1
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Strell C, Smith DR, Valachis A, Woldeyesus H, Wadsten C, Micke P, Fredriksson I, Schiza A. Use of beta-blockers in patients with ductal carcinoma in situ and risk of invasive breast cancer recurrence: a Swedish retrospective cohort study. Breast Cancer Res Treat 2024; 207:293-299. [PMID: 38763971 PMCID: PMC11297052 DOI: 10.1007/s10549-024-07358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Retrospective observational studies suggest a potential role of beta-blockers as a protective strategy against progression and metastasis in invasive breast cancer. In this context, we investigated the impact of beta-blocker exposure on risk for progression to invasive breast cancer after diagnosis of ductal cancer in situ (DCIS). METHODS The retrospective study population included 2535 women diagnosed with pure DCIS between 2006 and2012 in three healthcare regions in SwedenExposure to beta-blocker was quantified using a time-varying percentage of days with medication available. The absolute risk was quantified using cumulative incidence functions and cox models were applied to quantify the association between beta-blocker exposure and time from DCIS diagnosis to invasive breast cancer, accounting for delayed effects, competing risks and pre-specified confounders. RESULTS The median follow-up was 8.7 years. One third of the patients in our cohort were exposed to beta-blockers post DCIS diagnosis. During the study period, 48 patients experienced an invasive recurrence, giving a cumulative incidence of invasive breast cancer progression of 1.8% at five years. The cumulative exposure to beta-blocker was associated with a reduced risk in a dose-dependent manner, though the effect was not statistically significant. CONCLUSION Our observational study is suggestive of a protective effect of beta-blockers against invasive breast cancer after primary DCIS diagnosis. These results provide rationales for experimental and clinical follow-up studies in carefully selected DCIS groups.
Collapse
Affiliation(s)
- Carina Strell
- Department of Immunology, Genetics, and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Daniel Robert Smith
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Antonis Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University Hospital, Örebro University, Örebro, Sweden
| | - Hellén Woldeyesus
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Charlotta Wadsten
- Department of Surgical and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
- Department of Surgery, Sundsvall Hospital, Sundsvall, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irma Fredriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Aglaia Schiza
- Department of Immunology, Genetics, and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden.
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
3
|
Van Bockstal MR, Wesseling J, Lips EH, Smidt M, Galant C, van Deurzen CHM. Systematic assessment of HER2 status in ductal carcinoma in situ of the breast: a perspective on the potential clinical relevance. Breast Cancer Res 2024; 26:125. [PMID: 39192322 DOI: 10.1186/s13058-024-01875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
In many countries, hormone receptor status assessment of ductal carcinoma in situ (DCIS) is routinely performed, as hormone receptor-positive DCIS patients are eligible for adjuvant anti-hormonal treatment, aiming to reduce the ipsilateral and contralateral breast cancer risk. Although HER2 gene amplification and its associated HER2 protein overexpression constitute a major prognostic and predictive marker in invasive breast carcinoma, its use in the diagnosis and treatment of DCIS is less straightforward. HER2 immunohistochemistry is not routinely performed yet, as the role of HER2-positivity in DCIS biology is unclear. Nonetheless, recent data challenge this practice. Here, we discuss the value of routine HER2 assessment for DCIS. HER2-positivity correlates strongly with DCIS grade: around four in five HER2-positive DCIS show high grade atypia. As morphological DCIS grading is prone to interobserver variability, HER2 immunohistochemistry could render grading more robust. Several studies showed an association between HER2-positive DCIS and ipsilateral recurrence risk, albeit currently unclear whether this is for overall, in situ or invasive recurrence. HER2-positive DCIS tends to be larger, with a higher risk of involved surgical margins. HER2-positive DCIS patients benefit more from adjuvant radiotherapy: it substantially decreases the local recurrence risk after lumpectomy, without impact on overall survival. HER2-positivity in pure biopsy-diagnosed DCIS is associated with increased upstaging to invasive carcinoma after surgery. HER2 immunohistochemistry on preoperative biopsies might therefore provide useful information to surgeons, favoring wider excisions. The time seems right to consider DCIS subtype-dependent treatment, comprising appropriate local treatment for HER2-positive DCIS patients and de-escalation for hormone receptor-positive, HER2-negative DCIS patients.
Collapse
MESH Headings
- Humans
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Breast Neoplasms/mortality
- Breast Neoplasms/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Immunohistochemistry
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Grading
- Clinical Relevance
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
- Pôle de Morphologie (MORF), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ester H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marjolein Smidt
- Department of Surgery, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Christine Galant
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pôle de Morphologie (MORF), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Li H, Aggarwal A, Toro P, Fu P, Badve SS, Cuzick J, Madabhushi A, Thorat MA. A prognostic and predictive computational pathology immune signature for ductal carcinoma in situ: retrospective results from a cohort within the UK/ANZ DCIS trial. Lancet Digit Health 2024; 6:e562-e569. [PMID: 38987116 DOI: 10.1016/s2589-7500(24)00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/21/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The density of tumour-infiltrating lymphocytes (TILs) could be prognostic in ductal carcinoma in situ (DCIS). However, manual TIL quantification is time-consuming and suffers from interobserver and intraobserver variability. In this study, we developed a TIL-based computational pathology biomarker and evaluated its association with the risk of recurrence and benefit of adjuvant treatment in a clinical trial cohort. METHODS In this retrospective cohort study, a computational pathology pipeline was developed to generate a TIL-based biomarker (CPath TIL categories). Subsequently, the signature underwent a masked independent validation on H&E-stained whole-section images of 755 patients with DCIS from the UK/ANZ DCIS randomised controlled trial. Specifically, continuous biomarker CPath TIL score was calculated as the average TIL density in the DCIS microenvironment and dichotomised into binary biomarker CPath TIL categories (CPath TIL-high vs CPath TIL-low) using the median value as a cutoff. The primary outcome was ipsilateral breast event (IBE; either recurrence of DCIS [DCIS-IBE] or invasive progression [I-IBE]). The Cox proportional hazards model was used to estimate the hazard ratio (HR). FINDINGS CPath TIL-score was evaluable in 718 (95%) of 755 patients (151 IBEs). Patients with CPath TIL-high DCIS had a greater risk of IBE than those with CPath TIL-low DCIS (HR 2·10 [95% CI 1·39-3·18]; p=0·0004). The risk of I-IBE was greater in patients with CPath TIL-high DCIS than those with CPath TIL-low DCIS (3·09 [1·56-6·14]; p=0·0013), and the risk of DCIS-IBE was non-significantly higher in those with CPath TIL-high DCIS (1·61 [0·95-2·72]; p=0·077). A significant interaction (pinteraction=0·025) between CPath TIL categories and radiotherapy was observed with a greater magnitude of radiotherapy benefit in preventing IBE in CPath TIL-high DCIS (0·32 [0·19-0·54]) than CPath TIL-low DCIS (0·40 [0·20-0·81]). INTERPRETATION High TIL density is associated with higher recurrence risk-particularly of invasive recurrence-and greater radiotherapy benefit in patients with DCIS. Our TIL-based computational pathology signature has a prognostic and predictive role in DCIS. FUNDING National Cancer Institute under award number U01CA269181, Cancer Research UK (C569/A12061; C569/A16891), and the Breast Cancer Research Foundation, New York (NY, USA).
Collapse
Affiliation(s)
- Haojia Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Arpit Aggarwal
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Paula Toro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Cuzick
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA; Joseph Maxwell Cleland Atlanta VA Medical Center, Atlanta, GA, USA.
| | - Mangesh A Thorat
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; Breast Surgery, Homerton University Hospital, London, UK; Breast Surgery, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
5
|
Delaloge S, Khan SA, Wesseling J, Whelan T. Ductal carcinoma in situ of the breast: finding the balance between overtreatment and undertreatment. Lancet 2024; 403:2734-2746. [PMID: 38735296 DOI: 10.1016/s0140-6736(24)00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Ductal carcinoma in situ (DCIS) accounts for 15-25% of all breast cancer diagnoses. Its prognosis is excellent overall, the main risk being the occurrence of local breast events, as most cases of DCIS do not progress to invasive cancer. Systematic screening has greatly increased the incidence of this non-obligate precursor of invasion, lending urgency to the need to identify DCIS that is prone to invasive progression and distinguish it from non-invasion-prone DCIS, as the latter can be overdiagnosed and therefore overtreated. Treatment strategies, including surgery, radiotherapy, and optional endocrine therapy, decrease the risk of local events, but have no effect on survival outcomes. Active surveillance is being evaluated as a possible new option for low-risk DCIS. Considerable efforts to decipher the biology of DCIS have led to a better understanding of the factors that determine its variable natural history. Given this variability, shared decision making regarding optimal, personalised treatment strategies is the most appropriate course of action. Well designed, risk-based de-escalation studies remain a major need in this field.
Collapse
Affiliation(s)
- Suzette Delaloge
- Department of Cancer Medicine, Interception Programme, Gustave Roussy, Villejuif, France.
| | - Seema Ahsan Khan
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Jelle Wesseling
- Divisions of Molecular Pathology & Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy Whelan
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Leonardi MC, Zerella MA, Lazzeroni M, Fusco N, Veronesi P, Galimberti VE, Corso G, Dicuonzo S, Rojas DP, Morra A, Gerardi MA, Lorubbio C, Zaffaroni M, Vincini MG, Orecchia R, Jereczek-Fossa BA, Magnoni F. Tools to Guide Radiation Oncologists in the Management of DCIS. Healthcare (Basel) 2024; 12:795. [PMID: 38610216 PMCID: PMC11011767 DOI: 10.3390/healthcare12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Similar to invasive breast cancer, ductal carcinoma in situ is also going through a phase of changes not only from a technical but also a conceptual standpoint. From prescribing radiotherapy to everyone to personalized approaches, including radiotherapy omission, there is still a lack of a comprehensive framework to guide radiation oncologists in decision making. Many pieces of the puzzle are finding their place as high-quality data mature and are disseminated, but very often, the interpretation of risk factors and the perception of risk remain very highly subjective. Sharing the therapeutic choice with patients requires effective communication for an understanding of risks and benefits, facilitating an informed decision that does not increase anxiety and concerns about prognosis. The purpose of this narrative review is to summarize the current state of knowledge to highlight the tools available to radiation oncologists for managing DCIS, with an outlook on future developments.
Collapse
Affiliation(s)
- Maria Cristina Leonardi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Maria Alessia Zerella
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (N.F.); (P.V.); (G.C.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Paolo Veronesi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (N.F.); (P.V.); (G.C.)
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.E.G.); (F.M.)
| | - Viviana Enrica Galimberti
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.E.G.); (F.M.)
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (N.F.); (P.V.); (G.C.)
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.E.G.); (F.M.)
| | - Samantha Dicuonzo
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Damaris Patricia Rojas
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Anna Morra
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Marianna Alessandra Gerardi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Chiara Lorubbio
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (N.F.); (P.V.); (G.C.)
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
| | - Roberto Orecchia
- Scientific Directorate, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (M.C.L.); (S.D.); (D.P.R.); (A.M.); (M.A.G.); (C.L.); (M.Z.); (M.G.V.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (N.F.); (P.V.); (G.C.)
| | - Francesca Magnoni
- Division of Breast Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (V.E.G.); (F.M.)
| |
Collapse
|
7
|
Elfving H, Thurfjell V, Mattsson JSM, Backman M, Strell C, Micke P. Tumor Heterogeneity Confounds Lymphocyte Metrics in Diagnostic Lung Cancer Biopsies. Arch Pathol Lab Med 2024; 148:e18-e24. [PMID: 37382890 DOI: 10.5858/arpa.2022-0327-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/30/2023]
Abstract
CONTEXT.— The immune microenvironment is involved in fundamental aspects of tumorigenesis, and immune scores are now being developed for clinical diagnostics. OBJECTIVE.— To evaluate how well small diagnostic biopsies and tissue microarrays (TMAs) reflect immune cell infiltration compared to the whole tumor slide, in tissue from patients with non-small cell lung cancer. DESIGN.— A TMA was constructed comprising tissue from surgical resection specimens of 58 patients with non-small cell lung cancer, with available preoperative biopsy material. Whole sections, biopsies, and TMA were stained for the pan-T lymphocyte marker CD3 to determine densities of tumor-infiltrating lymphocytes. Immune cell infiltration was assessed semiquantitatively as well as objectively with a microscopic grid count. For 19 of the cases, RNA sequencing data were available. RESULTS.— The semiquantitative comparison of immune cell infiltration between the whole section and the biopsy displayed fair agreement (intraclass correlation coefficient [ICC], 0.29; P = .01; CI, 0.03-0.51). In contrast, the TMA showed substantial agreement compared with the whole slide (ICC, 0.64; P < .001; CI, 0.39-0.79). The grid-based method did not enhance the agreement between the different tissue materials. The comparison of CD3 RNA sequencing data with CD3 cell annotations confirmed the poor representativity of biopsies as well as the stronger correlation for the TMA cores. CONCLUSIONS.— Although overall lymphocyte infiltration is relatively well represented on TMAs, the representativity in diagnostic lung cancer biopsies is poor. This finding challenges the concept of using biopsies to establish immune scores as prognostic or predictive biomarkers for diagnostic applications.
Collapse
Affiliation(s)
- Hedvig Elfving
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Viktoria Thurfjell
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Max Backman
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Civil YA, Oei AL, Duvivier KM, Bijker N, Meijnen P, Donkers L, Verheijen S, van Kesteren Z, Palacios MA, Schijf LJ, Barbé E, Konings IRHM, -van der Houven van Oordt CWM, Westhoff PG, Meijer HJM, Diepenhorst GMP, Thijssen V, Mouliere F, Slotman BJ, van der Velde S, van den Bongard HJGD. Prediction of pathologic complete response after single-dose MR-guided partial breast irradiation in low-risk breast cancer patients: the ABLATIVE-2 trial-a study protocol. BMC Cancer 2023; 23:419. [PMID: 37161377 PMCID: PMC10169374 DOI: 10.1186/s12885-023-10910-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Partial breast irradiation (PBI) is standard of care in low-risk breast cancer patients after breast-conserving surgery (BCS). Pre-operative PBI can result in tumor downstaging and more precise target definition possibly resulting in less treatment-related toxicity. This study aims to assess the pathologic complete response (pCR) rate one year after MR-guided single-dose pre-operative PBI in low-risk breast cancer patients. METHODS The ABLATIVE-2 trial is a multicenter prospective single-arm trial using single-dose ablative PBI in low-risk breast cancer patients. Patients ≥ 50 years with non-lobular invasive breast cancer ≤ 2 cm, grade 1 or 2, estrogen receptor-positive, HER2-negative, and tumor-negative sentinel node procedure are eligible. A total of 100 patients will be enrolled. PBI treatment planning will be performed using a radiotherapy planning CT and -MRI in treatment position. The treatment delivery will take place on a conventional or MR-guided linear accelerator. The prescribed radiotherapy dose is a single dose of 20 Gy to the tumor, and 15 Gy to the 2 cm of breast tissue surrounding the tumor. Follow-up MRIs, scheduled at baseline, 2 weeks, 3, 6, 9, and 12 months after PBI, are combined with liquid biopsies to identify biomarkers for pCR prediction. BCS will be performed 12 months after radiotherapy or after 6 months, if MRI does not show a radiologic complete response. The primary endpoint is the pCR rate after PBI. Secondary endpoints are radiologic response, toxicity, quality of life, cosmetic outcome, patient distress, oncological outcomes, and the evaluation of biomarkers in liquid biopsies and tumor tissue. Patients will be followed up to 10 years after radiation therapy. DISCUSSION This trial will investigate the pathological tumor response after pre-operative single-dose PBI after 12 months in patients with low-risk breast cancer. In comparison with previous trial outcomes, a longer interval between PBI and BCS of 12 months is expected to increase the pCR rate of 42% after 6-8 months. In addition, response monitoring using MRI and biomarkers will help to predict pCR. Accurate pCR prediction will allow omission of surgery in future patients. TRIAL REGISTRATION The trial was registered prospectively on April 28th 2022 at clinicaltrials.gov (NCT05350722).
Collapse
Affiliation(s)
- Yasmin A. Civil
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam UMC Location Universiteit van Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Katya M. Duvivier
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Radiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Nina Bijker
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Philip Meijnen
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Lorraine Donkers
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Sonja Verheijen
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Zdenko van Kesteren
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Miguel A. Palacios
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Laura J. Schijf
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Radiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Ellis Barbé
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Inge R. H. M. Konings
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - C. Willemien Menke -van der Houven van Oordt
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Paulien G. Westhoff
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Hanneke J. M. Meijer
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Gwen M. P. Diepenhorst
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Victor Thijssen
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Florent Mouliere
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Berend J. Slotman
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Susanne van der Velde
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - H. J. G. Desirée van den Bongard
- Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 386] [Impact Index Per Article: 193.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
10
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
11
|
Yuan L, Xu J, Shi Y, Jin Z, Bao Z, Yu P, Wang Y, Xia Y, Qin J, Zhang B, Yao Q. CD3D Is an Independent Prognostic Factor and Correlates With Immune Infiltration in Gastric Cancer. Front Oncol 2022; 12:913670. [PMID: 35719985 PMCID: PMC9198637 DOI: 10.3389/fonc.2022.913670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
The protein encoded by CD3D is part of the T-cell receptor/CD3 complex (TCR/CD3 complex) and is involved in T-cell development and signal transduction. Previous studies have shown that CD3D is associated with prognosis and treatment response in breast, colorectal, and liver cancer. However, the expression and clinical significance of CD3D in gastric cancer are not clear. In this study, we collected 488 gastric cancer tissues and 430 paired adjacent tissues to perform tissue microarrays (TMAs). Then, immunohistochemical staining of CD3D, CD3, CD4, CD8 and PD-L1 was conducted to investigate the expression of CD3D in gastric cancer and the correlation between the expression of CD3D and tumor infiltrating lymphocytes (TILs) and PD-L1. The results showed that CD3D was highly expressed in gastric cancer tissues compared with paracancerous tissues (P<0.000). Univariate and multivariate analyses showed that CD3D was an independent good prognostic factor for gastric cancer (P=0.004, HR=0.677, 95%CI: 0.510-0.898 for univariate analyses; P=0.046, HR=0.687, 95%CI: 0.474-0.994 for multivariate analyses). In addition, CD3D was negatively correlated with the tumor location, Borrmann type and distant metastasis (P=0.012 for tumor location; P=0.007 for Borrmann type; P=0.027 for distant metastasis). In addition, the expression of CD3D was highly positively correlated with the expression of CD3, CD4, CD8, and PD-L1, and the combination of CD3D with CD3, CD4, CD8 and PD-L1 predicted the best prognosis (P=0.043). In summary, CD3D may play an important regulatory role in the tumor immune microenvironment of gastric cancer and may serve as a potential indicator of prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.,Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingli Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunfu Shi
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Jin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhehan Bao
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengcheng Yu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuhang Xia
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangjiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.,Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Bo Zhang
- Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, China.,Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|