1
|
Voena C, Ambrogio C, Iannelli F, Chiarle R. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 2025; 25:359-378. [PMID: 40055571 DOI: 10.1038/s41568-025-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/01/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
De Ioris MA, Villani MF, Fabozzi F, Del Bufalo F, Altini C, Cefalo MG, Cannata V, Del Baldo G, Pizzoferro M, Alessi I, Lanzaro F, Davide C, Tomà P, D'Andrea ML, Di Giannatale A, Serra A, Mastronuzzi A, Garganese MC, Locatelli F. 131I-mIBG therapy in relapsed/refractory neuroblastoma: an old bridge to the future. ESMO Open 2025; 10:104541. [PMID: 40187111 PMCID: PMC12002777 DOI: 10.1016/j.esmoop.2025.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The prognosis of relapsed/refractory (R/R) neuroblastoma (NB) is still dismal. The role of iodine-131 meta-iodobenzylguanidine (131I-mIBG) treatment as a tool to reduce tumour burden before novel immunotherapies is not defined. PATIENTS AND METHODS Patients with R/R NB were included in a prospective observational study based on two infusions of 131I-mIBG plus melphalan (110 mg/m2), supported by autologous haematopoietic stem cell rescue. The activity of the first administration was 444 MBq (12 mCi/kg), while the second dose was modulated to reach a whole-body absorbed dose of 4 Gy. The International Neuroblastoma Response Criteria (INRC) were used for response. RESULTS Twenty-six patients with a median age of 5.9 years (range 2.5-17.2 years) were treated. Twenty-three patients presented a bone/bone marrow involvement, and 21 patients presented an uptake at primary site or at soft-tissue sites. The median International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN) skeletal score was 10 (range 1-70). The main recorded toxicities were haematological, with no toxic deaths and only one grade 4 mucositis. Hypothyroidism was reported in 6 patients of the 14 alive patients. The overall response rate was 48% [95% confidence interval (CI) 28% to 69%] with only one progression; after treatment the median SIOPEN skeletal score was 6 (range 0-70) with a median reduction of 35% (range 4.3%-100%). Overall, 52% (95% CI 32% to 73%) of patients achieved/maintained a SIOPEN skeletal score <7 and a soft-tissue lesion <5 cm was seen in 67% (95% CI 43% to 91%). After this treatment, 65% of patients underwent GD2-targeting chimeric antigen receptor (CAR)-T-cell therapy and 50%, high-dose chemotherapy with busulfan and melphalan. The 3-year overall survival was 55% (95% CI 33% to 73%) and event-free survival was 42% (95% CI 23% to 60%). CONCLUSION The 131I-mIBG therapy plus melphalan is confirmed to be effective to reduce/control tumour burden. Further studies are needed to clarify the role and timing of this treatment and to integrate its role in the strategy of CAR-T cells.
Collapse
Affiliation(s)
- M A De Ioris
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - M F Villani
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Fabozzi
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Del Bufalo
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Altini
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M G Cefalo
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - V Cannata
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Radiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - G Del Baldo
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Pizzoferro
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - I Alessi
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Lanzaro
- Department of Woman, Child and General and Specialized Surgery, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - C Davide
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P Tomà
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M L D'Andrea
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Di Giannatale
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Serra
- Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Mastronuzzi
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M C Garganese
- Nuclear Medicine Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Locatelli
- Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Pearson AD, Mueller S, Filbin MG, Grill J, Hawkins C, Jones C, Donoghue M, Drezner N, Weiner S, Russo M, Dun MD, Allen JE, Alonso M, Benaim E, Buenger V, de Rojas T, Desserich K, Fox E, Friend J, Glade Bender J, Hargrave D, Jensen M, Kholmanskikh O, Kieran MW, Knoderer H, Koschmann C, Lesa G, Ligas F, Lipsman N, Ludwinski D, Marshall L, McDonough J, McNicholl AG, Mirsky D, Monje M, Nysom K, Pappo A, Rosenfield A, Scobie N, Slaughter J, Smith M, Souweidane M, Straathof K, Ward L, Weigel B, Zamoryakhin D, Karres D, Vassal G. Paediatric strategy forum for medicinal product development in diffuse midline gliomas in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2025; 217:115230. [PMID: 39854822 DOI: 10.1016/j.ejca.2025.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments. H3K27-alterations initiate the disease but additional drivers are required for malignant growth. Hence, there is an urgent unmet need to develop new multi-modality therapeutic strategies, including alternative methods of drug delivery. ONC201 (DRD2 antagonist and mitochondrial ClpP agonist) is the most widely evaluated investigational drug. Encouraging early data is emerging for CAR T-cells and oncolytic viruses. GD2, B7-H3 and PI3K signalling are ubiquitous targets across all subtypes and therapeutics directed to these targets would potentially benefit the largest number of children. PI3K, ACVR1, MAPK and PDGFRA pathways should be targeted in rational biological combinations. Drug discovery is a very high priority. New specific and potent epigenetic modifiers (PROTACS e.g. SMARCA4 degraders), with blood-brain penetrance are needed. Cancer neuroscience therapeutics are in early development. Overall survival is the preferred regulatory endpoint. However, the evaluation of this can be influenced by the use of re-irradiation at the time of progression. An efficient clinical trial design fit for regulatory purposes for the evaluation of new therapeutics would aid industry and facilitate more efficient therapy development. Challenges in conducting clinical trials such as the need for comparator data and defining endpoints, could be addressed through an international, first-in-child, randomised, complex innovative design trial. To achieve progress: i) drug discovery; ii) new multi-modality, efficient, collaborative, pre-clinical approaches, possibly including artificial intelligence and, iii) efficient clinical trial designs fit for regulatory purposes are required.
Collapse
Affiliation(s)
| | - Sabine Mueller
- Departments of Neurological Surgery, Pediatrics and, Neurology University of California, San Francisco, California, USA. Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Mariella G Filbin
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chris Jones
- The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Nicole Drezner
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Susan Weiner
- ACCELERATE, Europe; Children's Cancer Cause, Washington, DC, USA; Memorial Sloan Kettering Cancer Centre, New York, USA
| | | | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Mark Hughes Foundation for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | | | - Marta Alonso
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Center for the Applied Medical Research, Pamplona, Spain
| | | | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | | | | | | | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Lynley Marshall
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - David Mirsky
- University of Colorado, School of Medicine, CO, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA, Howard Hughes Medical Institute, Stanford, CA, USA
| | | | | | | | | | | | | | | | - Karin Straathof
- University College London Cancer Institute, Great Ormond Street Biomedical Research Centre, London, UK
| | - Lisa Ward
- DIPG-DMG Research Funding Alliance DDRFA /Tough2gether, Manhattan, KS, USA
| | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
4
|
Wilson B, Allonce J, Mehrotra K, Huang D, Lindner DH. Spontaneous Regression of a Pulmonary Inflammatory Myofibroblastic Tumor. Cureus 2025; 17:e78767. [PMID: 40070616 PMCID: PMC11895726 DOI: 10.7759/cureus.78767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 03/14/2025] Open
Abstract
Inflammatory myofibroblastic tumors are rare benign mesenchymal neoplasms composed of myofibroblastic cells intermixed with an inflammatory infiltrate of cells including plasma cells, lymphocytes, and histiocytes. These tumors are commonly seen in children and are rare in adults. Management of these tumors is challenging due to their unpredictable behavior. Here, we present a rare case of a pulmonary inflammatory myofibroblastic tumor that regressed spontaneously following a minimally invasive computed tomography-guided percutaneous lung biopsy.
Collapse
Affiliation(s)
- Branden Wilson
- Pulmonology Disease and Critical Care, NCH (Naples Comprehensive Health) Healthcare System, Naples, USA
| | - John Allonce
- Internal Medicine, NCH (Naples Comprehensive Health) Healthcare System, Naples, USA
| | - Kshitij Mehrotra
- Pulmonology Disease and Critical Care, NCH (Naples Comprehensive Health) Healthcare System, Naples, USA
| | - Dali Huang
- Pathology, NCH (Naples Comprehensive Health) Healthcare System, Naples, USA
| | - David H Lindner
- Pulmonology Disease and Critical Care, NCH (Naples Comprehensive Health) Healthcare System, Naples, USA
| |
Collapse
|
5
|
Pearson AD, DuBois SG, Macy ME, de Rojas T, Donoghue M, Weiner S, Knoderer H, Bernardi R, Buenger V, Canaud G, Cantley L, Chung J, Fox E, Friend J, Glade-Bender J, Gorbatchevsky I, Gore L, Gupta A, Hawkins DS, Juric D, Lang LA, Leach D, Liaw D, Lesa G, Ligas F, Lindberg G, Lindberg W, Ludwinski D, Marshall L, Mazar A, McDonough J, Nysom K, Ours C, Pappo A, Parsons DW, Rosenfeld A, Scobie N, Smith M, Taylor D, Weigel B, Weinstein A, Karres D, Vassal G. Paediatric strategy forum for medicinal product development of PI3-K, mTOR, AKT and GSK3β inhibitors in children and adolescents with cancer. Eur J Cancer 2024; 207:114145. [PMID: 38936103 DOI: 10.1016/j.ejca.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.
Collapse
Affiliation(s)
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | | | | | | | | | | | - Ronald Bernardi
- Genentech, A Member of the Roche Group, South San Francisco, CA USA
| | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | - John Chung
- Bayer Healthcare Pharmaceuticals, Whippany, NJ, USA
| | | | | | | | | | | | - Abha Gupta
- The Hospital for Sick Children (SickKids), Princess Margaret Hospital Toronto, Canada
| | | | | | - Leigh Anna Lang
- Rally Foundation for Childhood Cancer Research, Atlanta, GA, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | | | | | | | - Lynley Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | | | - Christopher Ours
- National Human Genome Research Institute/National Institutes of Health, MD, USA
| | | | | | | | | | | | | | | | - Amy Weinstein
- Pediatric Brain Tumor Foundation of the US, Atlanta, USA
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), the Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
6
|
Lowe E, Mossé YP. Podcast on Emerging Treatment Options for Pediatric Patients with ALK-Positive Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumors. Oncol Ther 2024; 12:247-255. [PMID: 38676786 PMCID: PMC11187053 DOI: 10.1007/s40487-024-00275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Anaplastic large cell lymphoma (ALCL) and inflammatory myofibroblastic tumor (IMT) are rare cancers observed predominantly in children and young adults. ALCL accounts for 10-15% of all pediatric non-Hodgkin lymphomas and is commonly diagnosed at an advanced stage of disease. In children, 84-91% of cases of ALCL harbor an anaplastic lymphoma kinase (ALK) gene translocation. IMT is a rare mesenchymal neoplasm that also tends to occur in children and adolescents. Approximately 50-70% of IMT cases involve rearrangements in the ALK gene. A combination of chemotherapeutic drugs is typically used for children with ALK-positive ALCL, and the only known curative therapy for ALK-positive IMT is complete surgical resection. Crizotinib, a first-generation ALK inhibitor, was approved in the USA in 2021 for pediatric patients and young adults with relapsed or refractory ALK-positive ALCL; however, its safety and efficacy have not been established in older adults. In 2022, crizotinib was approved for adult and pediatric patients with unresectable, recurrent, or refractory ALK-positive IMT. This podcast provides an overview of ALK-positive ALCL and IMT. We discuss the current treatment landscape, the role of ALK tyrosine kinase inhibitors, and areas of future research.
Collapse
Affiliation(s)
- Eric Lowe
- Children's Hospital of The King's Daughters, Norfolk, VA, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Pucci P, Lee LC, Han M, Matthews JD, Jahangiri L, Schlederer M, Manners E, Sorby-Adams A, Kaggie J, Trigg RM, Steel C, Hare L, James ER, Prokoph N, Ducray SP, Merkel O, Rifatbegovic F, Luo J, Taschner-Mandl S, Kenner L, Burke GAA, Turner SD. Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma. Nat Commun 2024; 15:3422. [PMID: 38653965 PMCID: PMC11039739 DOI: 10.1038/s41467-024-47771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
Collapse
Affiliation(s)
- Perla Pucci
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Liam C Lee
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Miaojun Han
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- OncoSec, San Diego, CA, 92121, USA
| | - Jamie D Matthews
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Leila Jahangiri
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Nottingham Trent University, School of Science & Technology, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michaela Schlederer
- Department of Pathology, Division of Experimental and Translational Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Eleanor Manners
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Chelsea and Westminster Hospital, NHS Foundation Trust, London, SW10 9NH, UK
| | - Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ricky M Trigg
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Functional Genomics, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Christopher Steel
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Lucy Hare
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Emily R James
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Nina Prokoph
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Stephen P Ducray
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
| | - Firkret Rifatbegovic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Suzanne D Turner
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK.
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK.
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Tan-Garcia A, Lee YT, Kuick CH, Soh SY, Chang KTE, Merchant K. Spontaneous Partial Regression of Fetal Lung Interstitial Tumor With A2M::ALK Rearrangement in a Neonate. Pediatr Dev Pathol 2024; 27:187-192. [PMID: 37818649 DOI: 10.1177/10935266231189929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The differential diagnosis for neonatal primary lung masses includes developmental anomalies and congenital lung tumors. Fetal lung interstitial tumor (FLIT) is a rare benign mesenchymal lesion which presents either antenatally or within the first 3 months of age. FLIT is a circumscribed solid-cystic mass which histologically resembles the fetal lung during the canalicular stage at 20-24 weeks of gestation. It is composed of immature mesenchymal cells expanding the interstitium and irregular airspace-like structures. Of all published cases, only 1 identified an α2-macroglobulin (A2M)::anaplastic lymphoma kinase (ALK) fusion and all cases underwent surgical resection in the neonatal or infancy period. We present the second case of FLIT with an A2M::ALK fusion diagnosed postnatally in a neonate which partially regressed spontaneously during conservative management with interim resection at 39 months of age, and provide a review of the literature.
Collapse
Affiliation(s)
- Alfonso Tan-Garcia
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - York Tien Lee
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kenneth Tou-En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Khurshid Merchant
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
10
|
Pearson ADJ, de Rojas T, Karres D, Reaman G, Scobie N, Fox E, Lesa G, Ligas F, Norga K, Nysom K, Pappo A, Weigel B, Weiner SL, Vassal G. Impact of ACCELERATE Paediatric Strategy Forums: a review of the value of multi-stakeholder meetings in oncology drug development. J Natl Cancer Inst 2024; 116:200-207. [PMID: 37975877 PMCID: PMC10852613 DOI: 10.1093/jnci/djad239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
In a landscape of an increasing number of products and histology and age agnostic trials for rare patient cancer, prioritization of products is required. Paediatric Strategy Forums, organized by ACCELERATE and the European Medicines Agency with participation of the US Food and Drug Administration, are multi-stakeholder meetings that share information to best inform pediatric drug development strategies and subsequent clinical trial decisions. Academia, industry, regulators, and patient advocates are equal members, with patient advocates highlighting unmet needs of children and adolescents with cancer. The 11 Paediatric Strategy Forums since 2017 have made specific and general conclusions to accelerate drug development. Conclusions on product prioritization meetings, as well as global master protocols, have been outputs of these meetings. Forums have provided information for regulatory discussions and decisions by industry to facilitate development of high-priority products; for example, 62% of high-priority assets (agreed at a Forum) in contrast to 5% of those assets not considered high priority have been the subject of a Paediatric Investigational Plan or Written Request. Where there are multiple products of the same class, Forums have recommended a focused and sequential approach. Class prioritization resulted in an increase in waivers for non-prioritized B-cell products (44% to 75%) and a decrease in monotherapy trials, proposed in Paediatric Investigation Plans (PIP) submissions of checkpoint inhibitors from 53% to 19%. Strategy Forums could play a role in defining unmet medical needs. Multi-stakeholder forums, such as the Paediatric Strategy Forum, serve as a model to improve collaboration in the oncology drug development paradigm.
Collapse
Affiliation(s)
| | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Gregory Reaman
- US Food and Drug Administration (FDA), Silver Spring, MD, USA
| | | | - Elizabeth Fox
- St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, The Netherlands
| | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium
- Paediatric Committee of the European Medicines Agency, (EMA), Amsterdam, The Netherlands
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | - Gilles Vassal
- ACCELERATE, Brussels, Belgium, Europe
- Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
11
|
Mousa DPV, Mavrovounis G, Argyropoulos D, Stranjalis G, Kalamatianos T. Anaplastic Lymphoma Kinase (ALK) in Posterior Cranial Fossa Tumors: A Scoping Review of Diagnostic, Prognostic, and Therapeutic Perspectives. Cancers (Basel) 2024; 16:650. [PMID: 38339401 PMCID: PMC10854950 DOI: 10.3390/cancers16030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anaplastic Lymphoma Kinase (ALK) has been implicated in several human cancers. This review aims at mapping the available literature on the involvement of ALK in non-glial tumors localized in the posterior cranial fossa and at identifying diagnostic, prognostic, and therapeutic considerations. Following the PRISMA-ScR guidelines, studies were included if they investigated ALK's role in primary CNS, non-glial tumors located in the posterior cranial fossa. A total of 210 manuscripts were selected for full-text review and 16 finally met the inclusion criteria. The review included 55 cases of primary, intracranial neoplasms with ALK genetic alterations and/or protein expression, located in the posterior fossa, comprising of medulloblastoma, anaplastic large-cell lymphoma, histiocytosis, inflammatory myofibroblastic tumors, and intracranial myxoid mesenchymal tumors. ALK pathology was investigated via immunohistochemistry or genetic analysis. Several studies provided evidence for potential diagnostic and prognostic value for ALK assessment as well as therapeutic efficacy in its targeting. The available findings on ALK in posterior fossa tumors are limited. Nevertheless, previous findings suggest that ALK assessment is of diagnostic and prognostic value in medulloblastoma (WNT-activated). Interestingly, a substantial proportion of ALK-positive/altered CNS histiocytoses thus far identified have been localized in the posterior fossa. The therapeutic potential of ALK inhibition in histiocytosis warrants further investigation.
Collapse
Affiliation(s)
| | - Georgios Mavrovounis
- Department of Neurosurgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Dionysios Argyropoulos
- Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Stranjalis
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Theodosis Kalamatianos
- Department of Neurosurgery, Evangelismos Hospital, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| |
Collapse
|
12
|
Watanabe R, Ano S, Kikuchi N, Saegusa M, Shigemasa R, Kondo Y, Hizawa N. Inflammatory myofibroblastic tumor directly invading the right first rib treated with oral steroids: a case report. BMC Pulm Med 2024; 24:67. [PMID: 38308319 PMCID: PMC10835977 DOI: 10.1186/s12890-024-02873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND We present a case of an inflammatory myofibroblastic tumor cured with a short period of steroid administration, a treatment previously unreported for such cases. CASE PRESENTATION A 49-year-old man had a chief complaint of chest pain for more than 3 days. Computed tomography (CT) revealed a tumoral lesion suspected to have infiltrated into the right first rib and intercostal muscles, with changes in lung parenchymal density around the lesion. The maximal standardized uptake value on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography was high (16.73), consistent with tumor presence. CT-guided biopsy revealed an inflammatory myofibroblastic tumor with no distant metastases. Surgery was indicated based on the disease course. However, he had received an oral steroid before the preoperative contrast-enhanced CT scan due to a history of bronchial asthma, and subsequent CT showed that the tumor shrank in size after administration; he has been recurrence-free for more than a year. CONCLUSIONS Surgery is still the first choice for inflammatory myofibroblastic tumors, as the disease can metastasize and relapse; however, this condition can also be cured with a short period of steroid therapy.
Collapse
Affiliation(s)
- Ryo Watanabe
- Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, 2-7-14 Shimotakatsu, 300-8585, Tsuchiura, Ibaraki, Japan
| | - Satoshi Ano
- Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, 2-7-14 Shimotakatsu, 300-8585, Tsuchiura, Ibaraki, Japan.
- Department of Respiratory Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Norihiro Kikuchi
- Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, 2-7-14 Shimotakatsu, 300-8585, Tsuchiura, Ibaraki, Japan
| | - Michiko Saegusa
- Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, 2-7-14 Shimotakatsu, 300-8585, Tsuchiura, Ibaraki, Japan
| | - Rie Shigemasa
- Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, 2-7-14 Shimotakatsu, 300-8585, Tsuchiura, Ibaraki, Japan
| | - Yuzuru Kondo
- Department of Diagnostic Pathology, National Hospital Organization Kasumigaura Medical Center, Tsuchiura, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Cheung SYA, Hay JL, Lin YW, de Greef R, Bullock J. Pediatric oncology drug development and dosage optimization. Front Oncol 2024; 13:1235947. [PMID: 38348118 PMCID: PMC10860405 DOI: 10.3389/fonc.2023.1235947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Oncology drug discovery and development has always been an area facing many challenges. Phase 1 oncology studies are typically small, open-label, sequential studies enrolling a small sample of adult patients (i.e., 3-6 patients/cohort) in dose escalation. Pediatric evaluations typically lag behind the adult development program. The pediatric starting dose is traditionally referenced on the recommended phase 2 dose in adults with the incorporation of body size scaling. The size of the study is also small and dependent upon the prevalence of the disease in the pediatric population. Similar to adult development, the dose is escalated or de-escalated until reaching the maximum tolerated dose (MTD) that also provides desired biological activities or efficacy. The escalation steps and identification of MTD are often rule-based and do not incorporate all the available information, such as pharmacokinetic (PK), pharmacodynamic (PD), tolerability and efficacy data. Therefore, it is doubtful if the MTD approach is optimal to determine the dosage. Hence, it is important to evaluate whether there is an optimal dosage below the MTD, especially considering the emerging complexity of combination therapies and the long-term tolerability and safety of the treatments. Identification of an optimal dosage is also vital not only for adult patients but for pediatric populations as well. Dosage-finding is much more challenging for pediatric populations due to the limited patient population and differences among the pediatric age range in terms of maturation and ontogeny that could impact PK. Many sponsors defer the pediatric strategy as they are often perplexed by the challenges presented by pediatric oncology drug development (model of action relevancy to pediatric population, budget, timeline and regulatory requirements). This leads to a limited number of approved drugs for pediatric oncology patients. This review article provides the current regulatory landscape, incentives and how they impact pediatric drug discovery and development. We also consider different pediatric cancers and potential clinical trial challenges/opportunities when designing pediatric clinical trials. An outline of how quantitative methods such as pharmacometrics/modelling & simulation can support the dosage-finding and justification is also included. Finally, we provide some reflections that we consider helpful to accelerate pediatric drug discovery and development.
Collapse
|
14
|
Schrier L, Zwaan CM, Rizzari C, Scobie N, Reaman G, Pearson A. Policy of pediatric oncology drug development. ESSENTIALS OF TRANSLATIONAL PEDIATRIC DRUG DEVELOPMENT 2024:509-527. [DOI: 10.1016/b978-0-323-88459-4.00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Valencia-Sama I, Kee L, Christopher G, Ohh M, Layeghifard M, Shlien A, Hayes MN, Irwin MS. SHP2 Inhibition with TNO155 Increases Efficacy and Overcomes Resistance of ALK Inhibitors in Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2608-2622. [PMID: 38032104 PMCID: PMC10752212 DOI: 10.1158/2767-9764.crc-23-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Survival rates among patients with high-risk neuroblastoma remain low and novel therapies for recurrent neuroblastomas are required. ALK is commonly mutated in primary and relapsed neuroblastoma tumors and ALK tyrosine kinase inhibitors (TKI) are promising treatments for ALK-driven neuroblastoma; however, innate or adaptive resistance to single-agent ALK-TKIs remain a clinical challenge. Recently, SHP2 inhibitors have been shown to overcome ALK-TKI resistance in lung tumors harboring ALK rearrangements. Here, we have assessed the efficacy of the SHP2 inhibitor TNO155 alone and in combination with the ALK-TKIs crizotinib, ceritinib, or lorlatinib for the treatment of ALK-driven neuroblastoma using in vitro and in vivo models. In comparison to wild-type, ALK-mutant neuroblastoma cell lines were more sensitive to SHP2 inhibition with TNO155. Moreover, treatment with TNO155 and ALK-TKIs synergistically reduced cell growth and promoted inactivation of ALK and MAPK signaling in ALK-mutant neuroblastoma cells. ALK-mutant cells engrafted into larval zebrafish and treated with single agents or dual SHP2/ALK inhibitors showed reduced growth and invasion. In murine ALK-mutant xenografts, tumor growth was likewise reduced or delayed, and survival was prolonged upon combinatorial treatment of TNO155 and lorlatinib. Finally, we show that lorlatinib-resistant ALK-F1174L neuroblastoma cells harbor additional RAS-MAPK pathway alterations and can be resensitized to lorlatinib when combined with TNO155 in vitro and in vivo. Our results report the first evaluation of TNO155 in neuroblastoma and suggest that combinatorial inhibition of ALK and SHP2 could be a novel approach to treating ALK-driven neuroblastoma, potentially including the increasingly common tumors that have developed resistance to ALK-TKIs. SIGNIFICANCE These findings highlight the translatability between zebrafish and murine models, provide evidence of aberrant RAS-MAPK signaling as an adaptive mechanism of resistance to lorlatinib, and demonstrate the clinical potential for SHP2/ALK inhibitor combinations for the treatment of ALK-mutant neuroblastoma, including those with acquired tolerance or potentially resistance to ALK-TKIs.
Collapse
Affiliation(s)
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | | | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Mehdi Layeghifard
- Genetics and Genomics Program, The Hospital for Sick Children, Toronto, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Genetics and Genomics Program, The Hospital for Sick Children, Toronto, Canada
| | - Madeline N. Hayes
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Meredith S. Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
16
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
17
|
Zhang Q, Basappa J, Wang HY, Nunez-Cruz S, Lobello C, Wang S, Liu X, Chekol S, Guo L, Ziober A, Nejati R, Shestov A, Feldman M, Glickson JD, Turner SD, Blair IA, Van Dang C, Wasik MA. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 2023; 37:2436-2447. [PMID: 37773266 PMCID: PMC11152057 DOI: 10.1038/s41375-023-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi Van Dang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
De Ioris MA, Fabozzi F, Del Bufalo F, Del Baldo G, Villani MF, Cefalo MG, Garganese MC, Stracuzzi A, Tangari F, Greco AM, Giovannoni I, Carta R, D'Andrea ML, Mastronuzzi A, Locatelli F. Venetoclax plus cyclophosphamide and topotecan in heavily pre-treated relapsed metastatic neuroblastoma: a single center case series. Sci Rep 2023; 13:19295. [PMID: 37935707 PMCID: PMC10630499 DOI: 10.1038/s41598-023-44993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023] Open
Abstract
The prognosis of relapsed/refractory (R/R) neuroblastoma (NB) is dismal, calling for new therapeutic strategies. Venetoclax (VEN) is a highly selective, potent, orally bioavailable, BCL-2 inhibitor small-molecule that showed a synergistic effect with cyclophosphamide and topotecan (Cy-Topo) in murine NB models. Our aim was to evaluate the feasibility of VEN plus Cy-Topo in children with R/R NB. Four patients, who had previously failed > 3 lines of treatment, were treated with VEN plus Cy-Topo based on a 28-day schedule in an outpatient setting. BCL-2 expression in immunochemistry on tumor samples at relapse and the BCL2 gene status was evaluated in all patients. The main toxicity was hematological, with grade 4 neutropenia and thrombocytopenia occurring in all courses and leading to transient VEN discontinuation. Grade 3 oral mucositis was observed in 1/8 courses. No other grade 2-4 toxicities were observed. BCL-2 was expressed in all tumors, while no molecular abnormalities in the BCL-2 genes were detected. A stable disease was observed in all patients, without any progression during the study period. VEN plus Cy-Topo is well tolerated, with encouraging results that may be improved by testing the schedule in less advanced patients.
Collapse
Affiliation(s)
- Maria Antonietta De Ioris
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Francesco Fabozzi
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Giuseppina Cefalo
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Federica Tangari
- Unit of Clinical Pharmacy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arturo Maria Greco
- Unit of Clinical Pharmacy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Roberto Carta
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
19
|
Nakano K. Inflammatory myofibroblastic tumors: recent progress and future of targeted therapy. Jpn J Clin Oncol 2023; 53:885-892. [PMID: 37394916 DOI: 10.1093/jjco/hyad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
An inflammatory myofibroblastic tumor is a rare component of bone and soft-tissue sarcomas that has distinct pathological features as a lymphoplasmacytic inflammatory infiltrate. As is the case for other non-small round cell sarcomas, surgical resection remains the standard treatment strategy for inflammatory myofibroblastic tumors, but recurrence is possible. Concerning systemic therapy, the available data for conventional chemotherapy (such as those of doxorubicin-based regimens) are limited, and case reports of anti-inflammatory inflammatory myofibroblastic tumor treatments describe some degree of symptom relief and efficacy against tumor progression. However, as more information about cancer genomics accumulates, the potential for molecularly targeted therapies for inflammatory myofibroblastic tumors has become more promising. Approximately half of inflammatory myofibroblastic tumors harbor anaplastic lymphoma kinase (ALK) fusion genes, and the other half could have potentially targetable fusion genes or mutations such as ROS1, NTRK and RET; case reports demonstrating the clinical efficacy of treatments targeted to inflammatory myofibroblastic tumor have been published, as have several prospective clinical trials. Few drugs are approved for the treatment of inflammatory myofibroblastic tumor, and most of them were approved for tumor-agnostic indications. Drugs that could be used for pediatric indications and dosing in inflammatory myofibroblastic tumor have also not been established. To provide effective targeted therapy for rare diseases such as inflammatory myofibroblastic tumor, it is necessary to obtain clinical evidence by designing and performing clinical trials and to find a path toward regulatory approval.
Collapse
Affiliation(s)
- Kenji Nakano
- Department of Medical Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
20
|
Perillo T, Forte J, Messina R, Muggeo P, Grassi M, Pentassuglia E, Raguseo C, Ingravallo G, d'Amati A, Resta M, Speranzon L, Signorelli F, Santoro N. Primary central nervous system anaplastic large cell lymphoma in children: Case presentation and systematic review of literature. Pediatr Blood Cancer 2023; 70:e30529. [PMID: 37402611 DOI: 10.1002/pbc.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Teresa Perillo
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Jessica Forte
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Raffaella Messina
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari "Aldo Moro,", Bari, Italy
| | - Paola Muggeo
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Massimo Grassi
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Enza Pentassuglia
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Celeste Raguseo
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology - Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro,", Bari, Italy
| | - Antonio d'Amati
- Section of Pathology - Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro,", Bari, Italy
| | - Mariachiara Resta
- Neuroradiology, University Hospital Policlinico of Bari, Bari, Italy
| | - Luca Speranzon
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari "Aldo Moro,", Bari, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari "Aldo Moro,", Bari, Italy
| | - Nicola Santoro
- Pediatric Hematology and Oncology, University Hospital Policlinico of Bari, Bari, Italy
| |
Collapse
|
21
|
Shreenivas A, Janku F, Gouda MA, Chen HZ, George B, Kato S, Kurzrock R. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis Oncol 2023; 7:101. [PMID: 37773318 PMCID: PMC10542332 DOI: 10.1038/s41698-023-00449-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations (activating mutations, amplifications, and fusions/rearrangements) occur in ~3.3% of cancers. ALK fusions/rearrangements are discerned in >50% of inflammatory myofibroblastic tumors (IMTs) and anaplastic large cell lymphomas (ALCLs), but only in ~0.2% of other cancers outside of non-small cell lung cancer (NSCLC), a rate that may be below the viability threshold of even large-scale treatment trials. Five ALK inhibitors -alectinib, brigatinib, ceritinb, crizotinib, and lorlatinib-are FDA approved for ALK-aberrant NSCLCs, and crizotinib is also approved for ALK-aberrant IMTs and ALCL, including in children. Herein, we review the pharmacologic tractability of ALK alterations, focusing beyond NSCLC. Importantly, the hallmark of approved indications is the presence of ALK fusions/rearrangements, and response rates of ~50-85%. Moreover, there are numerous reports of ALK inhibitor activity in multiple solid and hematologic tumors (e.g., histiocytosis, leiomyosarcoma, lymphoma, myeloma, and colorectal, neuroendocrine, ovarian, pancreatic, renal, and thyroid cancer) bearing ALK fusions/rearrangements. Many reports used crizotinib or alectinib, but each of the approved ALK inhibitors have shown activity. ALK inhibitor activity is also seen in neuroblastoma, which bear ALK mutations (rather than fusions/rearrangements), but response rates are lower (~10-20%). Current data suggests that ALK inhibitors have tissue-agnostic activity in neoplasms bearing ALK fusions/rearrangements.
Collapse
Affiliation(s)
- Aditya Shreenivas
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
| | | | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Zi Chen
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Ben George
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
- University of Nebraska, Omaha, NE, USA.
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France.
| |
Collapse
|
22
|
Ceci A, Conte R, Didio A, Landi A, Ruggieri L, Giannuzzi V, Bonifazi F. Target therapy for high-risk neuroblastoma treatment: integration of regulatory and scientific tools is needed. Front Med (Lausanne) 2023; 10:1113460. [PMID: 37521350 PMCID: PMC10377668 DOI: 10.3389/fmed.2023.1113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Several new active substances (ASs) targeting neuroblastoma (NBL) are under study. We aim to describe the developmental and regulatory status of a sample of ASs targeting NBL to underline the existing regulatory gaps in product development and to discuss possible improvements. Methods The developmental and regulatory statuses of the identified ASs targeting NBL were investigated by searching for preclinical studies, clinical trials (CTs), marketing authorizations, pediatric investigation plans (PIPs), waivers, orphan designations, and other regulatory procedures. Results A total of 188 ASs were identified. Of these, 55 were considered 'not under development' without preclinical or clinical studies. Preclinical studies were found for 115 ASs, of which 54 were associated with a medicinal product. A total of 283 CTs (as monotherapy or in combination) were identified for 70 ASs. Of these, 52% were at phases 1, 1/2, and 2 aimed at PK/PD/dosing activity. The remaining ones also included efficacy. Phase 3 studies were limited. Studies were completed for 14 ASs and suspended for 11. The highest rate of ASs involved in CTs was observed in the RAS-MAPK-MEK and VEGF groups. A total of 37 ASs were granted with a PIP, of which 14 involved NBL, 41 ASs with a waiver, and 18 ASs with both PIPs and waivers, with the PIP covering pediatric indications different from the adult ones. In almost all the PIPs, preclinical studies were required, together with early-phase CTs often including efficacy evaluation. Two PIPs were terminated because of negative study results, and eight PIPs are in progress. Variations in the SmPC were made for larotrectinib sulfate/Vitrakvi® and entrectinib/Rozlytrek® with the inclusion of a new indication. For both, the related PIPs are still ongoing. The orphan designation has been largely adopted, while PRIME designation has been less implemented. Discussion Several ASs entered early phase CTs but less than one out of four were included in a regulatory process, and only two were granted a pediatric indication extension. Our results confirm that it is necessary to identify a more efficient, less costly, and time-consuming "pediatric developmental model" integrating predictive preclinical study and innovative clinical study designs. Furthermore, stricter integration between scientific and regulatory efforts should be promoted.
Collapse
Affiliation(s)
- Adriana Ceci
- Research Department, Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Pearson ADJ, Federico S, Gatz SA, Ortiz M, Lesa G, Scobie N, Gounaris I, Weiner SL, Weigel B, Unger TJ, Stewart E, Smith M, Slotkin EK, Reaman G, Pappo A, Nysom K, Norga K, McDonough J, Marshall LV, Ludwinski D, Ligas F, Karres D, Kool M, Horner TJ, Henssen A, Heenen D, Hawkins DS, Gore L, Bender JG, Galluzzo S, Fox E, de Rojas T, Davies BR, Chakrabarti J, Carmichael J, Bradford D, Blanc P, Bernardi R, Benchetrit S, Akindele K, Vassal G. Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2023; 190:112950. [PMID: 37441939 DOI: 10.1016/j.ejca.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Collapse
Affiliation(s)
- Andrew D J Pearson
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium.
| | - Sara Federico
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Michael Ortiz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | | | - Ioannis Gounaris
- Merck Serono Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Feltham, UK
| | | | | | - T J Unger
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | - Gregory Reaman
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency (EMA), Amsterdam, the Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany
| | | | | | | | - Douglas S Hawkins
- Seattle Children's Hospital, Seattle, WA, USA; Children's Oncology Group, Seattle, WA, USA
| | - Lia Gore
- Children's Hospital Colorado, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa de Rojas
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium
| | | | | | - Juliet Carmichael
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Diana Bradford
- US Food and Drug Administration, Silver Springs, MD, USA
| | | | - Ronald Bernardi
- Genentech, a Member of the Roche Group, South San Francisco, CA, USA
| | - Sylvie Benchetrit
- National Agency for the Safety of Medicine and Health Products, Paris, France
| | | | - Gilles Vassal
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
24
|
Tanaka M, Miura H, Ishimaru S, Furukawa G, Kawamura Y, Kozawa K, Yamada S, Ito F, Kudo K, Yoshikawa T. Future Perspective for ALK-Positive Anaplastic Large Cell Lymphoma with Initial Central Nervous System (CNS) Involvement: Could Next-Generation ALK Inhibitors Replace Brain Radiotherapy for the Prevention of Further CNS Relapse? Pediatr Rep 2023; 15:333-340. [PMID: 37368362 DOI: 10.3390/pediatric15020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Central nervous system (CNS) involvement in anaplastic large cell lymphoma (ALCL) at diagnosis is rare and leads to poor prognosis with the use of the standard ALCL99 protocol alone. CNS-directed intensive chemotherapy, such as an increased dose of intravenous MTX, increased dose of dexamethasone, intensified intrathecal therapy, and high-dose cytarabine, followed by cranial irradiation, has been shown to improve survival in this population. In this paper, the authors describe a 14-year-old male with an intracranial ALCL mass at onset who received CNS-directed chemotherapy followed by 23.4 Gy of whole-brain irradiation. After the first systemic relapse, the CNS-penetrating ALK inhibitor, alectinib, was applied; it has successfully maintained remission for 18 months without any adverse events. CNS-penetrating ALK inhibitor therapy might prevent CNS relapse in pediatric ALK-positive ALCL. Next-generation ALK inhibitors could be introduced as a promising treatment option, even for primary ALCL with CNS involvement, which could lead to the omission of cranial irradiation and avoid radiation-induced sequalae. Further evidence of CNS-penetrating ALK inhibitor combined therapy for primary ALK-positive ALCL is warranted to reduce radiation-induced sequalae in future treatments.
Collapse
Affiliation(s)
- Makito Tanaka
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Soichiro Ishimaru
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Gen Furukawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Fumitaka Ito
- Department of Radiation Oncology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kazuko Kudo
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
25
|
Sturtzel C, Grissenberger S, Bozatzi P, Scheuringer E, Wenninger-Weinzierl A, Zajec Z, Dernovšek J, Pascoal S, Gehl V, Kutsch A, Granig A, Rifatbegovic F, Carre M, Lang A, Valtingojer I, Moll J, Lötsch D, Erhart F, Widhalm G, Surdez D, Delattre O, André N, Stampfl J, Tomašič T, Taschner-Mandl S, Distel M. Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts. NPJ Precis Oncol 2023; 7:44. [PMID: 37202469 DOI: 10.1038/s41698-023-00386-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Zebrafish xenotransplantation models are increasingly applied for phenotypic drug screening to identify small compounds for precision oncology. Larval zebrafish xenografts offer the opportunity to perform drug screens at high-throughput in a complex in vivo environment. However, the full potential of the larval zebrafish xenograft model has not yet been realized and several steps of the drug screening workflow still await automation to increase throughput. Here, we present a robust workflow for drug screening in zebrafish xenografts using high-content imaging. We established embedding methods for high-content imaging of xenografts in 96-well format over consecutive days. In addition, we provide strategies for automated imaging and analysis of zebrafish xenografts including automated tumor cell detection and tumor size analysis over time. We also compared commonly used injection sites and cell labeling dyes and show specific site requirements for tumor cells from different entities. We demonstrate that our setup allows us to investigate proliferation and response to small compounds in several zebrafish xenografts ranging from pediatric sarcomas and neuroblastoma to glioblastoma and leukemia. This fast and cost-efficient assay enables the quantification of anti-tumor efficacy of small compounds in large cohorts of a vertebrate model system in vivo. Our assay may aid in prioritizing compounds or compound combinations for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- C Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - S Grissenberger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - P Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - E Scheuringer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - A Wenninger-Weinzierl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Z Zajec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - J Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - S Pascoal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - V Gehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - A Kutsch
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - A Granig
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - F Rifatbegovic
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - M Carre
- Service d'Hématologie & Oncologie Pédiatrique, Timone Hospital, AP-HM, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, CNRS, Inserm, Institut Paoli Calmettes, Marseille, France
| | - A Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - I Valtingojer
- Department of Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
| | - J Moll
- Department of Molecular Oncology, Sanofi Research Center, Vitry-sur-Seine, France
- Renon Biotech and Pharma Consulting, Unterinn am Ritten (Bz), Italy
| | - D Lötsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - F Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - G Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - D Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - O Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - N André
- Service d'Hématologie & Oncologie Pédiatrique, Timone Hospital, AP-HM, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, CNRS, Inserm, Institut Paoli Calmettes, Marseille, France
| | - J Stampfl
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, TU Wien, Vienna, Austria
| | - T Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - S Taschner-Mandl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - M Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria.
| |
Collapse
|
26
|
Nader JH, Bourgeois F, Bagatell R, Moreno L, Pearson ADJ, DuBois SG. Systematic review of clinical drug development activities for neuroblastoma from 2011 to 2020. Pediatr Blood Cancer 2023; 70:e30106. [PMID: 36458672 DOI: 10.1002/pbc.30106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Understanding the landscape of clinical trials for patients with neuroblastoma may inform efforts to improve drug development. PROCEDURE We evaluated therapeutic trials for patients with neuroblastoma from 2011 to 2020 in our search using clinical trial information from ClinicalTrials.gov, Clinicaltrialregister.eu, PubMed, and American Society of Clinical Oncology (ASCO) annual meeting collection. Trends in trials and treatments over time were evaluated qualitatively. RESULTS A total of 192 trials met inclusion criteria. A median of 20.5 trials were started per year, which was stable over time. There were 87 (45%) phase 1, 100 (51%) phase 2, and only five (2.6%) phase 3 trials. The median time to completion was 4.9 years for phase 1 and 2 trials (no phase 3 trials reported as completed during the study period). In all, 34% of trials were international, while 20% of trials were intercontinental. Eighty-nine percent of nonmyeloablative trials included at least one novel agent. 48% of these trials studied combination therapies, and 86% of these combinations included conventional chemotherapy. Among 157 trials that included a targeted agent, 78 targets were identified, with GD2 being the primary target under investigation in 16.7% of these trials. Only eight trials were included in regulatory decisions, which led to European Medicines Agency (EMA) or Food and Drug Administration (FDA) approval for neuroblastoma. CONCLUSIONS The large number of trials initiated per year, the range of targets, and the rate of intercontinental collaboration are encouraging. The paucity of late-stage trials, the prolonged trial duration, and relative lack of combination studies are major causes of concern. This work will inform future drug development for neuroblastoma.
Collapse
Affiliation(s)
| | - Florence Bourgeois
- Harvard Medical School, Boston, Massachusetts, USA
- Pediatric Therapeutics and Regulatory Science Initiative, Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rochelle Bagatell
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lucas Moreno
- Paediatric Oncology and Haematology Division, Vall d'Hebron Hospital, Barcelona, Spain
| | - Andrew D J Pearson
- Division of Clinical Studies, Institute of Cancer Research, Royal Marsden Hospital, Sutton, UK
| | - Steven G DuBois
- Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Caddeo G, Tecchio C, Chinello M, Balter R, Zaccaron A, Vitale V, Pezzella V, Bonetti E, Pillon M, Carraro E, Mussolin L, Cesaro S. Refractory Anaplastic Large Cell Lymphoma Rescued by the Combination of the Second-Generation ALK Inhibitor Brigatinib, High-dose Chemotherapy and Allogeneic Stem Cell Transplantation: A Case Report and Review of the Literature. Clin Hematol Int 2023:10.1007/s44228-023-00038-6. [PMID: 37072555 DOI: 10.1007/s44228-023-00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 04/20/2023] Open
Abstract
The treatment of pediatric patients with refractory or relapsed anaplastic large cell lymphoma (ALCL) is still a major challenge. In addition to conventional chemotherapy and stem cell transplantation, new therapeutic options such as anti-CD30 drugs and anaplastic lymphoma kinase (ALK) inhibitors have been recently introduced in this setting. Among ALK inhibitors, only the first-generation molecule crizotinib is approved for pediatric use, while second-generation molecules, such as brigatinib, are still under investigation. Here we report the case of a 13-year-old boy diagnosed with stage IV ALCL, refractory to first-line conventional chemotherapy and second-line therapy with the anti CD30 antibody-drug conjugate brentuximab-vedotin, who finally achieved remission after a combination of conventional high-dose chemotherapy and the second-generation ALK inhibitor brigatinib. The latter was chosen for its ability to penetrate through the blood-brain barrier, due to the persistent involvement of the patient's cerebral nervous system. The remission was then consolidated with an allogeneic hematopoietic stem cell transplantation (HSCT) from an unrelated donor using myeloablative conditioning with total body irradiation. At 24 months after HSCT, the patient is in complete remission, alive and well. An updated review regarding the use of ALK inhibitors in ALCL patients is provided.
Collapse
Affiliation(s)
- Giulia Caddeo
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, Verona University Verona, Verona, Italy
| | - Matteo Chinello
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Rita Balter
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Ada Zaccaron
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Virginia Vitale
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Vincenza Pezzella
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elisa Bonetti
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Marta Pillon
- Department of Women's and Children's Health, Clinic of Pediatric Hematology-Oncology, University of Padova, Padua, Italy
| | - Elisa Carraro
- Department of Women's and Children's Health, Clinic of Pediatric Hematology-Oncology, University of Padova, Padua, Italy
| | - Lara Mussolin
- Department of Women's and Children's Health, Clinic of Pediatric Hematology-Oncology, University of Padova, Padua, Italy
- Pediatric Research Institute, Fondazione Città Della Speranza, Padua, Italy
| | - Simone Cesaro
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
28
|
Lim MS, Foley M, Mussolin L, Siebert R, Turner S. Biopathology of childhood, adolescent and young adult non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101447. [PMID: 36907637 DOI: 10.1016/j.beha.2023.101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Mature non-Hodgkin lymphomas (NHL) in the childhood, adolescent and young adult (CAYA) population are rare and exhibit unique clinical, immunophenotypic and genetic characteristics. Application of large-scale unbiased genomic and proteomic technologies such as gene expression profiling and next generation sequencing (NGS) have led to enhanced understanding of the genetic basis for many lymphomas in adults. However, studies to investigate the pathogenetic events in CAYA population are relatively sparse. Enhanced understanding of the pathobiologic mechanisms involved in non-Hodgkin lymphomas in this unique population will allow for improved recognition of these rare lymphomas. Elucidation of the pathobiologic differences between CAYA and adult lymphomas will also lead to the design of more rational and much needed, less toxic therapies for this population. In this review, we summarize recent insights gained from the proceedings of the recent 7th International CAYA NHL Symposium held in New York City, New York October 20-23, 2022.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center,417 East 68th New York City, NY, USA.
| | - Michelle Foley
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Howard 14, New York City, NY, USA New York City, NY, USA.
| | - Lara Mussolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, University Hospital of Padova, via Giustiniani 3, 35128 Padova, Italy.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| | - Suzanne Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrookes Hospital, Hills Road, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
29
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
30
|
Karres D, Lesa G, Ligas F, Benchetrit S, Galluzzo S, Van Malderen K, Sterba J, van Dartel M, Renard M, Sisovsky P, Wang S, Norga K. European regulatory strategy for supporting childhood cancer therapy developments. Eur J Cancer 2022; 177:25-29. [PMID: 36323049 DOI: 10.1016/j.ejca.2022.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Regulatory decisions on paediatric investigation plans (PIPs) aim at making effective and safe medicines timely available for children with high unmet medical need. At the same time, scientific knowledge progresses continuously leading frequently to the identification of new molecular targets in the therapeutic area of oncology. This, together with further efforts to optimise next generation medicines, results in novel innovative products in development pipelines. In the context of global regulatory development requirements for these growing pipelines of innovative products (e.g. US RACE for children Act), it is an increasing challenge to complete development efforts in paediatric oncology, a therapeutic area of rare and life-threatening diseases with high unmet needs. OBJECTIVE Regulators recognise feasibility challenges of the regulatory obligations in this context. Here, we explain the EU regulatory decision making strategy applied to paediatric oncology, which aims fostering evidence generation to support developments based on needs and robust science. Because there is a plethora of products under development within given classes of or within cancer types, priorities need to be identified and updated as evidence evolves. This also includes identifying the need for third or fourth generation products to secure focused and accelerated drug development. CONCLUSION An agreed PIP, as a plan, is a living document which can be modified in light of new evidence. For this to be successful, input from the various relevant stakeholders, i.e. patients/parents, clinicians and investigators is required. To efficiently obtain this input, the EMA is co-organising with ACCELERATE oncology stakeholder engagement platform meetings.
Collapse
Affiliation(s)
- Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands.
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Sylvie Benchetrit
- Agence Nationale de Sécurité Du Médicament et des Produits de Santé (ANSM), Paris, France; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Sara Galluzzo
- Italian Medicines Agency (AIFA), Rome, Italy; Scientific Advice Working Party and Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno, And Faculty of Medicine, Masaryk University, International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Maaike van Dartel
- College Ter Beoordeling van Geneesmiddelen, Utrecht, Netherlands; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Marleen Renard
- University Hospitals Leuven, Leuven, Belgium; Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Peter Sisovsky
- State Institute for Drug Control, Bratislava, Slovakia; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Siri Wang
- Norwegian Medicines Agency, Oslo, Norway; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands
| | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium
| |
Collapse
|
31
|
Pearson ADJ, de Rojas T, Karres D, Reaman G, Scobie N, Fox E, Lesa G, Ligas F, Norga K, Nysom K, Pappo A, Weigel B, Weiner S, Vassal G. ACCELERATE Paediatric Strategy Forums: an advance for oncological drug development? Lancet Oncol 2022; 23:1354-1357. [PMID: 36328007 DOI: 10.1016/s1470-2045(22)00619-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, Amsterdam, Netherlands
| | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, Amsterdam, Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Gilles Vassal
- ACCELERATE, 1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
32
|
Kyriakidis I, Mantadakis E, Stiakaki E, Groll AH, Tragiannidis A. Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers (Basel) 2022; 14:cancers14205022. [PMID: 36291806 PMCID: PMC9599435 DOI: 10.3390/cancers14205022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Targeted therapies in children with hematological malignancies moderate the effects of cytotoxic therapy, thus improving survival rates. They have emerged over the last decade and are used in combination with or after the failure of conventional chemotherapy and as bridging therapy prior to hematopoietic stem cell transplantation (HSCT). Nowadays, there is a growing interest in their efficacy and safety in pediatric patients with refractory or relapsed disease. The compromised immune system, even prior to therapy, requires prompt monitoring and treatment. In children with hematological malignancies, targeted therapies are associated with a comparable incidence of infectious complications to adults. The exact impact of these agents that have different mechanisms of action and are used after conventional chemotherapy or HSCT is difficult to ascertain. Clinicians should be cautious of severe infections after the use of targeted therapies, especially when used in combination with chemotherapy. Abstract The aim of this review is to highlight mechanisms of immunosuppression for each agent, along with pooled analyses of infectious complications from the available medical literature. Rituximab confers no increase in grade ≥3 infectious risks, except in the case of patients with advanced-stage non-Hodgkin lymphoma. Gemtuzumab ozogamicin links with high rates of grade ≥3 infections which, however, are comparable with historical cohorts. Pembrolizumab exhibits a favorable safety profile in terms of severe infections. Despite high rates of hypogammaglobulinemia (HGG) with blinatumomab, low-grade ≥3 infection rates were observed, especially in the post-reinduction therapy of relapsed B-acute lymphoblastic leukemia. Imatinib and nilotinib are generally devoid of severe infectious complications, but dasatinib may slightly increase the risk of opportunistic infections. Data on crizotinib and pan-Trk inhibitors entrectinib and larotrectinib are limited. CAR T-cell therapy with tisagenlecleucel is associated with grade ≥3 infections in children and is linked with HGG and the emergence of immune-related adverse events. Off-label therapies inotuzumab ozogamicin, brentuximab vedotin, and venetoclax demonstrate low rates of treatment-related grade ≥3 infections, while the addition of bortezomib to standard chemotherapy in T-cell malignancies seems to decrease the infection risk during induction. Prophylaxis, immune reconstitution, and vaccinations for each targeted agent are discussed, along with comparisons to adult studies.
Collapse
Affiliation(s)
- Ioannis Kyriakidis
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elpis Mantadakis
- Department of Paediatrics, Paediatric Hematology/Oncology Unit, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Andreas H. Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, D-48149 Münster, Germany
| | - Athanasios Tragiannidis
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
- Correspondence: ; Fax: +30-2310-994803
| |
Collapse
|
33
|
Chang X, Wang J, Bian J, Liu Z, Guo M, Li Z, Wu Y, Zhai X, Zuo D. 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42) inhibits cell proliferation and induces apoptosis via inhibiting ALK and its downstream pathways in Karpas299 cells. Toxicol Appl Pharmacol 2022; 450:116156. [PMID: 35803438 DOI: 10.1016/j.taap.2022.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Anaplastic lymphoma kinase (ALK) belongs to the family of receptor tyrosine kinases. Recently, the incidence of anaplastic large cell lymphoma (ALCL) with ALK rearrangement has raised considerably. The application of ALK-targeted inhibitors such as ceritinib provides an effective therapy for the treatment of ALK-positive cancers. However, with the prolongation of treatment time, the emergence of resistance is inevitable. We found that 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42), a novel ceritinib derivative, could inhibit the proliferation of ALK-positive ALCL cells, induce the apoptosis of Karpas299 cells through the mitochondrial pathway in a caspase-dependent manner. In addition, ZX-42 could suppress ALK and downstream pathways including PI3K/Akt, Erk and JAK3/STAT3 and reduce the nuclear translocation of NFκB by inhibiting TRAF2/IKK/IκB pathway. Taken together, our findings indicate that ZX-42 shows more effective activity than ceritinib against ALK-positive ALCL. We hope this study can provide a direction for the structural modification of ceritinib and lay the foundation for the further development of clinical research in ALK-positive ALCL.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Junfang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
34
|
Paediatric Strategy Forum for medicinal product development of multi-targeted kinase inhibitors in bone sarcomas: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 173:71-90. [PMID: 35863108 DOI: 10.1016/j.ejca.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The eighth Paediatric Strategy Forum focused on multi-targeted kinase inhibitors (mTKIs) in osteosarcoma and Ewing sarcoma. The development of curative, innovative products in these tumours is a high priority and addresses unmet needs in children, adolescents and adults. Despite clinical and investigational use of mTKIs, efficacy in patients with bone tumours has not been definitively demonstrated. Randomised studies, currently being planned or in progress, in front-line and relapse settings will inform the further development of this class of product. It is crucial that these are rapidly initiated to generate robust data to support international collaborative efforts. The experience to date has generally indicated that the safety profile of mTKIs as monotherapy, and in combination with chemotherapy or other targeted therapy, is consistent with that of adults and that toxicity is manageable. Increasing understanding of relevant predictive biomarkers and tumour biology is absolutely critical to further develop this class of products. Biospecimen samples for correlative studies and biomarker development should be shared, and a joint academic-industry consortium created. This would result in an integrated collection of serial tumour tissues and a systematic retrospective and prospective analyses of these samples to ensure robust assessment of biologic effect of mTKIs. To support access for children to benefit from these novel therapies, clinical trials should be designed with sufficient scientific rationale to support regulatory and payer requirements. To achieve this, early dialogue between academia, industry, regulators, and patient advocates is essential. Evaluating feasibility of combination strategies and then undertaking a randomised trial in the same protocol accelerates drug development. Where possible, clinical trials and development should include children, adolescents, and adults less than 40 years. To respond to emerging science, in approximately 12 months, a multi-stakeholder group will meet and review available data to determine future directions and priorities.
Collapse
|
35
|
DuBois SG, Macy ME, Henderson TO. High-Risk and Relapsed Neuroblastoma: Toward More Cures and Better Outcomes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35522915 DOI: 10.1200/edbk_349783] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately half of the patients diagnosed with neuroblastoma are classified as having high-risk disease. This group continues to have inadequate cure rates despite multiagent chemotherapy, surgery, high-dose chemotherapy with autologous stem cell rescue, and immunotherapy directed against GD2. We review current efforts to try to improve outcomes in patients with newly diagnosed disease by integrating novel targeted therapies earlier in the course of the disease. We further examine a growing list of options available for patients with relapsed or refractory high-risk disease, with an eye toward graduating successful strategies from a relapsed/refractory setting to the frontline setting. Last, we review efforts to study and potentially mitigate the array of late effects faced by survivors of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Tara O Henderson
- Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
36
|
ACCELERATE – Five years accelerating cancer drug development for children and adolescents. Eur J Cancer 2022; 166:145-164. [DOI: 10.1016/j.ejca.2022.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
|
37
|
Abstract
Purpose of Review The evolving information of the initiation, tumor cell heterogeneity, and plasticity of childhood neuroblastoma has opened up new perspectives for developing therapies based on detailed knowledge of the disease. Recent Findings The cellular origin of neuroblastoma has begun to unravel and there have been several reports on tumor cell heterogeneity based on transcriptional core regulatory circuitries that have given us important information on the biology of neuroblastoma as a developmental disease. This together with new insight of the tumor microenvironment which acts as a support for neuroblastoma growth has given us the prospect for designing better treatment approaches for patients with high-risk neuroblastoma. Here, we discuss these new discoveries and highlight some emerging therapeutic options. Summary Neuroblastoma is a disease with multiple facets. Detailed biological and molecular knowledge on neuroblastoma initiation, heterogeneity, and the communications between cells in the tumor microenvironment holds promise for better therapies.
Collapse
|
38
|
Brivio E, Baruchel A, Beishuizen A, Bourquin JP, Brown PA, Cooper T, Gore L, Kolb EA, Locatelli F, Maude SL, Mussai FJ, Vormoor-Bürger B, Vormoor J, von Stackelberg A, Zwaan CM. Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer 2022; 164:1-17. [PMID: 35121370 DOI: 10.1016/j.ejca.2021.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Despite improved outcomes achieved in the last decades for children with newly diagnosed leukaemia and lymphoma, treatment of patients with refractory/relapsed disease remains a challenge. The cure rate is still unsatisfactory and often achieved at the cost of significant morbidity. Exploring treatment with novel agents should offer less toxic therapeutic options, without compromising efficacy. Bispecific and antibody-drug conjugates targeting CD19 and CD22 (blinatumomab and inotuzumab ozogamicin) play an important role in the treatment of relapsed and refractory B-cell precursor acute lymphoblastic leukaemia (BCP-ALL); antibodies targeting CD123 and CD38 are also under investigation for acute myeloid leukaemia (AML) and T-ALL, respectively. Targeted therapy with small molecules is of primary importance for specific genetic subtypes, such as BCR-ABL-positive ALL, FLT3-ITD AML and anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma. KMT2A-directed targeted therapy with menin inhibitors holds promise to be of relevance in KMT2A-rearranged leukaemias, known to have dismal prognosis. Target inhibition in cellular pathways such as BCL-2, RAS, MEK, Bruton's tyrosine kinase, JAK-STAT or CDK4/CDK6 inhibition may be suitable for different diseases with common mutated pathways. Nevertheless, development and approval of new agents for paediatric cancers lags behind adult therapeutic options. New regulations were implemented to accelerate drug development for children. Considering the number of oncology medicinal products available for adults and the rarity of paediatric cancers, prioritisation based on scientific evidence and medical need, as well as international collaboration, is critical. Herein, we review the current status of drug development for children with leukaemia and lymphoma, excluding cellular therapy despite its well-known significance.
Collapse
Affiliation(s)
- Erica Brivio
- Princess Ma´xima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - André Baruchel
- Hématologie-Immunologie Pédiatrique, Hoˆ pital Universitaire Robert Debré (APHP) and Université de Paris, Paris, France
| | - Auke Beishuizen
- Princess Ma´xima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Patrick A Brown
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd Cooper
- Aflac Cancer and Blood Disorders Center/Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Lia Gore
- University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I DuPont Hospital for Children, Wilmington, DE, USA
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Italy
| | - Shannon L Maude
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis J Mussai
- Institute for Immunology and Immunotherapy, Cancer Research UK Birmingham Centre, The University of Birmingham, Birmingham, United Kingdom
| | | | - Josef Vormoor
- Princess Ma´xima Center for Pediatric Oncology, Utrecht, the Netherlands; University Medical Center, Utrecht, the Netherlands; Newcastle University, Newcastle, UK
| | | | - C Michel Zwaan
- Princess Ma´xima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France.
| |
Collapse
|
39
|
Wang Y, He J, Xu M, Xue Q, Zhu C, Liu J, Zhang Y, Shi W. Holistic View of ALK TKI Resistance in ALK-Positive Anaplastic Large Cell Lymphoma. Front Oncol 2022; 12:815654. [PMID: 35211406 PMCID: PMC8862178 DOI: 10.3389/fonc.2022.815654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages of normal development and in various cancers including ALK-positive anaplastic large cell lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the emergence of drug resistance is inevitable and limits the applicability of these drugs. Although various mechanisms of resistance have been elucidated, the problem persists and there have been relatively few relevant clinical studies. This review describes research progress on ALK+ ALCL including the application and development of new therapies, especially in relation to drug resistance. We also propose potential treatment strategies based on current knowledge to inform the design of future clinical trials.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Jing He
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cindy Zhu
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
40
|
Rakheja D, Park JY, Fernandes NJ, Watt TC, Laetsch TW, Collins RRJ. Pediatric Non-Myofibroblastic Primitive Spindle Cell Tumors with ALK Gene Rearrangements and Response to Crizotinib. Int J Surg Pathol 2022; 30:706-715. [PMID: 35164578 DOI: 10.1177/10668969221080072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe two poorly differentiated, non-myofibroblastic (SMA-, S100+, CD34±), spindle cell neoplasms with immunohistochemical positivity for ALK and with ALK gene rearrangements leading to PLEKHH2::ALK and CLTC::ALK fusions, respectively. ALK protein overexpression and/or gene fusions should be evaluated in poorly differentiated spindle cell neoplasms, even when there is an absence of a myofibroblastic phenotype. A positive ALK evaluation has therapeutic implications as both tumors responded to single-agent treatment with the tyrosine kinase inhibitor crizotinib.
Collapse
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| | - Jason Y Park
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| | - Neil J Fernandes
- Children's Health, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanya C Watt
- Children's Health, Dallas, TX, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W Laetsch
- Division of Oncology, 6567Children's Hospital of Philadelphia and Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca R J Collins
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| |
Collapse
|