1
|
Alizadeh H, Akbarabadi P, Dadfar A, Tareh MR, Soltani B. A comprehensive overview of ovarian cancer stem cells: correlation with high recurrence rate, underlying mechanisms, and therapeutic opportunities. Mol Cancer 2025; 24:135. [PMID: 40329326 PMCID: PMC12057202 DOI: 10.1186/s12943-025-02345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies, with a recurrence rate of 70-80%, particularly in patients diagnosed at advanced stages (stage III or IV), where the five-year survival rate falls below 30%. A key driver of this recurrence is the presence of cancer stem cells (CSCs), which exhibit resistance to chemotherapy and possess the capacity for self-renewal, plasticity, and tumor regeneration. The tumor microenvironment (TME) plays a crucial role in maintaining ovarian cancer stem cells (OCSCs) by providing nutrient and oxygen gradients, extracellular matrix (ECM) interactions, immune cell modulation, and support from cancer-associated fibroblasts (CAFs). CAFs secrete growth factors, cytokines, and ECM components that create a pro-tumorigenic niche, promoting CSC maintenance, invasion, and chemoresistance. Additionally, dysregulation of critical signaling pathways, including WNT, NOTCH, PI3K/AKT/mTOR, TGF-β, JAK/STAT, Hedgehog, NF-κB, and Hippo, supports CSC stemness, plasticity, maintenance, and adaptability, thereby increasing their survival and progression. Numerous inhibitors targeting these pathways have shown promise in preclinical studies. This review discusses the molecular mechanisms underlying CSC-mediated recurrence in ovarian cancer and highlights emerging therapeutic strategies. Particular emphasis is placed on the potential of combination therapies involving routine platinum or taxane based regimens with OCSC inhibitors to overcome chemoresistance, reduce recurrence rates, and improve survival outcomes for patients with advanced-stage ovarian cancer.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Parastoo Akbarabadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Alireza Dadfar
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Mohammad Reza Tareh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Bahram Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
2
|
He T, Wang Y, Lv W, Wang Y, Li X, Zhang Q, Shen HM, Hu J. FBP1 inhibits NSCLC stemness by promoting ubiquitination of Notch1 intracellular domain and accelerating degradation. Cell Mol Life Sci 2024; 81:87. [PMID: 38349431 PMCID: PMC10864425 DOI: 10.1007/s00018-024-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
The existence of cancer stem cells is widely acknowledged as the underlying cause for the challenging curability and high relapse rates observed in various tumor types, including non-small cell lung cancer (NSCLC). Despite extensive research on numerous therapeutic targets for NSCLC treatment, the strategies to effectively combat NSCLC stemness and achieve a definitive cure are still not well defined. The primary objective of this study was to examine the underlying mechanism through which Fructose-1,6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme, functions as a tumor suppressor to regulate the stemness of NSCLC. Herein, we showed that overexpression of FBP1 led to a decrease in the proportion of CD133-positive cells, weakened tumorigenicity, and decreased expression of stemness factors. FBP1 inhibited the activation of Notch signaling, while it had no impact on the transcription level of Notch 1 intracellular domain (NICD1). Instead, FBP1 interacted with NICD1 and the E3 ubiquitin ligase FBXW7 to facilitate the degradation of NICD1 through the ubiquitin-proteasome pathway, which is independent of the metabolic enzymatic activity of FBP1. The aforementioned studies suggest that targeting the FBP1-FBXW7-NICD1 axis holds promise as a therapeutic approach for addressing the challenges of NSCLC recurrence and drug resistance.
Collapse
Affiliation(s)
- Tianyu He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanye Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinye Li
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Faculty of Health Sciences, University of Macau, Macau, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
4
|
Köhn P, Lalos A, Posabella A, Wilhelm A, Tampakis A, Caner E, Güth U, Stadlmann S, Spagnoli GC, Piscuoglio S, Richarz S, Delko T, Droeser RA, Singer G. High density of CXCL12-positive immune cell infiltration predicts chemosensitivity and recurrence-free survival in ovarian carcinoma. J Cancer Res Clin Oncol 2023; 149:17943-17955. [PMID: 37966614 PMCID: PMC10725329 DOI: 10.1007/s00432-023-05466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Ovarian carcinoma is the most lethal gynecologic malignancy because of its late diagnosis, extremely high recurrence rate, and limited curative treatment options. In clinical practice, high-grade serous carcinoma (HGSC) predominates due to its frequency, high aggressiveness, and rapid development of drug resistance. Recent evidence suggests that CXCL12 is an important immunological factor in ovarian cancer progression. Therefore, we investigated the predictive and prognostic significance of the expression of this chemokine in tumor and immune cells in patients with HGSC. METHODS We studied a cohort of 47 primary high-grade serous ovarian carcinomas and their associated recurrences. A tissue microarray was constructed to evaluate the CXCL12 immunostained tumor tissue. CXCL12 expression was evaluated and statistically analyzed to correlate clinicopathologic data, overall survival, and recurrence-free survival. RESULTS A high proportion of CXCL12 + positive immune cells in primary ovarian serous carcinoma correlated significantly with chemosensitivity (p = 0.005), overall survival (p = 0.021), and longer recurrence-free survival (p = 0.038). In recurrent disease, high expression of CXCL12 was also correlated with better overall survival (p = 0.040). Univariate and multivariate analysis revealed that high CXCL12 + tumor-infiltrating immune cells (TICs) (HR 0.99, p = 0.042, HR 0.99, p = 0.023, respectively) and combined CXCL12 + /CD66b + infiltration (HR 0.15, p = 0.001, HR 0.13, p = 0.001, respectively) are independent favorable predictive markers for recurrence-free survival. CONCLUSION A high density of CXCL12 + TICs predicts a good response to chemotherapy, leading to a better overall survival and a longer recurrence-free interval. Moreover, with concomitant high CXCL12/CD66b TIC density, it is an independent favorable predictor of recurrence-free survival in patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Philipp Köhn
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland.
- University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Alexandros Lalos
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Alberto Posabella
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Alexander Wilhelm
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Athanasios Tampakis
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Ercan Caner
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Uwe Güth
- Brustzentrum Zürich, Seefeldstrasse 214, 8008, Zurich, Switzerland
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Sylvia Stadlmann
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland
| | | | | | - Sabine Richarz
- Department of Vascular Surgery and Transplantation, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Tarik Delko
- Chirurgie Zentrum Zentralschweiz/Surgical Center Central-Switzerland, Ärztehaus, St. Anna-Strasse 32, Lützelmatt 1, 6006, Luzern, Switzerland
| | - Raoul A Droeser
- University Center for Gastrointestinal and Liver Diseases (Clarunis), University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland.
| | - Gad Singer
- Department of Gynecology and Obstetrics, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
- Institute of Pathology, Kantonsspital Baden AG, Im Ergel 1, 5404, Baden, Switzerland
| |
Collapse
|
5
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
6
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
7
|
Sharbatoghli M, Shamshiripour P, Fattahi F, Kalantari E, Habibi Shams Z, Panahi M, Totonchi M, Asadi-Lari Z, Madjd Z, Saeednejad Zanjani L. Co-expression of cancer stem cell markers, SALL4/ALDH1A1, is associated with tumor aggressiveness and poor survival in patients with serous ovarian carcinoma. J Ovarian Res 2022; 15:17. [PMID: 35090523 PMCID: PMC8800292 DOI: 10.1186/s13048-021-00921-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023] Open
Abstract
Background Spalt-like transcription factor 4 (SALL4) and aldehyde dehydrogenase1 family member A1 (ALDH1A1) expressing cells have been characterized as possessing stem cell-like properties known as cancer stem cell marker in serous ovarian carcinoma (SOC). Methods The association between SALL4 and ALDH1A1 was observed based on literature review and bioinformatics tools. Therefore, this study aimed to investigate the association between the co-expression of SALL4/ALDH1A1 proteins and clinicopathological parameters and their prognostic value in SOC patients using immunohistochemical staining on tissue microarrays (TMAs). Furthermore, benign tumors and normal tissue samples were compared with the expression of the tumor tissue samples. Results Increased co-expression of SALL4/ALDH1A1 was found to be significantly associated with the advanced FIGO stage (P = 0.047), and distant metastasis (P = 0.028). The results of Kaplan–Meier survival analysis indicated significant differences between disease- specific survival (DSS; P = 0.034) or progression-free survival (PFS; P = 0.018) and the patients with high and low co-expression of SALL4/ALDH1A1, respectively. Furthermore, high level co-expression of SALL4/ALDH1A1 was a significant predictor of worse DSS and PFS in the univariate analysis. The data also indicated that the co-expression of SALL4/ALDH1A1 was an independent prognostic factor affecting PFS. Moreover, the co-expression of SALL4/ALDH1A1 added prognostic values of DSS in patients with SOC who had grade III versus grade I in multivariate analysis. Conclusions Our data demonstrated that high co-expression of SALL4/ALDH1A1 was found to be significantly associated with tumor aggressiveness and worse DSS or PFS in SOC patients. Therefore, co-expression of SALL4/ALDH1A1 may serve as a potential prognostic biomarker of cancer progression in these cases. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00921-x.
Collapse
|
8
|
Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:1369. [PMID: 33803586 PMCID: PMC8003094 DOI: 10.3390/cancers13061369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest of gynecological cancers due to its high recurrence rate and acquired chemoresistance. RAS/MEK/ERK pathway activation is linked to cell proliferation and therapeutic resistance, but the role of MEK1/2-ERK1/2 pathway in HGSOC is poorly investigated. We evaluated MEK1/2 pathway activity in clinical HGSOC samples and ovarian cancer cell lines using immunohistochemistry, immunoblotting, and RT-qPCR. HGSOC cell lines were used to assess immediate and lasting effects of MEK1/2 inhibition with trametinib in vitro. Trametinib effect on tumor growth in vivo was investigated using mouse xenografts. MEK1/2 pathway is hyperactivated in HGSOC and is further stimulated by cisplatin treatment. Trametinib treatment causes cell cycle arrest in G1/0-phase and reduces tumor growth rate in vivo but does not induce cell death or reduce fraction of CD133+ stem-like cells, while increasing expression of stemness-associated genes instead. Transient trametinib treatment causes long-term increase in a subpopulation of cells with high aldehyde dehydrogenase (ALDH)1 activity that can survive and grow in non-adherent conditions. We conclude that MEK1/2 inhibition may be a promising approach to suppress ovarian cancer growth as a maintenance therapy. Promotion of stem-like properties upon MEK1/2 inhibition suggests a possible mechanism of resistance, so a combination with CSC-targeting drugs should be considered.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Yeonjung Park
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Jessica Ezell
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Abdelrahman Yousif
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Linda J. Hong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ronald J. Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akimasa Takahashi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga 5202152, Japan
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
10
|
Characteristics of CD133-Sustained Chemoresistant Cancer Stem-Like Cells in Human Ovarian Carcinoma. Int J Mol Sci 2020; 21:ijms21186467. [PMID: 32899775 PMCID: PMC7554888 DOI: 10.3390/ijms21186467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the origin of ovarian cancer (OC) development, recurrence, and chemoresistance. We investigated changes in expression levels of the CSC biomarker, cluster of differentiation 133 (CD133), from primary OC cell lines to induction of CSC-spheres in an attempt to explore the mechanisms related to modulation of stemness, drug resistance, and tumorigenesis in CSCs, thus facilitating the search for new therapeutics for OC. The effect of CD133 overexpression on the induction of CSC properties was evaluated by sphere-forming assays, RT-qPCR, flow cytometry, cell viability assays, and in vivo xenograft experiments. Moreover, the potential signaling molecules that participate in CD133 maintenance of stemness were screened by RNA-sequencing. CD133 expression was upregulated during OCSC induction and chemotherapeutic drug treatment over time, which increased the expressions of stemness-related markers (SOX2, OCT4, and Nanog). CD133 overexpression also promoted tumorigenesis in NOD/SCID mice. Several signalings were controlled by CD133 spheres, including extracellular matrix receptor interactions, chemokine signaling, and Wnt signaling, all of which promote cell survival and cell cycle progression. Our findings suggest that CD133 possesses the ability to maintain functional stemness and tumorigenesis of OCSCs by promoting cell survival signaling and may serve as a potential target for stem cell-targeted therapy of OC.
Collapse
|
11
|
Nagare RP, Sneha S, Krishnapriya S, Ramachandran B, Murhekar K, Vasudevan S, Shabna A, Ganesan TS. ALDH1A1+ ovarian cancer stem cells co-expressing surface markers CD24, EPHA1 and CD9 form tumours in vivo. Exp Cell Res 2020; 392:112009. [PMID: 32305326 DOI: 10.1016/j.yexcr.2020.112009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/12/2020] [Indexed: 02/09/2023]
Abstract
One of the reasons for recurrence following treatment of high grade serous ovarian carcinoma (HGSOC) is the persistence of residual cancer stem cells (CSCs). There has been variability between laboratories in the identification of CSC markers for HGSOC. We have identified new surface markers (CD24, CD9 and EPHA1) in addition to those previously known (CD44, CD117 and CD133) using a bioinformatics approach. The expression of these surface markers was evaluated in ovarian cancer cell lines, primary malignant cells (PMCs), normal ovary and HGSOC. There was no preferential expression of any of the markers or a combination. All the markers were expressed at variable levels in ovarian cancer cell lines and PMCs. Only CD117 and CD9 were expressed in the normal ovarian surface epithelium and fallopian tube. Both ALDEFLUOR (ALDH1A1) and side population assays identified a small proportion of cells (<3%) separately that did not overlap with little variability in cell lines and PMCs. All surface markers were co-expressed in ALDH1A1+ cells without preference for one combination. The cell cycle analysis of ALDH1A1+ cells alone revealed that majority of them reside in G0/G1 phase of cell cycle. Further separation of G0 and G1 phases showed that ALDH1A1+ cells reside in G1 phase of the cell cycle. Xenograft assays showed that the combinations of ALDH1A1 + cells co-expressing CD9, CD24 or EPHA1 were more tumorigenic and aggressive with respect to ALDH1A1-cells. These data suggest that a combined approach could be more useful in identifying CSCs in HGSOC.
Collapse
Affiliation(s)
- Rohit P Nagare
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Smarakan Sneha
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | | | - Kanchan Murhekar
- Department of Pathology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Aboo Shabna
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India; Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, Tamilnadu, India.
| |
Collapse
|
12
|
Immunotherapy: Newer Therapeutic Armamentarium against Cancer Stem Cells. JOURNAL OF ONCOLOGY 2020; 2020:3963561. [PMID: 32211043 PMCID: PMC7085385 DOI: 10.1155/2020/3963561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Mounting evidence from the literature suggests the existence of a subpopulation of cancer stem cells (CSCs) in almost all types of human cancers. These CSCs possessing a self-renewal capacity inhabit primary tumors and are more defiant to standard antimitotic and molecularly targeted therapies which are used for eliminating actively proliferating and differentiated cancer cells. Clinical relevance of CSCs emerges from the fact that they are the root cause of therapy resistance, relapse, and metastasis. Earlier, surgery, chemotherapy, and radiotherapy were established as cancer treatment modalities, but recently, immunotherapy is also gaining importance in the management of various cancer patients, mostly those of the advanced stage. This review abridges potential off-target effects of inhibiting CSC self-renewal pathways on immune cells and some recent immunological studies specifically targeting CSCs on the basis of their antigen expression profile, even though molecular markers or antigens that have been described till date as expressed by cancer stem cells are not specifically expressed by these cells which is a major limitation to target CSCs. We propose that owing to CSC stemness property to mediate immunotherapy response, we can apply a combination therapy approach by targeting CSCs and tumor microenvironment (TME) along with conventional treatment strategies as an effective means to eradicate cancer cells.
Collapse
|
13
|
Terraneo N, Jacob F, Peitzsch C, Dubrovska A, Krudewig C, Huang YL, Heinzelmann-Schwarz V, Schibli R, Béhé M, Grünberg J. L1 Cell Adhesion Molecule Confers Radioresistance to Ovarian Cancer and Defines a New Cancer Stem Cell Population. Cancers (Basel) 2020; 12:cancers12010217. [PMID: 31952346 PMCID: PMC7017143 DOI: 10.3390/cancers12010217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Many solid tumors, including ovarian cancer, contain small populations of cancer stem cells (CSCs). These cells are usually resistant against conventional cancer therapies and play a role in disease recurrence. We demonstrated that the L1 cell adhesion molecule (L1CAM) is a new CSC target in ovarian cancer, triggering radioresistance. Using fluorescence-activated cell sorting, specific cell populations expressing L1CAM alone or in combination with the established CSC marker CD133 were isolated from three ovarian cancer cell lines. Double-positive L1CAM+/CD133+ cells displayed higher spherogenic and clonogenic properties in comparison to L1CAM-/CD133- cells. Furthermore, L1CAM+/CD133+ cells retained highest clonogenic capacity after irradiation and exhibited up-regulation of some CSC-specific genes, enhanced tumor-initiating capacity, self-renewal and higher tumor take rate in nude mice when compared with other cell populations. Superior radioresistance by L1CAM expression was confirmed by deletion of L1CAM using CRISPR-Cas9 technology. Moreover, we found expression signatures associated with epithelial-to-mesenchymal transition phenotype in L1CAM deleted cells. These results indicate that L1CAM in combination with CD133 defines a new cancer cell population of ovarian tumor-initiating cells with the implication of targeting L1CAM as a novel therapeutic approach for ovarian CSCs.
Collapse
Affiliation(s)
- Nastassja Terraneo
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (N.T.); (R.S.); (M.B.)
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (F.J.); (Y.-L.H.); (V.H.-S.)
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany
| | - Christiane Krudewig
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (F.J.); (Y.-L.H.); (V.H.-S.)
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (F.J.); (Y.-L.H.); (V.H.-S.)
- Hospital for Women, University Hospital Basel, 4031 Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (N.T.); (R.S.); (M.B.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (N.T.); (R.S.); (M.B.)
| | - Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (N.T.); (R.S.); (M.B.)
- Correspondence: ; Tel.: +41-56-310-2848
| |
Collapse
|
14
|
Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol 2019; 234:21642-21661. [PMID: 31102292 DOI: 10.1002/jcp.28824] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Xia Y, Wei X, Gong H, Ni Y. Aldehyde dehydrogenase serves as a biomarker for worse survival profiles in ovarian cancer patients: an updated meta-analysis. BMC WOMENS HEALTH 2018; 18:199. [PMID: 30522488 PMCID: PMC6284301 DOI: 10.1186/s12905-018-0686-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this comprehensive meta-analysis was to assess the association of aldehyde dehydrogenase (ALDH) expression with overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS) in ovarian cancer patients. METHODS Systematic searches of Pubmed databases was performed to identify relevant literature published before February 28, 2018. A total of 14 studies (13 articles) with 2210 ovarian cancer patients were pooled. All included studies were performed by using Immunohistochemistry (IHC) for detection of ALDH expression. Hazard ratio (HR) and 95% confidence interval (CI) were extracted from included studies to evaluate the correlation of ALDH expression with OS and DFS/PFS. RESULTS High expression of ALDH was associated with worse OS (HR: 1.43; 95% CI: 1.18-1.73) and poor DFS/PFS (HR: 1.55, 95% CI: 1.12-2.14). No evidence of publication bias was observed in OS (Begg's test, P = 0.113; Egger's test, P = 0.355) and DFS/PFS (Begg's test, P = 0.655; Egger's test, P = 0.189) in ovarian cancer patients. The subgroup of studies with cut-off value of low expression showed that high expression of ALDH was correlated with poor OS (HR: 1.36; 95% CI: 1.14-1.62) and DFS/PFS (HR: 1.79; 95% CI: 1.45-2.20) in ovarian cancer patients, with no observed heterogeneity (OS: I2 = 0%, P = 0.45; DFS/PFS: I2 = 0%, P = 0.55). CONCLUSION In conclusion, high expression of ALDH is correlated with worse survival profiles in ovarian cancer patients, indicating that ALDH might act as a potential molecular biomarker for prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Yan Xia
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Xuemin Wei
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Hui Gong
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| | - Yunxiang Ni
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
16
|
Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer? Cancers (Basel) 2018; 10:cancers10080241. [PMID: 30042330 PMCID: PMC6116003 DOI: 10.3390/cancers10080241] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Poor overall survival, particularly for patients with high grade serous (HGS) ovarian cancer, is often attributed to late stage at diagnosis and relapse following chemotherapy. HGS ovarian cancer is a heterogenous disease in that few genes are consistently mutated between patients. Additionally, HGS ovarian cancer is characterized by high genomic instability. For these reasons, personalized approaches may be necessary for effective treatment and cure. Understanding the molecular mechanisms that contribute to tumor metastasis and chemoresistance are essential to improve survival rates. One favored model for tumor metastasis and chemoresistance is the cancer stem cell (CSC) model. CSCs are cells with enhanced self-renewal properties that are enriched following chemotherapy. Elimination of this cell population is thought to be a mechanism to increase therapeutic response. Therefore, accurate identification of stem cell populations that are most clinically relevant is necessary. While many CSC identifiers (ALDH, OCT4, CD133, and side population) have been established, it is still not clear which population(s) will be most beneficial to target in patients. Therefore, there is a critical need to characterize CSCs with reliable markers and find their weaknesses that will make the CSCs amenable to therapy. Many signaling pathways are implicated for their roles in CSC initiation and maintenance. Therapeutically targeting pathways needed for CSC initiation or maintenance may be an effective way of treating HGS ovarian cancer patients. In conclusion, the prognosis for HGS ovarian cancer may be improved by combining CSC phenotyping with targeted therapies for pathways involved in CSC maintenance.
Collapse
|
17
|
Ruscito I, Darb-Esfahani S, Kulbe H, Bellati F, Zizzari IG, Rahimi Koshkaki H, Napoletano C, Caserta D, Rughetti A, Kessler M, Sehouli J, Nuti M, Braicu EI. The prognostic impact of cancer stem-like cell biomarker aldehyde dehydrogenase-1 (ALDH1) in ovarian cancer: A meta-analysis. Gynecol Oncol 2018; 150:151-157. [DOI: 10.1016/j.ygyno.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
|
18
|
Ruscito I, Cacsire Castillo-Tong D, Vergote I, Ignat I, Stanske M, Vanderstichele A, Glajzer J, Kulbe H, Trillsch F, Mustea A, Kreuzinger C, Benedetti Panici P, Gourley C, Gabra H, Nuti M, Taube ET, Kessler M, Sehouli J, Darb-Esfahani S, Braicu EI. Characterisation of tumour microvessel density during progression of high-grade serous ovarian cancer: clinico-pathological impact (an OCTIPS Consortium study). Br J Cancer 2018; 119:330-338. [PMID: 29955134 PMCID: PMC6070919 DOI: 10.1038/s41416-018-0157-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) intratumoural vasculature evolution remains unknown. The study investigated changes in tumour microvessel density (MVD) in a large cohort of paired primary and recurrent HGSOC tissue samples and its impact on patients' clinico-pathological outcome. METHODS A total of 222 primary (pOC) and recurrent (rOC) intra-patient paired HGSOC were assessed for immunohistochemical expression of angiogenesis-associated biomarkers (CD31, to evaluate MVD, and VEGF-A). Expression profiles were compared between pOCs and rOCs and correlated with patients' data. RESULTS High intratumoural MVD and VEGF-A expression were observed in 75.7% (84/111) and 20.7% (23/111) pOCs, respectively. MVDhigh and VEGF(+) samples were detected in 51.4% (57/111) and 20.7% (23/111) rOCs, respectively. MVDhigh/VEGF(+) co-expression was found in 19.8% (22/111) and 8.1% (9/111) of pOCs and rOCs, respectively (p = 0.02). Pairwise analysis showed no significant change in MVD (p = 0.935) and VEGF-A (p = 0.121) levels from pOCs to rOCs. MVDhigh pOCs were associated with higher CD3(+) (p = 0.029) and CD8(+) (p = 0.013) intratumoural effector TILs, while VEGF(+) samples were most frequently encountered among BRCA-mutated tumours (p = 0.019). Multivariate analysis showed VEGF and MVD were not independent prognostic factors for OS. CONCLUSIONS HGSOC intratumoural vasculature did not undergo significant changes during disease progression. High concentration of CD31(+) vessels seems to promote recruitment of effector TILs. The study also provides preliminary evidence of the correlation between VEGF-positivity and BRCA status.
Collapse
Affiliation(s)
- Ilary Ruscito
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany. .,Cell Therapy Unit and Laboratory of Tumor Immunology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, University Hospital Leuven, Catholic University of Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Iulia Ignat
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Mandy Stanske
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, University Hospital Leuven, Catholic University of Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Jacek Glajzer
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, Munich, Germany.,Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 46, Hamburg, Germany
| | - Alexander Mustea
- Department of Gynecology and Obstetrics, University Medicine of Greifswald, Greifswald, Germany
| | - Caroline Kreuzinger
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | | | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, MRC IGMM, Western General Hospital, University of Edinburgh Cancer Research, UK Centre, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK.,Clinical Discovery Unit, AstraZeneca, Cambridge, UK
| | - Marianna Nuti
- Cell Therapy Unit and Laboratory of Tumor Immunology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eliane T Taube
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Mirjana Kessler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Silvia Darb-Esfahani
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
19
|
Zhang Y, Wu J, Jing H, Huang G, Dong J, Cui Z. Increased DHRS12 expression independently predicts poor survival in patients with high-grade serous ovarian cancer. Future Oncol 2018; 14:2579-2588. [PMID: 29783891 DOI: 10.2217/fon-2018-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the expression profile of some DHRS genes in high-grade serous ovarian cancer (SOVC) and to study their prognostic values. PATIENTS & METHODS A retrospective bioinformatic analysis was performed using data in the Gene Expression Omnibus, the Human Protein Atlas and the Cancer Genome Atlas-Ovarian Cancer. RESULTS Increased DHRS12 expression was an independent indicator of poor overall survival (hazard ratio [HR]: 1.265, 95% CI: 1.075-1.488; p = 0.005) and recurrence-free survival (RFS; HR: 2.242, 95%CI: 1.464-3.432; p < 0.001) in patients with high-grade SOVC. DNA deletion was associated with decreased DHRS12 expression, as well as the best overall survival and RFS among the three copy number alteration groups. CONCLUSION DHRS12 might serve as a valuable prognostic biomarker in high-grade SOVC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Gui Huang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jinlong Dong
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Zhanjun Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
20
|
Wang L, Xu T, Cui M. Are ovarian cancer stem cells the target for innovative immunotherapy? Onco Targets Ther 2018; 11:2615-2626. [PMID: 29780254 PMCID: PMC5951213 DOI: 10.2147/ott.s155458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs) can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy), immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR)-T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
21
|
Zhao W, Zang C, Zhang T, Li J, Liu R, Feng F, Lv Q, Zheng L, Tian J, Sun C. Clinicopathological characteristics and prognostic value of the cancer stem cell marker ALDH1 in ovarian cancer: a meta-analysis. Onco Targets Ther 2018; 11:1821-1831. [PMID: 29662319 PMCID: PMC5892614 DOI: 10.2147/ott.s160207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The clinicopathological and prognostic values of the cancer stem cell marker aldehyde dehydrogenase 1 (ALDH1) in ovarian cancer (OC) remain unknown. The aim of our meta-analysis was to evaluate ALDH1’s association with clinicopathological characteristics and its prognostic significance in patients with OC. Materials and methods PubMed, Embase, and China Biology Medicine were systematically searched for eligible studies (up to October 2017). Pooled odds ratios (ORs) or hazard ratios (HRs) with 95% CIs were used to evaluate the association of ALDH1 expression with clinicopathological features and survival outcomes. Results A total of 17 papers (18 studies) that included 2,531 patients with OC were analyzed. The results showed a significant association between increasing ALDH1 expression and International Federation of Gynecology and Obstetrics stage (OR 2.02, 95% CI 1.16–3.52), lymph node metastasis (OR 1.91, 95% CI 1.01–3.61), and distant metastasis (OR 5.43, 95% CI 1.44–20.42) in OC. However, no significant correlation was found between increasing ALDH1 expression and age (OR 0.90, 95% CI 0.25–3.28), tumor size (OR 1.13, 95% CI 0.75–1.71), tumor location (OR 0.69, 95% CI 0.22–2.13), ascite status (OR 0.74, 95% CI 0.49–1.11), resistance status (OR 0.70, 95% CI 0.14–3.51), or clinicopathological type (OR 1.14, 95% CI 0.69–1.86). Moreover, a high ALDH1 expression was significantly associated with overall survival (HR 1.56, 95% CI 1.21–2.02) but not with disease-free survival (HR 1.38, 95% CI 0.99–1.93). Conclusion The meta-analysis indicates that increasing ALDH1 predicts poor prognosis and clinicopathological characteristics in OC. Future studies are needed to explore tailored treatments that directly target ALDH1 for the improvement of survival in OC.
Collapse
Affiliation(s)
- Wenge Zhao
- Department of Oncology, College of Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Chuanxin Zang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jia Li
- Department of Oncology, College of Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| | - Qingliang Lv
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, People's Republic of China
| | - Liang Zheng
- Department of Cardiovascular Medicine, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| |
Collapse
|
22
|
Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemp Oncol (Pozn) 2018; 22:48-55. [PMID: 29628794 PMCID: PMC5885077 DOI: 10.5114/wo.2018.73885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSLCs) are defined as cancer cells with stem cell characteristics. Although CSLCs constitute no more than a few percent of the tumor mass, they play important roles in cancer chemo-resistance, metastasis and disease recurrence. Ovarian cancer (OC) is considered the most aggressive gynecological malignancy in which the role of CSLCs is of major significance, although it remains to be specified. The studies describing ovarian CSLC phenotype vary in the definition of the molecular pattern of expression of the main markers such as CD133, CD44, CD117, and CD24. Stem-like features of OC have been shown to correlate with the clinical course of the disease and permit diagnosis, prognosis and treatment outcome to be improved. Identification of CSLC markers could provide hallmarks which, related to the chemo-resistance of the disease, will facilitate treatment selection. This review describes recent advances in research on stem-like cell status in OC, mainly focusing on surface markers of CSLCs and their clinical relevance.
Collapse
|
23
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
24
|
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2017; 153:304-314. [PMID: 29150846 DOI: 10.1111/imm.12866] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies target the bulk of the tumour, while a population of highly resistant tumour cells may be able to repopulate the tumour and metastasize to new sites. Cancer cells with such stem cell-like characteristics can be identified based on their phenotypical and/or functional features which may open up ways for their targeted elimination. In this review we discuss potential off-target effects of inhibiting cancer stem-cell self-renewal pathways on immune cells, and summarize some recent immunological studies specifically targeting cancer stem cells based on their unique antigen expression.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Toshihiko Torigo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Zhao L, Li J, Liu M, Zhou H, Zou H, Wei Y, Sun K, Li G, Li S, Pang L. The clinicopathological parameters significance of CD133 and Nestin in epithelial ovarian cancer: a meta-analysis. Future Oncol 2017; 13:2555-2570. [PMID: 29168665 DOI: 10.2217/fon-2017-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This meta-analysis was conducted to evaluate the association of CD133 and Nestin with epithelial ovarian cancer. Databases (PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, Wanfang) were searched for relevant studies updated in August 2017. CD133 and Nestin expression were estimated by immunohistochemistry. Statistical analysis was performed by RevMan. A total of 18 studies were included in this meta-analysis. High expression of both CD133 and Nestin was associated with late International Federation of Gynecology and Obstetrics stage (p < 0.00001), larger size of residual cancer (p < 0.05). CD133 overexpression was also associated with higher histological grade (p = 0.0006) and lymph node metastases (p < 0.00001). Nestin overexpression was associated with a higher rate of treatment resistance (p = 0.0007). Positive expression of CD133 and Nestin may be associated with aggressive biological behaviors in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Li
- Department of Ultrasound, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Manli Liu
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hongrun Zhou
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yutao Wei
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kunming Sun
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ganxiong Li
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|