1
|
Ghahfarrokhi SSM, Karimi P, Mahdigholi FS, Haji Abdolvahab M. Vaccination and personalized cancer vaccines focusing on common cancers in women: A narrative review. Pathol Res Pract 2025; 270:155983. [PMID: 40262377 DOI: 10.1016/j.prp.2025.155983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Immunotherapy has recently cast great attention on cancer vaccines in order to aim to decrease tumor growth, elicit persistent anti-tumor memory, and avert adverse reactions. Moreover, cancer vaccines employ tumor antigens to stimulate anti-tumor immunity using different platforms, for example, whole cells, nucleic acids, peptides, etc. Recent findings have classified cancer vaccines into cell-based, virus-based, peptide-based, and nucleic acid-based types. Personalized cancer vaccines, also known as neoantigens, have exhibited acceptable safety and efficacy in eliciting immune responses against melanoma and glioblastoma. Neoantigen-based vaccines, concentrating on tumor antigens present only in cancer cells, bring intriguing opportunities for different types of cancer, including melanoma, lung, bladder, breast, renal, head and neck, and colorectal cancers. Furthermore, breast cancer research underscores ongoing trials of vaccines targeting α-lactalbumin to prevent the recurrence of triple-negative breast cancer. Lung cancer studies have discovered interesting outcomes with liposomal vaccines and the potential of CIMAvax-EGF in the prevention of lung cancer. Studies on ovarian cancer highlight personalized cancer vaccines using dendritic cells and various tumor-associated antigens to elicit T-cell responses against cancer cells. Overall, such advancements suggest great promise for future clinical translation of cancer novel immunotherapy-based approaches to effectively counter various types of cancer.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fateme-Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Chen K, Wang J, Yang M, Deng S, Sun L. Immunotherapy in Recurrent Ovarian Cancer. Biomedicines 2025; 13:168. [PMID: 39857752 PMCID: PMC11762523 DOI: 10.3390/biomedicines13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES It remains challenging to treat recurrent ovarian cancer effectively as traditional interventions like chemotherapy and surgery have limited long-term efficacy, highlighting an urgent need for innovative approaches. Immunotherapy offers potential advantages in modulating the immune response against tumor cells and has emerged as a promising strategy in ovarian cancer management. This review discusses various immunotherapy modalities, including active and passive immune strategies, for recurrent ovarian cancer. METHODS We systematically reviewed recent immunotherapy advances for recurrent ovarian cancer, including the efficacy and mechanisms of single and dual immune checkpoint inhibitors, checkpoint inhibitor combinations with chemotherapy or radiotherapy, anti-angiogenic agents, PARP inhibitors, antibody-drug conjugates (ADC), tumor vaccines, and adoptive cell therapies (ACT). Additionally, we assessed emerging research on biomarkers predictive of immunotherapy responsiveness in ovarian cancer. RESULTS The findings indicate that immunotherapy, particularly combinations involving immune checkpoint inhibitors and other agents, demonstrates promising efficacy in recurrent ovarian cancer, with some therapies showing enhanced benefits in specific subtypes. The immune microenvironment in platinum-sensitive and -resistant cases exhibits distinct immunological profiles, influencing therapy outcomes. Several potential biomarkers have been identified, potentially aiding in patient stratification and treatment optimization. CONCLUSIONS Immunotherapy significantly advances recurrent ovarian cancer treatment, with various combinations potentially improving outcomes. Further research on predictive biomarkers and immune microenvironment characteristics is crucial for personalizing immunotherapy approaches and enhancing their efficacy in managing recurrent ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Li Sun
- Gynecology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (K.C.); (J.W.); (M.Y.); (S.D.)
| |
Collapse
|
3
|
Tiwari A, Alcover K, Carpenter E, Thomas K, Krum J, Nissen A, Van Decar S, Smolinsky T, Valdera F, Vreeland T, Lacher M, Del Priore G, Williams W, Stojadinovic A, Peoples G, Clifton G. Utility of cell-based vaccines as cancer therapy: Systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2323256. [PMID: 38544385 PMCID: PMC10984131 DOI: 10.1080/21645515.2024.2323256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Cell-based therapeutic cancer vaccines use autologous patient-derived tumor cells, allogeneic cancer cell lines or autologous antigen presenting cells to mimic the natural immune process and stimulate an adaptive immune response against tumor antigens. The primary objective of this study is to perform a systematic literature review with an embedded meta-analysis of all published Phase 2 and 3 clinical trials of cell-based cancer vaccines in human subjects. The secondary objective of this study is to review trials demonstrating biological activity of cell-based cancer vaccines that could uncover additional hypotheses, which could be used in the design of future studies. We performed the systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The final review included 36 studies - 16 single-arm studies, and 20 controlled trials. Our systematic review of the existing literature revealed largely negative trials and our meta-analysis did not show evidence of clinical benefit from cell-based cancer-vaccines. However, as we looked beyond the stringent inclusion criteria of our systematic review, we identified significant examples of biological activity of cell-based cancer vaccines that are worth highlighting. In conclusion, the existing literature on cell-based cancer vaccines is highly variable in terms of cancer type, vaccine therapies and the clinical setting with no overall statistically significant clinical benefit, but there are individual successes that represent the promise of this approach. As cell-based vaccine technology continues to evolve, future studies can perhaps fulfill the potential that this exciting field of anti-cancer therapy holds.
Collapse
Affiliation(s)
- Ankur Tiwari
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Karl Alcover
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Katryna Thomas
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Julia Krum
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Alexander Nissen
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Spencer Van Decar
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Todd Smolinsky
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Franklin Valdera
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Timothy Vreeland
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | | | | | | | | | | | - Guy Clifton
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| |
Collapse
|
4
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
5
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
6
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Oltmanns F, Vieira Antão A, Irrgang P, Viherlehto V, Jörg L, Schmidt A, Wagner JT, Rückert M, Flohr AS, Geppert CI, Frey B, Bayer W, Gravekamp C, Tenbusch M, Gaipl U, Lapuente D. Mucosal tumor vaccination delivering endogenous tumor antigens protects against pulmonary breast cancer metastases. J Immunother Cancer 2024; 12:e008652. [PMID: 38458636 PMCID: PMC10921546 DOI: 10.1136/jitc-2023-008652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Generally, early-stage breast cancer has a good prognosis. However, if it spreads systemically, especially with pulmonary involvement, prospects worsen dramatically. Importantly, tumor-infiltrating T cells contribute to tumor control, particularly intratumoral T cells with a tissue-resident memory phenotype are associated with an improved clinical outcome. METHODS Here, we use an adenoviral vector vaccine encoding endogenous tumor-associated antigens adjuvanted with interleukin-1β to induce tumor-specific tissue-resident memory T cells (TRM) in the lung for the prevention and treatment of pulmonary metastases in the murine 4T1 breast cancer model. RESULTS The mucosal delivery of the vaccine was highly efficient in establishing tumor-specific TRM in the lung. Concomitantly, a single mucosal vaccination reduced the growth of pulmonary metastases and improved the survival in a prophylactic treatment. Vaccine-induced TRM contributed to these protective effects. In a therapeutic setting, the vaccination induced a pronounced T cell infiltration into metastases but resulted in only a minor restriction of the disease progression. However, in combination with stereotactic radiotherapy, the vaccine increased the survival time and rate of tumor-bearing mice. CONCLUSION In summary, our study demonstrates that mucosal vaccination is a promising strategy to harness the power of antitumor TRM and its potential combination with state-of-the-art treatments.
Collapse
Affiliation(s)
- Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Viherlehto
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Leticia Jörg
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Imanuel Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Claudia Gravekamp
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol 2024; 15:1287824. [PMID: 38433837 PMCID: PMC10905744 DOI: 10.3389/fimmu.2024.1287824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Impressive advances have been seen in cancer immunotherapy during the last years. Although breast cancer (BC) has been long considered as non-immunogenic, immunotherapy for the treatment of BC is now emerging as a new promising therapeutic approach with considerable potential. This is supported by a plethora of completed and ongoing preclinical and clinical studies in various types of immunotherapies. However, a significant gap between clinical oncology and basic cancer research impairs the understanding of cancer immunology and immunotherapy, hampering cancer therapy research and development. To exploit the accumulating available data in an optimal way, both fundamental mechanisms at play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical trials must be critically designed with appropriate combinations of conventional and immunotherapeutic strategies. While there is room for major improvement, this updated review details the immunotherapeutic tools available to date, from bench to bedside, in the hope that this will lead to rethinking and optimizing standards of care for BC patients.
Collapse
Affiliation(s)
- Emmanuelle Alaluf
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Amir Sonnenblick
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
9
|
Zhang T, Xu H, Zheng X, Xiong X, Zhang S, Yi X, Li J, Wei Q, Ai J. Clinical benefit and safety associated with mRNA vaccines for advanced solid tumors: A meta-analysis. MedComm (Beijing) 2023; 4:e286. [PMID: 37470066 PMCID: PMC10353527 DOI: 10.1002/mco2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 07/21/2023] Open
Abstract
Tumor mRNA vaccines have been developed for over 20 years. Whether mRNA vaccines could promote a clinical benefit to advanced cancer patients is highly unknown. PubMed and Embase were retrieved from January 1, 2000 to January 4, 2023. Random effects models were employed. Clinical benefit (objective response rate [ORR], disease control rate [DCR], 1-year/2-year progression-free survival [PFS], and overall survival [OS]) and safety (vaccine-related grade 3-5 adverse events [AEs]) were evaluated. Overall, 984 patients (32 trials) were enrolled. The most typical cancer types were melanoma (13 trials), non-small cell lung cancer (5 trials), renal cell carcinoma (4 trials), and prostate adenocarcinoma (4 trials). The pooled ORR and DCR estimates were 10.0% (95%CI, 4.6-17.0%) and 34.6% (95%CI, 24.1-45.9%). The estimates for 1-year and 2-year PFS were 38.4% (95%CI, 24.8-53.0%) and 20.0% (95%CI, 10.4-31.7%), respectively. The estimates for 1-year and 2-year OS were 75.3% (95%CI, 62.4-86.3%) and 45.5% (95%CI, 34.0-57.2%), respectively. The estimate for vaccine-related grade 3-5 AEs was 1.0% (95%CI, 0.2-2.4%). Conclusively, mRNA vaccines seem to demonstrate modest clinical response rates, with acceptable survival rates and rare grade 3-5 AEs.
Collapse
Affiliation(s)
- Tian‐yi Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hang Xu
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐nan Zheng
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xing‐yu Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Shi‐yu Zhang
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Xian‐yanling Yi
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jin Li
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Qiang Wei
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Jian‐zhong Ai
- Department of Urology, West China HospitalSichuan UniversityChengduChina
- Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
11
|
Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov 2023; 22:101-126. [PMID: 36344672 PMCID: PMC9640784 DOI: 10.1038/s41573-022-00579-0] [Citation(s) in RCA: 451] [Impact Index Per Article: 225.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
The long-sought discovery of HER2 as an actionable and highly sensitive therapeutic target was a major breakthrough for the treatment of highly aggressive HER2-positive breast cancer, leading to approval of the first HER2-targeted drug - the monoclonal antibody trastuzumab - almost 25 years ago. Since then, progress has been swift and the impressive clinical activity across multiple trials with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates that target HER2 has spawned extensive efforts to develop newer platforms and more targeted therapies. This Review discusses the current standards of care for HER2-positive breast cancer, mechanisms of resistance to HER2-targeted therapy and new therapeutic approaches and agents, including strategies to harness the immune system.
Collapse
Affiliation(s)
- Sandra M Swain
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Washington, DC, USA.
| | | | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
12
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
13
|
Oxidative Stress Response Biomarkers of Ovarian Cancer Based on Single-Cell and Bulk RNA Sequencing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1261039. [PMID: 36743693 PMCID: PMC9897923 DOI: 10.1155/2023/1261039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Background The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.
Collapse
|
14
|
Guo L, Wang J, Li N, Cui J, Su Y. Peptides for diagnosis and treatment of ovarian cancer. Front Oncol 2023; 13:1135523. [PMID: 37213272 PMCID: PMC10196167 DOI: 10.3389/fonc.2023.1135523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ovarian cancer is the most deadly gynecologic malignancy, and its incidence is gradually increasing. Despite improvements after treatment, the results are unsatisfactory and survival rates are relatively low. Therefore, early diagnosis and effective treatment remain two major challenges. Peptides have received significant attention in the search for new diagnostic and therapeutic approaches. Radiolabeled peptides specifically bind to cancer cell surface receptors for diagnostic purposes, while differential peptides in bodily fluids can also be used as new diagnostic markers. In terms of treatment, peptides can exert cytotoxic effects directly or act as ligands for targeted drug delivery. Peptide-based vaccines are an effective approach for tumor immunotherapy and have achieved clinical benefit. In addition, several advantages of peptides, such as specific targeting, low immunogenicity, ease of synthesis and high biosafety, make peptides attractive alternative tools for the diagnosis and treatment of cancer, particularly ovarian cancer. In this review, we focus on the recent research progress regarding peptides in the diagnosis and treatment of ovarian cancer, and their potential applications in the clinical setting.
Collapse
|
15
|
Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer 2022; 22:640-656. [PMID: 36109621 DOI: 10.1038/s41568-022-00503-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Treatment of high-grade serous ovarian cancer (HGSOC) remains challenging. Although HGSOC can potentially be responsive to immunotherapy owing to endogenous immunity at the molecular or T cell level, immunotherapy for this disease has fallen short of expectations to date. This Review proposes a working classification for HGSOC based on the presence or absence of intraepithelial T cells, and elaborates the putative mechanisms that give rise to such immunophenotypes. These differences might explain the failures of existing immunotherapies, and suggest that rational therapeutic approaches tailored to each immunophenotype might meet with improved success. In T cell-inflamed tumours, treatment could focus on mobilizing pre-existing immunity and strengthening the activation of T cells embedded in intraepithelial tumour myeloid niches. Conversely, in immune-excluded and immune-desert tumours, treatment could focus on restoring inflammation by reprogramming myeloid cells, stromal cells and vascular epithelial cells. Poly(ADP-ribose) polymerase (PARP) inhibitors, low-dose radiotherapy, epigenetic drugs and anti-angiogenesis therapy are among the tools available to restore T cell infiltration in HGSOC tumours and could be implemented in combination with vaccines and redirected T cells.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
HER2-Displaying M13 Bacteriophages induce Therapeutic Immunity against Breast Cancer. Cancers (Basel) 2022; 14:cancers14164054. [PMID: 36011047 PMCID: PMC9406369 DOI: 10.3390/cancers14164054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The high incidence and death rates of breast cancer make the development of new therapies an urgent need. The introduction into the clinic of the anti-HER2 monoclonal antibody trastuzumab considerably improved the overall survival and time-to-disease progression of patients with HER2-positive breast cancer. However, many patients do not benefit from it because of resistance to therapy. Cancer vaccines, by inducing into the patient an anti-cancer specific immunity, might represent an alternative immunotherapeutic approach, but despite promises, so far no anti-HER2 cancer vaccine has been approved for human use. In this study, we propose therapeutic phage-based vaccines, against HER2 and its aggressive isoform Δ16HER2, able to elicit a protective immunity and potentially capable of preventing relapse in HER2-positive breast cancer patients, even in those who develop trastuzumab resistance. Abstract The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient’s immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment.
Collapse
|
17
|
Agostinetto E, Montemurro F, Puglisi F, Criscitiello C, Bianchini G, Del Mastro L, Introna M, Tondini C, Santoro A, Zambelli A. Immunotherapy for HER2-Positive Breast Cancer: Clinical Evidence and Future Perspectives. Cancers (Basel) 2022; 14:2136. [PMID: 35565264 PMCID: PMC9105460 DOI: 10.3390/cancers14092136] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, and HER2-positive breast cancer accounts for approximately 15% of all breast cancer diagnoses. The advent of HER2-targeting therapies has dramatically improved the survival of these patients, significantly reducing their risk of recurrence and death. However, as a significant proportion of patients ultimately develop resistance to these therapies, it is extremely important to identify new treatments to further improve their clinical outcomes. Immunotherapy has revolutionized the treatment and history of several cancer types, and it has already been approved as a standard of care for patients with triple-negative breast cancer. Based on a strong preclinical rationale, immunotherapy in HER2-positive breast cancer represents an intriguing field that is currently under clinical investigation. There is a close interplay between HER2-targeting therapies (both approved and under investigation) and the immune system, and several new immunotherapeutic strategies, including immune checkpoint inhibitors, CAR-T cells and therapeutic vaccines, are being studied in this disease. In this narrative review, we discuss the clinical evidence and the future perspectives of immunotherapy for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Université Libre de Bruxelles (U.L.B), 1070 Brussels, Belgium;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Filippo Montemurro
- Direzione Breast Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Fabio Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Lucia Del Mastro
- IRCCS Ospedale Policlinico San Martino, Clinica di Oncologia Medica, 16132 Genova, Italy;
- Dipartimento di Medicina Interna e Specialità Medica, Università di Genova, 16124 Genova, Italy
| | - Martino Introna
- UOS Centro di Terapia Cellulare “G. Lanzani”, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Carlo Tondini
- Medical Oncology Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 27100 Bergamo, Italy;
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
18
|
Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer 2022; 160:150-174. [PMID: 34823982 PMCID: PMC8608270 DOI: 10.1016/j.ejca.2021.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The ability to exploit the immune system as a weapon against cancer has revolutionised the treatment of cancer patients, especially through immune checkpoint inhibitors (ICIs). However, ICIs demonstrated a modest benefit in treating breast cancer (BC), with the exception of certain subsets of triple-negative BCs. An immune-suppressive tumour microenvironment (TME), typically present in BC, is an important factor in the poor response to immunotherapy. After almost two decades of poor clinical trial results, cancer vaccines (CVs), an active immunotherapy, have come back in the spotlight because of some technological advancements, ultimately boosted by coronavirus disease 2019 pandemic. In particular, neoantigens are emerging as the preferred targets for CVs, with gene-based and viral vector-based platforms in development. Moreover, lipid nanoparticles proved to be immunogenic and efficient delivery vehicles. Past clinical trials investigating CVs focused especially on the metastatic disease, where the TME is more likely compromised by inhibitory mechanisms. In this sense, favouring the use of CVs as monotherapy in premalignant or in the adjuvant setting and establishing combination treatments (i.e. CV plus ICI) in late-stage disease are promising strategies. This review provides a full overview of the past and current breast cancer vaccine landscape.
Collapse
Affiliation(s)
- Chiara Corti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Pier P M B Giachetti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Alexander M M Eggermont
- Princess Máxima Center, Utrecht, the Netherlands; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
19
|
Bund V, Azaïs H, Bibi-Triki S, Lecointre L, Betrian SB, Angeles MA, Eberst L, Faller E, Boisramé T, Bendifallah S, Akladios C, Deluche É. Basics of immunotherapy for epithelial ovarian cancer. J Gynecol Obstet Hum Reprod 2021; 51:102283. [PMID: 34875397 DOI: 10.1016/j.jogoh.2021.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers. Despite excellent responses to standard treatment in approximately 70% of patients, most of them will relapse within 5 years of initial treatment and many of them will develop chemotherapy-resistant disease. It is then important to find other means of treatment for these patients such as immunotherapy or targeted therapy. To understand immunotherapy, it is important to explain the dynamic interplay between cancer and the immune system. Compared to traditional tumor therapies, immunotherapy acts primarily on the immune system or the tumor microenvironment but not directly on the tumor cells, and it may also promote synergistic anti-tumor actions as part of a combined treatment. The aim of this narrative review is to provide a basic understanding of immunotherapy the interest of this treatment in EOC, and to present the main ongoing studies that could change patient management in the future.
Collapse
Affiliation(s)
- Virginie Bund
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| | - Henri Azaïs
- Department of Gynecologic and Breast Oncological Surgery, Georges-Pompidou European Hospital, APHP. Centre, France.
| | - Sabrina Bibi-Triki
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| | - Lise Lecointre
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; IHU-Strasbourg (Institut Hospitalo-Universitaire), Strasbourg, France.
| | - Sarah Bétrian Betrian
- Medical oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer, Toulouse, France.
| | - Martina Aida Angeles
- Department of Gynecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, France.
| | - Lauriane Eberst
- Department of Oncology, Institut de Cancérologie de Strasbourg (ICANS), Strasbourg, France.
| | - Emilie Faller
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Thomas Boisramé
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | | | - Chérif Akladios
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; I.R.C.A.D - Institut de Recherche contre les Cancers de l'Appareil Digestif. 67000 Strasbourg, France.
| | - Élise Deluche
- Medical oncology Department, Limoges University Hospital, France.
| | | |
Collapse
|
20
|
Disis ML, Cecil DL. Breast cancer vaccines for treatment and prevention. Breast Cancer Res Treat 2021; 191:481-489. [PMID: 34846625 DOI: 10.1007/s10549-021-06459-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Breast cancer is immunogenic and a variety of vaccines have been designed to boost immunity directed against the disease. The components of a breast cancer vaccine, the antigen, the delivery system, and the adjuvant, can have a significant impact on vaccine immunogenicity. There have been numerous immunogenic proteins identified in all subtypes of breast cancer. The majority of these antigens are weakly immunogenic nonmutated tumor-associated proteins. Mutated proteins and neoantigen epitopes are found only in a small minority of patients and are enriched in the triple negative subtype. Several vaccines have advanced to large randomized Phase II or Phase III clinical trials. None of these trials met their primary endpoint of either progression-free or overall survival. Despite these set-backs investigators have learned important lessons regarding the clinical application of breast cancer vaccines from the type of immune response needed for tumor eradication, Type I T-cell immunity, to the patient populations most likely to benefit from vaccination. Many therapeutic breast cancer vaccines are now being tested in combination with other forms of immune therapy or chemotherapy and radiation. Breast cancer vaccines as single agents are now studied in the context of the prevention of relapse or development of disease. Newer approaches are designing vaccines to prevent breast cancer by intercepting high-risk lesions such as ductal carcinoma in situ to limit the progression of these tumors to invasive cancer. There are also several efforts to develop vaccines for the primary prevention of breast cancer by targeting antigens expressed during breast cancer initiation.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA.
| | - Denise L Cecil
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Corti C, Nicolò E, Curigliano G. Novel immune targets for the treatment of triple-negative breast cancer. Expert Opin Ther Targets 2021; 25:815-834. [PMID: 34763593 DOI: 10.1080/14728222.2021.2006187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To overcome mechanisms of primary and secondary resistance to the anti-tumor immune response, novel targets such as ICOS, LAG3, and TIM3 are currently being explored at preclinical and early-phase clinical levels. AREAS COVERED This article examines the landscape of the immune therapeutics investigated in early-phase clinical trials for TNBC. Preclinical rationale is provided for each immune target, predominant expression, and function. Clinical implications and preliminary available trial results are discussed and finally, we reflect on aspects of future expectations and challenges in this field. EXPERT OPINION Several immune strategies have been investigated in TNBC, including co-inhibitory molecules beyond PD1-PD-L1 axis, co-stimulatory checkpoints, cancer vaccines, adoptive cell transfer, combination therapies, as well as different routes of administration. Most of approaches showed signs of anti-cancer activity and a good safety profile in early-phase clinical trials. Since IO provided benefit only to a small subgroup of TNBC patients so far, identifying predictive biomarkers is a priority to refine patient-selection. Data from ongoing clinical trials, with the gradually improving interpretation of the breast tumor immune environment, will hopefully refine the role of new immune targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| |
Collapse
|
22
|
Cecil DL, Liao JB, Dang Y, Coveler AL, Kask A, Yang Y, Childs JS, Higgins DM, Disis ML. Immunization with a Plasmid DNA Vaccine Encoding the N-Terminus of Insulin-like Growth Factor Binding Protein-2 in Advanced Ovarian Cancer Leads to High-level Type I Immune Responses. Clin Cancer Res 2021; 27:6405-6412. [PMID: 34526360 DOI: 10.1158/1078-0432.ccr-21-1579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cancer vaccines targeting nonmutated proteins elicit limited type I T-cell responses and can generate regulatory and type II T cells. Class II epitopes that selectively elicit type I or type II cytokines can be identified in nonmutated cancer-associated proteins. In mice, a T-helper I (Th1) selective insulin-like growth factor binding protein-2 (IGFBP-2) N-terminus vaccine generated high levels of IFNγ secreting T cells, no regulatory T cells, and significant antitumor activity. We conducted a phase I trial of T-helper 1 selective IGFBP-2 vaccination in patients with advanced ovarian cancer. METHODS Twenty-five patients were enrolled. The IGFBP-2 N-terminus plasmid-based vaccine was administered monthly for 3 months. Toxicity was graded by NCI criteria and antigen-specific T cells measured by IFNγ/IL10 ELISPOT. T-cell diversity and phenotype were assessed. RESULTS The vaccine was well tolerated, with 99% of adverse events graded 1 or 2, and generated high levels of IGFBP-2 IFNγ secreting T cells in 50% of patients. Both Tbet+ CD4 (P = 0.04) and CD8 (P = 0.007) T cells were significantly increased in immunized patients. There was no increase in GATA3+ CD4 or CD8, IGFBP-2 IL10 secreting T cells, or regulatory T cells. A significant increase in T-cell clonality occurred in immunized patients (P = 0.03, pre- vs. post-vaccine) and studies showed the majority of patients developed epitope spreading within IGFBP-2 and/or to other antigens. Vaccine nonresponders were more likely to have preexistent IGFBP-2 specific immunity and demonstrated defects in CD4 T cells, upregulation of PD-1, and downregulation of genes associated with T-cell activation, after immunization. CONCLUSIONS IGFBP-2 N-terminus Th1 selective vaccination safely induces type I T cells without evidence of regulatory responses.
Collapse
Affiliation(s)
- Denise L Cecil
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - John B Liao
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Yushe Dang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Andrew L Coveler
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Angela Kask
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Yi Yang
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Jennifer S Childs
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Doreen M Higgins
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington.
| |
Collapse
|
23
|
Sarivalasis A, Morotti M, Mulvey A, Imbimbo M, Coukos G. Cell therapies in ovarian cancer. Ther Adv Med Oncol 2021; 13:17588359211008399. [PMID: 33995591 PMCID: PMC8072818 DOI: 10.1177/17588359211008399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most important cause of gynecological cancer-related mortality. Despite improvements in medical therapies, particularly with the incorporation of drugs targeting homologous recombination deficiency, EOC survival rates remain low. Adoptive cell therapy (ACT) is a personalized form of immunotherapy in which autologous lymphocytes are expanded, manipulated ex vivo, and re-infused into patients to mediate cancer rejection. This highly promising novel approach with curative potential encompasses multiple strategies, including the adoptive transfer of tumor-infiltrating lymphocytes, natural killer cells, or engineered immune components such as chimeric antigen receptor (CAR) constructs and engineered T-cell receptors. Technical advances in genomics and immuno-engineering have made possible neoantigen-based ACT strategies, as well as CAR-T cells with increased cell persistence and intratumoral trafficking, which have the potential to broaden the opportunity for patients with EOC. Furthermore, dendritic cell-based immunotherapies have been tested in patients with EOC with modest but encouraging results, while the combination of DC-based vaccination as a priming modality for other cancer therapies has shown encouraging results. In this manuscript, we provide a clinically oriented historical overview of various forms of cell therapies for the treatment of EOC, with an emphasis on T-cell therapy.
Collapse
Affiliation(s)
- Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Arthur Mulvey
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Martina Imbimbo
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- CHUV, Rue du Bugnon 46, Lausanne BH09-701, Switzerland
| |
Collapse
|
24
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|