1
|
Zhan Y, Cheng X, Mei P, Tan S, Feng W, Jiang H. Safety of first-line systemic therapy in patients with metastatic colorectal cancer: a network meta-analysis of randomized controlled trials. BMC Cancer 2024; 24:893. [PMID: 39048944 PMCID: PMC11270896 DOI: 10.1186/s12885-024-12662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE To evaluate the safety of first-line systemic therapy for metastatic colorectal cancer through network meta-analysis. METHODS The literature from PubMed, Embase, Web of Science, and Cochrane Library databases was searched from the inception of the databases to August 15, 2023, and strict inclusion and exclusion criteria were applied to screen studies. The Cochrane Bias Risk Assessment Tool (RoB 2.0) was used to evaluate the quality of the included literature. Network meta-analysis was conducted using Stata 15.0 and R4.3.1 software to compare the incidence of adverse events (AEs) among different treatment regimens. RESULTS A total of 53 randomized controlled trials, involving 17,351 patients with metastatic colorectal cancer (mCRC), were ultimately included, encompassing 29 different therapeutic approaches. According to SUCRA rankings, the CAPOX regimen is most likely to rank first in terms of safety, while the FOLFOXIRI + panitumumab regimen is most likely to rank last. In terms of specific AEs, the CAPOX regimen, whether used alone or in combination with targeted drugs (bevacizumab and cetuximab), is associated with a reduced risk of neutropenia and febrile neutropenia, as well as an increased risk of thrombocytopenia and diarrhea. The FOLFOX regimen, with or without bevacizumab, is linked to an increased risk of neutropenia and peripheral sensory neuropathy. The FOLFIRI/CAPIRI + bevacizumab regimen is associated with a reduced risk of peripheral sensory neuropathy. S-1 and S-1 + oxaliplatin are well-tolerated in terms of gastrointestinal reactions. The FOLFOXIRI regimen, whether used alone or in combination with targeted drugs, is associated with various AEs. CONCLUSION In summary, the CAPOX regimen may be the safest option among the first-line systemic treatment regimens for mCRC patients, while the FOLFOXIRI + panitumumab regimen may be associated with a higher incidence of grade 3 or higher AEs.
Collapse
Affiliation(s)
- Yanrong Zhan
- Rudong People's Hospital / Affiliated Rudong Hospital of Xinglin College, Nantong University, Nantong, Jiangsu, 226400, China.
| | - Xianwen Cheng
- Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, 725000, China
| | - Pingping Mei
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shufa Tan
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Wenzhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China.
| | - Hua Jiang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China
| |
Collapse
|
2
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Cheng X, Zhou J, Chen Y, Zhao Y, Zheng H, Wang Q, Li X, Jiang S. Patterns and trends of mortality from metastatic colorectal cancer in Shanghai, China from 2005 to 2021: a population-based retrospective analysis. J Cancer Res Clin Oncol 2024; 150:68. [PMID: 38305905 PMCID: PMC10837271 DOI: 10.1007/s00432-023-05518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Metastatic colorectal cancer (mCRC) is the leading cause of CRC deaths, however, the relative epidemiological research was insufficient. We aimed to analyze the patterns and trends of mortality of mCRC in Shanghai with a more complete system for monitoring the cause of death of the population and find potential methods to reduce the burden of CRC in China. METHODS Mortality data from 2005 to 2021 of mCRC deaths were obtained from the mortality registration system in Shanghai. We analyzed the crude mortality rates, age-standardized mortality rates, and rates of years of life lost (YLL rates) of mCRC. In addition, the trends were quantified using Joinpoint Regression software. RESULTS A total of 4,386 mCRC deaths were included, with 1,937 (44.16%) liver metastases and 1,061 (24.19%) lung metastases. The crude mortality rate and age-standardized mortality rate of mCRC were 9.09 per 105 person-years and 3.78 per 105 person-years, respectively. The YLL was 50,533.13 years, and the YLL rate was 104.67 per 105 person-years. The overall annual crude mortality rate of mCRC increased by 1.47% (95% CI 0.28-2.68%, P < 0.001) from 2005 to 2021. The crude mortality rate of mCRC increased by 3.20% per year (95% CI 1.80-4.70%, P < 0.001) from 2005 to 2013, but the trend of mortality growth remained stable from 2013 to 2021. The YLL rates remained stable between 2005 and 2021. CONCLUSIONS Population aging was the most likely factor responsible for the increase in CRC mortality in Pudong. Physical examinations and screenings for the elderly were possible reasons for reducing the burden of CRC in fast-growing regions.
Collapse
Affiliation(s)
- Xuelin Cheng
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhou
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Chen
- Office of Scientific Research and Information Management, Pudong Institute of Preventive Medicine, Pudong New Area, Shanghai, China
| | - Yajun Zhao
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huichao Zheng
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qizhe Wang
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaopan Li
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Office of Scientific Research and Information Management, Pudong Institute of Preventive Medicine, Pudong New Area, Shanghai, China
| | - Sunfang Jiang
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
6
|
Grosjean I, Roméo B, Domdom MA, Belaid A, D’Andréa G, Guillot N, Gherardi RK, Gal J, Milano G, Marquette CH, Hung RJ, Landi MT, Han Y, Brest P, Von Bergen M, Klionsky DJ, Amos CI, Hofman P, Mograbi B. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022; 18:2519-2536. [PMID: 35383530 PMCID: PMC9629091 DOI: 10.1080/15548627.2022.2039994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.
Collapse
Affiliation(s)
- Iris Grosjean
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Barnabé Roméo
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Marie-Angela Domdom
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Amine Belaid
- Université Côte d’Azur (UCA), INSERM U1065, C3M, Team 5, F-06204, France
| | - Grégoire D’Andréa
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- ENT and Head and Neck surgery department, Institut Universitaire de la Face et du Cou, CHU de Nice, University Hospital, Côte d’Azur University, Nice, France
| | - Nicolas Guillot
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Romain K Gherardi
- INSERM U955 Team Relais, Faculty of Health, Paris Est University, France
| | - Jocelyn Gal
- University Côte d’Azur, Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, Nice, France
| | - Gérard Milano
- Université Côte d’Azur, Centre Antoine Lacassagne, UPR7497, Nice, France
| | - Charles Hugo Marquette
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, Department of Pulmonary Medicine and Oncology, CHU de Nice, Nice, France
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Brest
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Martin Von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Daniel J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, MI, 48109, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Hofman
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, CHU de Nice, Laboratory of Clinical and Experimental Pathology (LPCE) Biobank(BB-0033-00025), Nice, France
| | - Baharia Mograbi
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| |
Collapse
|
7
|
Yu T, Ben S, Ma L, Jiang L, Chen S, Lin Y, Chen T, Li S, Zhu L. Genetic variants in autophagy-related gene ATG2B predict the prognosis of colorectal cancer patients receiving chemotherapy. Front Oncol 2022; 12:876424. [PMID: 35992821 PMCID: PMC9389459 DOI: 10.3389/fonc.2022.876424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Autophagy-related genes have a vital effect on colorectal cancer (CRC) by affecting genomic stability and regulating immune responses. However, the associations between genetic variants in autophagy-related genes and CRC outcomes for chemotherapy therapy remain unclear. The Cox regression model was used to evaluate the associations between single-nucleotide polymorphisms (SNPs) in autophagy-related genes and overall survival (OS) and progression-free survival (PFS) of CRC patients. The results were corrected by the false discovery rate (FDR) correction. We used the logistic regression model to investigate the associations of SNPs with the disease control rate (DCR) of patients. Gene expression analysis was explored based on an in-house dataset and other databases. The associations between gene expression and infiltrating immune cells were evaluated using the Tumor Immune Estimation Resource (TIMER) database. We observed that ATG2B rs17094017 A > T was significantly associated with increased OS (HR = 0.65, 95% CI = 0.50-0.86, P = 2.54×10-3), PFS (HR = 0.76, 95% CI = 0.62-0.93, P = 7.34×10-3), and DCR (OR = 0.60, 95% CI = 0.37-0.96, P = 3.31×10-2) of CRC patients after chemotherapy. The expression of ATG2B was down-expressed in CRC tissues than in adjacent normal tissues. Moreover, ATG2B expression influenced the infiltration of CD8+ T cells, CD4+ T cells, B cells, and T cell receptor signaling pathways, which may inhibit the occurrence of CRC by affecting the immune system. This study suggests that genetic variants in the autophagy-related gene ATG2B play a critical role in predicting the prognosis of CRC prognosis undergoing chemotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| |
Collapse
|
8
|
VEGF-A, VEGFR1 and VEGFR2 single nucleotide polymorphisms and outcomes from the AGITG MAX trial of capecitabine, bevacizumab and mitomycin C in metastatic colorectal cancer. Sci Rep 2022; 12:1238. [PMID: 35075138 PMCID: PMC8786898 DOI: 10.1038/s41598-021-03952-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
The phase III MAX clinical trial randomised patients with metastatic colorectal cancer (mCRC) to receive first-line capecitabine chemotherapy alone or in combination with the anti-VEGF-A antibody bevacizumab (± mitomycin C). We utilised this cohort to examine whether single nucleotide polymorphisms (SNPs) in VEGF-A, VEGFR1, and VEGFR2 are predictive of efficacy outcomes with bevacizumab or the development of hypertension. Genomic DNA extracted from archival FFPE tissue for 325 patients (69% of the MAX trial population) was used to genotype 16 candidate SNPs in VEGF-A, VEGFR1, and VEGFR2, which were analysed for associations with efficacy outcomes and hypertension. The VEGF-A rs25648 ‘CC’ genotype was prognostic for improved PFS (HR 0.65, 95% CI 0.49 to 0.85; P = 0.002) and OS (HR 0.70, 95% CI 0.52 to 0.94; P = 0.019). The VEGF-A rs699947 ‘AA’ genotype was prognostic for shorter PFS (HR 1.32, 95% CI 1.002 to 1.74; P = 0.048). None of the analysed SNPs were predictive of bevacizumab efficacy outcomes. VEGFR2 rs11133360 ‘TT’ was associated with a lower risk of grade ≥ 3 hypertension (P = 0.028). SNPs in VEGF-A, VEGFR1 and VEGFR2 did not predict bevacizumab benefit. However, VEGF-A rs25648 and rs699947 were identified as novel prognostic biomarkers and VEGFR2 rs11133360 was associated with less grade ≥ 3 hypertension.
Collapse
|
9
|
Osumi H, Shinozaki E, Ooki A, Wakatsuki T, Kamiimabeppu D, Sato T, Nakayama I, Ogura M, Takahari D, Chin K, Yamaguchi K. Early hypertension and neutropenia are predictors of treatment efficacy in metastatic colorectal cancer patients administered FOLFIRI and vascular endothelial growth factor inhibitors as second-line chemotherapy. Cancer Med 2021; 10:615-625. [PMID: 33347731 PMCID: PMC7877370 DOI: 10.1002/cam4.3638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Three vascular endothelial growth factor (VEGF) inhibitors, Bevacizumab (BEV), ramucirumab (RAM), and aflibercept (AFL), are widely used for metastatic colorectal cancer (mCRC) patients who are treated with second-line chemotherapy. The difference in outcome between the three drugs has not been evaluated. In contrast to epidermal growth factor receptor inhibitors, VEGF inhibitors have few candidate predictors of efficacy. METHODS Consecutive mCRC patients who were treated with second-line chemotherapy were retrospectively enrolled. Overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and safety were assessed. Subgroup analyses of prognostic and predictive efficacy markers were performed. RESULTS A total of 119 (41.2%), 107 (37.0%), and 63 patients (21.8%) were treated with FOLFIRI +BEV, RAM, or AFL, respectively. ORR, PFS, and OS showed no significant differences between three groups. However, the frequency of grade 3 or 4 adverse events (AEs) in the FOLFIRI +AFL group was significantly higher than that in the other groups (p < 0.001). Patients with grade 3 or 4 AEs, especially hypertension and neutropenia within the first four cycles of treatment had significantly longer PFS and OS than those without AEs, irrespective of treatment with VEGF inhibitors (p < 0.001). PFS in patients without prior BEV exposure was also significantly longer than that in patients with prior BEV exposure (p = 0.003). CONCLUSIONS Chemotherapeutic efficacy did not differ between the groups. Grade 3 or 4 AEs within the first four cycles of treatment and prior BEV exposure may be an effective predictor of treatment efficacy in mCRC patients administered VEGF inhibitors as second-line chemotherapy.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Eiji Shinozaki
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Akira Ooki
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Takeru Wakatsuki
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Daisaku Kamiimabeppu
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Taro Sato
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Izuma Nakayama
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Ogura
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Daisuke Takahari
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Keisho Chin
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Kensei Yamaguchi
- Department of GastroenterologyCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
10
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
11
|
Udagawa C, Zembutsu H. Pharmacogenetics for severe adverse drug reactions induced by molecular-targeted therapy. Cancer Sci 2020; 111:3445-3457. [PMID: 32780457 PMCID: PMC7540972 DOI: 10.1111/cas.14609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular-targeted drugs specifically interfere with molecules that are frequently overexpressed or mutated in cancer cells. As such, these drugs are generally considered to precisely attack cancer cells, thereby inducing fewer adverse drug reactions (ADRs). However, molecular-targeted drugs can still cause characteristic ADRs that, although rarely severe, can be life-threatening. Therefore, it is becoming increasingly important to be able to predict which patients are at risk of developing ADRs after treatment with molecular-targeted therapy. The emerging field of pharmacogenetics aims to better distinguish the genetic variants associated with drug toxicity and efficacy to improve the selection of therapeutic strategies for each genetic profile. Here, we provide an overview of the current reports on the relationship between genetic variants and molecular-targeted drug-induced severe ADRs in oncology.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
12
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma. Life Sci 2019; 235:116675. [PMID: 31340167 DOI: 10.1016/j.lfs.2019.116675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and accounts for substantial morbidity and mortality. Autophagy plays an essential role in the development and progression of HCC. This study aims to evaluate whether genetic variants in autophagy-related genes (ATGs) affect the development of HCC. MATERIALS AND METHODS We conducted a case-control study with 986 HCC cases and 1000 healthy controls to analyze 14 functional variants of five ATGs (ATG3, ATG5, ATG10, ATG12 and ATG16L1) among a Chinese population. KEY FINDINGS We found ATG5 rs17067724 (G vs A: OR = 0.80; 95% CI = 0.65-0.98; P = 0.031), ATG10 rs1864183 (G vs A: OR = 1.29; 95% CI = 1.07-1.57; P = 0.009), ATG10 rs10514231 (C vs T: OR = 1.41; 95% CI = 1.15-1.73; P = 0.001), ATG12 rs26537 (C vs T: OR = 1.16; 95% CI = 1.02-1.33; P = 0.030), and ATG16L1 rs4663402 (T vs A: OR = 1.28; 95% CI = 1.01-1.63; P = 0.044) were significantly associated with HCC risk. Specifically, ATG10 rs10514231 kept significant association even adjusted for Bonferroni correction (P = 0.001 × 14 = 0.014). Bioinformatics analyses showed that allele C of ATG10 rs10514231 was significantly correlated with higher expression of ATG10 gene in both HCC tissues and normal liver tissues. Dual-luciferase reporter assay presented that cell lines transfected with vectors containing the risk allele C of rs10514231 showed higher relative luciferase activity compared to that containing the allele T. SIGNIFICANCE These results suggested that ATG10 rs10514231 might contribute to an allele-specific effect on the expression of host gene ATG10 and explain a fraction of HCC genetic susceptibility. Our study would benefit the construction of early warning model, early prevention, screening, even therapeutic target of HCC.
Collapse
|
14
|
Spallarossa P, Tini G, Lenihan D. Arterial Hypertension. CARDIOVASCULAR COMPLICATIONS IN CANCER THERAPY 2019. [DOI: 10.1007/978-3-319-93402-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Roles of pharmacogenomics in non-anthracycline antineoplastic-induced cardiovascular toxicities: A systematic review and meta-analysis of genotypes effect. Int J Cardiol 2018; 280:190-197. [PMID: 30594345 DOI: 10.1016/j.ijcard.2018.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Exploration on genetic roles in antineoplastic-related cardiovascular toxicity has increased with the advancement of genotyping technology. However, knowledge on the extent of genetic determinants in affecting the susceptibility to the cardiovascular toxicities of antineoplastic is limited. This study aims to identify potential single nucleotide polymorphism (SNP) in predicting non-anthracycline antineoplastic-related cardiovascular toxicity. METHODS We systematically searched for original research in PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, EMBASE and HuGE Navigator from database inception until January 2018. Studies on association between polymorphism and antineoplastic-induced cardiovascular toxicity in patients treated for cancer of all antineoplastic agents were included except for anthracycline. Case reports, conference abstracts, reviews and non-patient studies were excluded. Data extracted by two independent reviewers were combined with random-effects model and reported according to PRISMA and MOOSE guidelines. RESULTS The 35 studies included examined a total of 219 SNPs in 80 genes, 11 antineoplastic and 5 types of cardiovascular toxicities. Meta-analyses showed that human epidermal growth factor receptor 2 (HER2) rs1136201, a risk variants (pooled OR: 2.43; 1.17-5.06, p = 0.018) is a potential predictors for trastuzumab-related cardiotoxicity. Gene dose effect analysis showed number of variant allele may contribute to the risk too. CONCLUSIONS This review found that HER2 rs1136201 can have the potential in predicting trastuzumab-related heart failure. As such, further studies are needed to confirm the validity of these results as well as determine the economic aspect of using SNPs prior to its implementation as a clinical practice.
Collapse
|
16
|
Li M, Mulkey F, Jiang C, O'Neil BH, Schneider BP, Shen F, Friedman PN, Momozawa Y, Kubo M, Niedzwiecki D, Hochster HS, Lenz HJ, Atkins JN, Rugo HS, Halabi S, Kelly WK, McLeod HL, Innocenti F, Ratain MJ, Venook AP, Owzar K, Kroetz DL. Identification of a Genomic Region between SLC29A1 and HSP90AB1 Associated with Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance). Clin Cancer Res 2018; 24:4734-4744. [PMID: 29871907 PMCID: PMC6168379 DOI: 10.1158/1078-0432.ccr-17-1523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension. Clin Cancer Res; 24(19); 4734-44. ©2018 AACR.
Collapse
Affiliation(s)
- Megan Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Bert H O'Neil
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bryan P Schneider
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fei Shen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paula N Friedman
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Donna Niedzwiecki
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Howard S Hochster
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - James N Atkins
- Southeast Clinical Oncology Research Consortium, Winston-Salem, North Carolina
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Halabi
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - William Kevin Kelly
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida
| | - Federico Innocenti
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Ratain
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Alan P Venook
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kouros Owzar
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
17
|
Cecchin E, De Mattia E, Ecca F, Toffoli G. Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resist Updat 2018; 39:18-40. [PMID: 30075835 DOI: 10.1016/j.drup.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Adverse events affect the pharmacological treatment of approximately 90% of colorectal cancer (CRC) patients at any stage of the disease. Chemotherapy including fluoropyrimidines, irinotecan, and oxaliplatin is the cornerstone of the pharmacological treatment of CRC. The introduction of novel targeted agents, as anti-EGFR (i.e. cetuximab, panitumumab) and antiangiogenic (i.e. bevacizumab, ziv-aflibercept, regorafenib, and ramucirumab) molecules, into the oncologist's toolbox has led to significant improvements in the life expectancy of advanced CRC patients, but with a substantial increase in toxicity burden. In this respect, pharmacogenomics has largely been applied to the personalization of CRC chemotherapy, focusing mainly on the study of inhered polymorphisms in genes encoding phase I and II enzymes, ATP-binding cassette (ABC)/solute carrier (SLC) membrane transporters, proteins involved in DNA repair, folate pathway and immune response. These research efforts have led to the identification of some validated genetic markers of chemotherapy toxicity, for fluoropyrimidines and irinotecan. No validated genetic determinants of oxaliplatin-specific toxicity, as peripheral neuropathy, has thus far been established. The contribution of host genetic markers in predicting the toxicity associated with novel targeted agents' administration is still controversial due to the heterogeneity of published data. Pharmacogenomics guidelines have been published by some international scientific consortia such as the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) strongly suggesting a pre-treatment dose adjustment of irinotecan based on UGT1A1*28 genotype and of fluoropyrimidines based on some DPYD genetic variants, to increase treatment safety. However, these recommendations are still poorly applied at the patient's bedside. Several ongoing projects in the U.S. and Europe are currently evaluating how pharmacogenomics can be implemented successfully in daily clinical practice. The majority of drug-related adverse events are still unexplained, and a great deal of ongoing research is aimed at improving knowledge of the role of pharmacogenomics in increasing treatment safety. In this review, the issue of pre-treatment identification of CRC patients at risk of toxicity via the analysis of patients' genetic profiles is addressed. Available pharmacogenomics guidelines with ongoing efforts to implement them in clinical practice and new exploratory markers for clinical validation are described.
Collapse
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy.
| |
Collapse
|
18
|
Phase I study of nab-paclitaxel, gemcitabine, and bevacizumab in patients with advanced cancers. Br J Cancer 2018; 118:1419-1424. [PMID: 29695765 PMCID: PMC5988803 DOI: 10.1038/s41416-018-0068-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background We performed a phase I modified 3 + 3 dose escalation study to evaluate the safety and activity of bevacizumab plus gemcitabine and nab-paclitaxel in patients with advanced solid tumours. Methods Patients were given fixed dose gemcitabine plus increasing doses of nab-paclitaxel and bevacizumab. Toxicity, response, and association with VEGF polymorphism was analysed. Results The study enrolled 110 patients who had undergone a median of 3 prior lines of therapy. The median age was 60 years (range, 17–85 years), and 55 patients (50%) had gemcitabine-refractory disease. We observed 3 dose-limiting toxicities during dose escalation and 3 DLTs in expansion cohorts. Dose escalation to 150 mg/m2 nab-paclitaxel and 15 mg/kg bevacizumab with 1000 mg/m2 of gemcitabine was well tolerated with no MTD. One patient with gemcitabine-refractory peritoneal papillary carcinoma had a complete response, 13 patients (13%) had partial responses, and 54 patients (52%) had stable disease ≥12 weeks. Exploratory VEGF single nucleotide polymorphism (SNP) analysis was performed on 13 patients. Conclusions The combination of gemcitabine, nab-paclitaxel, and bevacizumab is safe, well-tolerated, and has activity in advanced malignancies, including gemcitabine-refractory tumours. Based on this study, the recommended phase 2 dose is gemcitabine 1000 mg/m2, nab-paclitaxel 125 mg/m2, and bevacizumab 15 mg/kg. VEGF polymorphism data should be evaluated in future bevacizumab-based trials.
Collapse
|
19
|
Peng F, Hu D, Lin X, Chen G, Liang B, Chen Y, Li C, Zhang H, Xia Y, Lin J, Zheng X, Niu W. An in-depth prognostic analysis of baseline blood lipids in predicting postoperative colorectal cancer mortality: The FIESTA study. Cancer Epidemiol 2018; 52:148-157. [PMID: 29324354 DOI: 10.1016/j.canep.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dyslipidaemia is key to colorectal carcinogenesis, and the prediction of baseline triglycerides (TG), total cholesterol (TC), high- and low-density lipoprotein cholesterol (HDLC and LDLC) for postsurgical colorectal cancer mortality has not been researched. OBJECTIVES We attempted to re-analyse the FIESTA database to assess the prognostic value of three informative lipid derivatives - AI (atherogenic index: (TC - HDLC)/HDLC), THR (TG/HDLC) and LHR (LDLC/HDLC) in predicting colorectal cancer mortality. METHODS Based on the FIESTA database, 1318 patients received radical resection from 2000 to 2008, with the latest follow-up completed in December 2015. Median follow-up time was 58.6 months. RESULTS Total 1318 patients were randomly evenly divided into the derivation and validation groups. Overall, baseline AI and LHR were associated with the significantly increased risk of colorectal cancer mortality in both derivation (hazard ratio (HR): 1.41 and 1.35, respectively) and validation (HR: 1.37 and 1.32, respectively) groups (all P < 0.001). The predictive performance of AI and LHR was remarkably enhanced in patients with female gender, former/current smoking, colon cancer, early stage, positive vein tumor embolus, normal weight, preoperative hypertension or diabetes comorbidities. Calibration/discrimination analyses revealed that adding AI or LHR to the traditional model had a better fit in both groups. A prognostic nomogram was finally constructed with good predictive accuracy and discriminative capability (C-index = 0.814, P < 0.001). CONCLUSION We consolidated the prognostic superiority of AI and LHR in predicting colorectal cancer mortality over TNM stage.
Collapse
Affiliation(s)
- Feng Peng
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Dan Hu
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binying Liang
- Department of Medical Record, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Chen
- Department of Core Research Laboratory, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chao Li
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hejun Zhang
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Xia
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinxiu Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xiongwei Zheng
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
20
|
Clinical Implications of the Autophagy Core Gene Variations in Advanced Lung Adenocarcinoma Treated with Gefitinib. Sci Rep 2017; 7:17814. [PMID: 29259263 PMCID: PMC5736620 DOI: 10.1038/s41598-017-18165-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
EGFR-TKIs show dramatic treatment benefits for advanced lung adenocarcinoma patients with activating EGFR mutations. Considering the essential role of autophagy in EGFR-TKIs treatments, we hypothesized that genetic variants in autophagy core genes might contribute to outcomes of advanced lung adenocarcinoma treated with gefitinib. We systematically examined 27 potentially functional genetic polymorphisms in 11 autophagy core genes among 108 gefitinib-treated advanced lung adenocarcinoma patients. We found that ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 were significantly associated with survival of lung adenocarcinoma patients (all P < 0.05). Among EGFR-mutant patients, ATG5 rs688810, ATG5 rs510432, ATG7 rs8154, ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 significantly contributed to disease prognosis. We also found that ATG5 rs510432, ATG5 rs688810, ATG10 rs10036653 and ATG10 rs1864182 were associated with primary or acquired resistance to gefitinib. Functional analyses of ATG10 rs10036653 polymorphism suggested that ATG10 A allele might increase transcription factor OCT4 binding affinity compared to the T allele in lung cancer cells. Our results indicate that autophagy core genetic variants show potential clinical implications in gefitinib treatment, especially among advanced lung adenocarcinoma patients, highlighting the possibility of patient-tailored decisions during EGFR-TKIs based on both germline and somatic variation detection.
Collapse
|
21
|
Li M, Kroetz DL. Bevacizumab-induced hypertension: Clinical presentation and molecular understanding. Pharmacol Ther 2017; 182:152-160. [PMID: 28882537 DOI: 10.1016/j.pharmthera.2017.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bevacizumab is a vascular endothelial growth factor-A-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of several types of cancer. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy and lead to other cardiovascular complications. The factors that contribute to interindividual variability in blood pressure response to bevacizumab treatment are not well understood. In this review, we outline research efforts to understand the mechanisms and pathophysiology of hypertension resulting from bevacizumab treatment. Moreover, we highlight current knowledge of the pharmacogenetics of bevacizumab-induced hypertension, which may be used to develop strategies to prevent or minimize this toxicity.
Collapse
Affiliation(s)
- Megan Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|