition blocks KIT:HSP90:CDC37 interaction in GIST cells. Coordinated inhibition of CK2 and KIT by CX4945 (or CK2 shRNA) and imatinib, respectively, leads to increased apoptosis, anti-proliferative effects and cell cycle arrest and decreased p-AKT and p-S6 expression, migration and invasiveness in all GIST cell lines compared with either intervention alone, indicating additive effects of inhibiting these two important regulators of GIST biology. Conclusion Our findings suggest that combinatorial inhibition of CK2 and KIT warrants evaluation as a novel therapeutic strategy in GIST, especially in imatinib-resistant GIST.
Collapse
|
14
|
Hemming ML, Heinrich MC, Bauer S, George S. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann Oncol 2019; 29:2037-2045. [PMID: 30101284 DOI: 10.1093/annonc/mdy309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common soft tissue sarcoma of the gastrointestinal tract and, in the vast majority of cases, is characterized by activating mutations in KIT or, less commonly, PDGFRA. Mutations in these type III receptor tyrosine kinases (RTKs) account for over 85% of GIST cases, and the majority of KIT primary mutations respond to treatment with the tyrosine kinase inhibitor (TKI) imatinib. However, drug resistance develops over time, most commonly due to secondary kinase mutations. Sunitinib and regorafenib are approved for the treatment of imatinib-resistant GIST in the second and third lines, respectively. However, resistance to these agents also develops and new therapeutic options are needed. In addition, a small number of GISTs harbor primary activating mutations that are resistant to currently available TKIs, highlighting an additional unmet medical need. Several novel and selective TKIs that overcome known mechanisms of resistance in GIST have been developed and show promise in early clinical trials. Additional emerging targeted therapies in GIST include modulation of cellular signaling pathways downstream of KIT, antibodies targeting KIT and PDGFRA and immune checkpoint inhibitors. These advancements highlight the rapid evolution in the understanding of this malignancy and provide perspective on the encouraging horizon of current and forthcoming therapeutic strategies for GIST.
Collapse
Affiliation(s)
- M L Hemming
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - M C Heinrich
- VA Health Care System and Knight Cancer Institute, Oregon Health and Science University, Oregon, USA
| | - S Bauer
- Sarcoma Center, Western German Cancer Center and German Cancer Consortium (DKTK), Essen, Germany
| | - S George
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
15
|
Qin F, Wang Y, Jiang X, Wang Y, Zhang N, Wen X, Wang L, Jiang Q, He G. Design, synthesis and molecular mechanisms of novel dual inhibitors of heat shock protein 90/phosphoinositide 3-kinase alpha (Hsp90/PI3Kα) against cutaneous melanoma. J Enzyme Inhib Med Chem 2019; 34:909-926. [PMID: 30957641 PMCID: PMC8853710 DOI: 10.1080/14756366.2019.1596903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of heat shock protein 90 (Hsp90) is common in various types of cancer. In cutaneous melanoma, a cancer with one of the high levels of Hsp90 overexpression, such expression was correlated with a panel of protein kinases, thus offering an opportunity to identify Hsp90-based multi-kinase inhibitors for novel cancer therapies. Towards this goal, we utilized a 2,4-dihydroxy-5-isopropylbenzate-based Hsp90 inhibitor scaffold and thieno[2,3-d]pyrimidine-based kinase inhibitor scaffold to develop a Hsp90-inhibiting compound library. Our inhibitory compound named 8m inhibited Hsp90 and PI3Kα with an IC50 value of 38.6 nM and 48.4 nM, respectively; it displayed improved cellular activity which could effectively induce cell cycle arrest and apoptosis in melanoma cells and lead to the inhibition of cell proliferation, colony formation, migration and invasion. Our results demonstrated 8m to be a promising lead compound for further therapeutic potential assessment of Hsp90/PI3Kα dual inhibitors in melanoma targeted therapy.
Collapse
Affiliation(s)
- Feifei Qin
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yali Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xian Jiang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yujia Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Nan Zhang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiang Wen
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Lian Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qinglin Jiang
- c School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College , Chengdu , China
| | - Gu He
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
16
|
Lomeli N, Bota DA. Targeting HSP90 in malignant gliomas: onalespib as a potential therapeutic. Transl Cancer Res 2018; 7:6215-6226. [PMID: 31840022 PMCID: PMC6910236 DOI: 10.21037/tcr.2018.03.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Daniela A. Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
17
|
Novel Insights into the Treatment of Imatinib-Resistant Gastrointestinal Stromal Tumors. Target Oncol 2018; 12:277-288. [PMID: 28478525 DOI: 10.1007/s11523-017-0490-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumors (GIST) have emerged as a compelling clinical and biological model for the rational development of therapeutic strategies targeting critical oncogenic events over the past two decades. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the crucial driver for GIST tumor initiation, transformation, and cancer cell proliferation. Three tyrosine kinase inhibitors (TKIs) with KIT inhibitory activity - imatinib, sunitinib, and regorafenib - are approved to treat advanced GIST and have successfully exploited this addiction to KIT oncogenic signaling, demonstrating remarkable activity in a disease that historically had no successful systemic therapy options. However, GIST refractory to approved TKIs remain an unmet clinical need, as virtually all patients with metastatic GIST eventually progress on any given therapy. The main and best-established mechanism of resistance is the polyclonal expansion of multiple subpopulations harboring different secondary KIT mutations. The present review aims at summarizing current and forthcoming treatment directions in advanced imatinib-resistant GIST supported by a strong biological rationale.
Collapse
|
18
|
Hu Y, Fu A, Miao Z, Zhang X, Wang T, Kang A, Shan J, Zhu D, Li W. Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 2018; 178:258-267. [DOI: 10.1016/j.talanta.2017.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
|
19
|
Kasireddy V, von Mehren M. Emerging drugs for the treatment of gastrointestinal stromal tumour. Expert Opin Emerg Drugs 2017; 22:317-329. [DOI: 10.1080/14728214.2017.1411479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vineela Kasireddy
- Fellow (PGY5), Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margaret von Mehren
- Director of Sarcoma Oncology, Associate Director for Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wozniak A, Gebreyohannes YK, Debiec-Rychter M, Schöffski P. New targets and therapies for gastrointestinal stromal tumors. Expert Rev Anticancer Ther 2017; 17:1117-1129. [PMID: 29110548 DOI: 10.1080/14737140.2017.1400386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.
Collapse
Affiliation(s)
- Agnieszka Wozniak
- a Laboratory of Experimental Oncology, Department of Oncology , KU Leuven , Leuven , Belgium
| | | | | | - Patrick Schöffski
- a Laboratory of Experimental Oncology, Department of Oncology , KU Leuven , Leuven , Belgium.,c Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| |
Collapse
|
21
|
Sankhala KK. Clinical development landscape in GIST: from novel agents that target accessory pathways to revisiting non-targeted therapies. Expert Opin Investig Drugs 2017; 26:427-443. [PMID: 28267385 DOI: 10.1080/13543784.2017.1303045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Activating mutations in the genes encoding the tyrosine receptor kinases KIT and platelet-derived growth factor receptor occur in 85%-90% of patients with gastrointestinal stromal tumors (GIST). Although imatinib and other tyrosine kinase inhibitors have revolutionized the treatment of GIST, most patients progress within a few years. Areas covered: Monoclonal antibodies and small-molecule inhibitors targeting specific signaling pathways or proteins associated with resistance to existing treatments are being explored as alternative treatment approaches for GIST. Other alternative approaches include inhibiting more general regulators of protein folding, chromatin packaging, and cell-cycle regulation; nontargeted approaches are also being evaluated in select patient populations. This review summarizes preclinical and clinical data from agents using these accessory pathways. Expert opinion: As we learn more about GIST biology, it is becoming clear that treatment strategies will become more personalized, as reflected by the fact that several trials are enrolling specific subpopulations of patients with GIST. Going forward, researchers should evaluate these new drugs alone or in combination with other types of drugs to better meet patient needs.
Collapse
Affiliation(s)
- Kamalesh K Sankhala
- a Translational and Clinical Research , Sarcoma Oncology Center , Santa Monica , CA , USA
| |
Collapse
|
22
|
Li K, Cheng H, Li Z, Pang Y, Jia X, Xie F, Hu G, Cai Q, Wang Y. Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions. Oncotarget 2017; 8:60589-60604. [PMID: 28947997 PMCID: PMC5601165 DOI: 10.18632/oncotarget.16014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common sarcomas in humans. Constitutively activating mutations in the KIT or PDGFRA receptor tyrosine kinases are the initiating oncogenic events. Most metastatic GISTs respond dramatically to therapies with KIT/PDGFRA inhibitors. Asymptomatic and mitotically-inactive KIT/PDGFRA-mutant "microGISTs" are found in one third of adults, but most of these small tumors never progress to malignancy, underscoring that a progression of oncogenic mutations is required. Recent studies have identified key genomic abnormalities in GIST progression. Novel insights into the genetic progression of GISTs are shedding new light on therapeutic innovations.
Collapse
Affiliation(s)
- Ke Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of SATCM for Empirical Formulae Evaluation and Achievements Transformation, Nanjing, China.,Collaborative Innovation Center of Jiangsu Province Chinese Medicine in Cancer Prevention and Treatment, Nanjing, China
| | - Zhang Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhi Pang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Jia
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Xie
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohong Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingping Cai
- Department of Gastro-intestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuexiang Wang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Collapse
Affiliation(s)
| | - Craig M. Crews
- Departments of Molecular, Cellular & Developmental Biology; Chemistry; Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
24
|
Tsukao Y, Yamasaki M, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Miyata H, Nakajima K, Takiguchi S, Mimori K, Mori M, Doki Y. Overexpression of heat-shock factor 1 is associated with a poor prognosis in esophageal squamous cell carcinoma. Oncol Lett 2017; 13:1819-1825. [PMID: 28454329 DOI: 10.3892/ol.2017.5637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/12/2016] [Indexed: 01/27/2023] Open
Abstract
Heat-shock factor 1 (HSF1) is the primary regulator of the response to various stressors. A previous study showed that HSF1 expression is associated with a poor prognosis in breast cancer and hepatocellular carcinoma; however, the prognostic significance of HSF1 in esophageal squamous cell carcinoma (ESCC) is unknown. Therefore, the present study investigated the association between HSF1 expression and the clinicopathological parameters of patients, as well as the association between HSF1 expression, and heat shock protein (Hsp)27, Hsp70 and Hsp90 expression induced by HSF1, by cDNA microarray and immunohistochemistry analyses. HSF1 protein and mRNA expression were assessed in resected specimens from 270 patients with ESCC in two independent cohorts. Hsp27, Hsp70 and Hsp90 expression were also assessed in 55/270 patients. Patients with high HSF1 expression had a significantly worse OS than those with low HSF1 expression in both cohorts. In multivariate analyses, pathological T stage [hazard ratio (HR), 2.21; 95% confidence interval (CI), 1.38-3.65; P=0.0008], pathological N stage (HR, 1.73; 95% CI, 1.04-3.02; P=0.03) and HSF1 expression (HR, 2.29; 95% CI, 1.48-3.64; P=0.0002) were statistically significant independent prognostic factors. Furthermore, Hsp27 and Hsp90 expression were significantly correlated with HSF1 expression (P<0.0001), but Hsp70 expression was not (P=0.38). These results indicate that HSF1 is a prognostic factor for patients with ESCC, and that Hsp27 and Hsp90, but not Hsp70, may be the downstream targets of HSF1 in ESCC.
Collapse
Affiliation(s)
- Yukiko Tsukao
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koshi Mimori
- Department of Molecular and Cellular Biology, Division of Molecular and Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Ohita 874-0838, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|