1
|
Younus I, Kochkina S, Choi CC, Sun W, Ford RC. ATP-Binding Cassette Transporters: Snap-on Complexes? Subcell Biochem 2022; 99:35-82. [PMID: 36151373 DOI: 10.1007/978-3-031-00793-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins in prokaryotic organisms. Much is now understood about the structure of these transporters and many reviews have been written on that subject. In contrast, less has been written on the assembly of ABC transporter complexes and this will be a major focus of this book chapter. The complexes are formed from two cytoplasmic subunits that are highly conserved (in terms of their primary and three-dimensional structures) across the whole family. These ATP-binding subunits give rise to the name of the family. They must assemble with two transmembrane subunits that will typically form the permease component of the transporter. The transmembrane subunits have been found to be surprisingly diverse in structure when the whole family is examined, with seven distinct folds identified so far. Hence nucleotide-binding subunits appear to have been bolted on to a variety of transmembrane platforms during evolution, leading to a greater variety in function. Furthermore, many importers within the family utilise a further external substrate-binding component to trap scarce substrates and deliver them to the correct permease components. In this chapter, we will discuss whether assembly of the various ABC transporter subunits occurs with high fidelity within the crowded cellular environment and whether promiscuity in assembly of transmembrane and cytoplasmic components can occur. We also discuss the new AlphaFold protein structure prediction tool which predicts a new type of transmembrane domain fold within the ABC transporters that is associated with cation exporters of bacteria and plants.
Collapse
Affiliation(s)
- Iqra Younus
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Sofia Kochkina
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Cheri C Choi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Wenjuan Sun
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
3
|
Mao XW, Sandberg LB, Gridley DS, Herrmann EC, Zhang G, Raghavan R, Zubarev RA, Zhang B, Stodieck LS, Ferguson VL, Bateman TA, Pecaut MJ. Proteomic Analysis of Mouse Brain Subjected to Spaceflight. Int J Mol Sci 2018; 20:ijms20010007. [PMID: 30577490 PMCID: PMC6337482 DOI: 10.3390/ijms20010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
There is evidence that spaceflight poses acute and late risks to the central nervous system. To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC) on a 13-day mission. Within 3–5 h after landing, brain tissue was collected to evaluate protein expression profiles using quantitative proteomic analysis. Our results showed that there were 26 proteins that were significantly altered after spaceflight in the gray and/or white matter. While there was no overlap between the white and gray matter in terms of individual proteins, there was overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant changes in protein expression related to neuronal structure and metabolic function. This might lead to a significant impact on brain structural and functional integrity that could affect the outcome of space missions.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Lawrence B Sandberg
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Daila S Gridley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - E Clifford Herrmann
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Guangyu Zhang
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Ravi Raghavan
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Bo Zhang
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Louis S Stodieck
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Virginia L Ferguson
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Ted A Bateman
- Department of Bioengineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
4
|
Fan J, Wang Y, Liu L, Zhang H, Zhang F, Shi L, Yu M, Gao F, Xu Z. cTAGE5 deletion in pancreatic β cells impairs proinsulin trafficking and insulin biogenesis in mice. J Cell Biol 2017; 216:4153-4164. [PMID: 29133483 PMCID: PMC5716288 DOI: 10.1083/jcb.201705027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
In this study, Fan et al. show that cTAGE5 interacts with the v-SNARE Sec22b to regulate proinsulin processing and COPII-dependent trafficking from the ER to the Golgi, thereby influencing glucose tolerance. Proinsulin is synthesized in the endoplasmic reticulum (ER) in pancreatic β cells and transported to the Golgi apparatus for proper processing and secretion into plasma. Defects in insulin biogenesis may cause diabetes. However, the underlying mechanisms for proinsulin transport are still not fully understood. We show that β cell–specific deletion of cTAGE5, also known as Mea6, leads to increased ER stress, reduced insulin biogenesis in the pancreas, and severe glucose intolerance in mice. We reveal that cTAGE5/MEA6 interacts with vesicle membrane soluble N-ethyl-maleimide sensitive factor attachment protein receptor Sec22b. Sec22b and its interaction with cTAGE5/MEA6 are essential for proinsulin processing. cTAGE5/MEA6 may coordinate with Sec22b to control the release of COPII vesicles from the ER, and thereby the ER-to-Golgi trafficking of proinsulin. Importantly, transgenic expression of human cTAGE5/MEA6 in β cells can rescue not only the defect in islet structure, but also dysfunctional insulin biogenesis and glucose intolerance on cTAGE5/Mea6 conditional knockout background. Together our data provide more insight into the underlying mechanism of the proinsulin trafficking pathway.
Collapse
Affiliation(s)
- Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Yu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM, Dickey CA. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 2016; 35:1537-49. [PMID: 27261198 PMCID: PMC4946142 DOI: 10.15252/embj.201593489] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dali Zheng
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jonathan J Sabbagh
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Mackenzie D Martin
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - April Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Andrew R Stothert
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Bryce A Nordhues
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - April Lussier
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jeremy Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Lindsey Shelton
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Mahnoor Kahn
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Laura J Blair
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| |
Collapse
|
6
|
Kao JK, Lee CH, Lee MS, Hsu CS, Tsao LY, Tsai YG, Shieh JJ, Yang RC. Heat-shock pretreatment reduces expression and release of TSLP from keratinocytes under Th2 environment. Pediatr Allergy Immunol 2016; 27:62-9. [PMID: 26419317 DOI: 10.1111/pai.12482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Atopic dermatitis is a chronic, relapsing inflammatory disease of the skin. Current therapy is not curative, and recalcitrant disease is a big stress and challenge for parents and physicians. This study explored the potential role of heat-shock protein 70 (HSP-70) and its anti-inflammatory effects on keratinocyte under TH2 environment. METHODS Human keratinocyte cell line (HaCa T) was stimulated with IL-4, IL-13, and TNF-α to synthesize and secrete thymic stromal lymphopoietin (TSLP), an important cytokine of immunopathogenesis in atopic dermatitis. Heat shock was performed by immersing the cell-contained flash into a water bath of 45°C for 20 min. Cell viability, TSLP expression, and secretion of HaCa T cells were measured and compared. Possible regulatory mechanisms influencing the expression of TSLP, such as the STAT6 and NF-κB signal pathways, were investigated. RESULTS Heat-shock treatment induced intracellular HSP-70 expression in HaCa T cells without affecting cell viability. The induced expression and secretion of TSLP in HaCa T cells were suppressed by heat shock. The NF-κB signal pathway was inhibited by heat shock, leading to decreased TSLP expression and secretion. CONCLUSION Heat stress-induced HSPs can significantly reduce the production and secretion of TSLP from HaCaT cells under Th2 environment. Thus, the evidence highlights the potential role of HSP-70 for atopic dermatitis in the future.
Collapse
Affiliation(s)
- Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Cheng-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Long-Yen Tsao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua County, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung City, Taiwan.,Department of Education and Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan.,Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM, Zuiderweg ERP, Gestwicki JE, Dickey CA. Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. J Biol Chem 2015; 290:13115-27. [PMID: 25864199 DOI: 10.1074/jbc.m115.637595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.
Collapse
Affiliation(s)
- Sarah N Fontaine
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Jennifer N Rauch
- Deparment of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Bryce A Nordhues
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Victoria A Assimon
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Andrew R Stothert
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613
| | - Umesh K Jinwal
- Department of Pharmaceutical Science, College of Pharmacy, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613
| | - Jonathan J Sabbagh
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Lyra Chang
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Stanley M Stevens
- Deparment of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620
| | - Erik R P Zuiderweg
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Chad A Dickey
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612,
| |
Collapse
|
8
|
Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, Yu X, Liu D, Xu B, Hu R, Sun Q, Cheng J, Cheng Z, Gui S, Hong F. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:180-188. [PMID: 24968254 DOI: 10.1016/j.jhazmat.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10mg/kg body weight TiO2 NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO2 NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO2 NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Shen Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou 215123, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Zhe Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
10
|
Petrosyan A, Cheng PW. Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyltransferases. Cell Stress Chaperones 2014; 19:241-54. [PMID: 23990450 PMCID: PMC3933620 DOI: 10.1007/s12192-013-0450-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023] Open
Abstract
The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)-C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases-core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA-C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.
Collapse
Affiliation(s)
- Armen Petrosyan
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Pi-Wan Cheng
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
11
|
Rahim A, Nafi-valencia E, Siddiqi S, Basha R, Runyon CC, Siddiqi SA. Proteomic analysis of the very low density lipoprotein (VLDL) transport vesicles. J Proteomics 2012; 75:2225-35. [PMID: 22449872 DOI: 10.1016/j.jprot.2012.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/19/2022]
Abstract
The VLDL transport vesicle (VTV) mediates the transport of nascent VLDL particles from the ER to the Golgi and plays a key role in VLDL-secretion from the liver. The functionality of VTV is controlled by specific proteins; however, full characterization and proteomic profiling of VTV remain to be carried out. Here, we report the first proteomic profile of VTVs. VTVs were purified to their homogeneity and characterized biochemically and morphologically. Thin section transmission electron microscopy suggests that the size of VTV ranges between 100 nm to 120 nm and each vesicle contains only one VLDL particle. Immunoblotting data indicate VTV concentrate apoB100, apoB48 and apoAIV but exclude apoAI. Proteomic analysis based on 2D-gel coupled with MALDI-TOF identified a number of vesicle-related proteins, however, many important VTV proteins could only be identified using LC-MS/MS methodology. Our data strongly indicate that VTVs greatly differ in their proteome with their counterparts of intestinal origin, the PCTVs. For example, VTV contains Sec22b, SVIP, ApoC-I, reticulon 3, cideB, LPCAT3 etc. which are not present in PCTV. The VTV proteome reported here will provide a basic tool to study the mechanisms underlying VLDL biogenesis, maturation, intracellular trafficking and secretion from the liver.
Collapse
Affiliation(s)
- Abdul Rahim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | | | | | | | | |
Collapse
|
12
|
Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 2010; 21:1850-63. [PMID: 20392839 PMCID: PMC2877643 DOI: 10.1091/mbc.e09-09-0801] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 12/26/2022] Open
Abstract
Toxicity of human alpha-synuclein when expressed in simple organisms can be suppressed by overexpression of endoplasmic reticulum (ER)-to-Golgi transport machinery, suggesting that inhibition of constitutive secretion represents a fundamental cause of the toxicity. Whether similar inhibition in mammals represents a cause of familial Parkinson's disease has not been established. We tested elements of this hypothesis by expressing human alpha-synuclein in mammalian kidney and neuroendocrine cells and assessing ER-to-Golgi transport. Overexpression of wild type or the familial disease-associated A53T mutant alpha-synuclein delayed transport by up to 50%; however, A53T inhibited more potently. The secretory delay occurred at low expression levels and was not accompanied by insoluble alpha-synuclein aggregates or mistargeting of transport machinery, suggesting a direct action of soluble alpha-synuclein on trafficking proteins. Co-overexpression of ER/Golgi arginine soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) specifically rescued transport, indicating that alpha-synuclein antagonizes SNARE function. Ykt6 reversed alpha-synuclein inhibition much more effectively than sec22b, suggesting a possible neuroprotective role for the enigmatic high expression of ykt6 in neurons. In in vitro reconstitutions, purified alpha-synuclein A53T protein specifically inhibited COPII vesicle docking and fusion at a pre-Golgi step. Finally, soluble alpha-synuclein A53T directly bound ER/Golgi SNAREs and inhibited SNARE complex assembly, providing a potential mechanism for toxic effects in the early secretory pathway.
Collapse
Affiliation(s)
- Nandhakumar Thayanidhi
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| | - Jared R. Helm
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| | - Deborah C. Nycz
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| | - Marvin Bentley
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| | - Yingjian Liang
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| | - Jesse C. Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824
| |
Collapse
|
13
|
Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis. Clin Chim Acta 2008; 400:56-62. [PMID: 19014922 DOI: 10.1016/j.cca.2008.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 09/11/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Expansion of the CAG repeat of the TATA-box binding protein (TBP) gene has been identified as the causative mutations in spinocerebellar ataxia 17 (SCA17). TBP is ubiquitously expressed in both central nervous system and peripheral tissues. The underlying molecular changes of SCA17 are rarely explored. METHODS To study the molecular mechanisms underlying SCA17, we generated stably induced isogenic 293 cells expressing normal TBP-Q(36) and expanded TBP-Q(61) and analyzed the expressed proteins using two-dimensional difference in gel electrophoresis (2D-DIGE), followed by mass spectrometry and immunoblotting. RESULTS Upon induction with doxycycline, the expanded TBP-Q(61) formed aggregates with significant increase in the cell population at subG1 phase and cleaved caspase-3. Proteomics study identified a total of 16 proteins with expression changes greater than 1.5 fold. Among the 16 proteins, PARK7, GLRX3, HNRNPA1, GINS1, ENO1, HNRPK and NPM1 are increased, and SERPINA5, HSPA5, VCL, KHSRP, HSPA8, HNRPH1, IMMT, VCP and HNRNPL are decreased in cells expressing TBP-Q(61) compared with those expressing TBP-Q(36). The altered expression of HSPA5, HSPA8 and PARK7 were further validated by 2D and Western immunoblot analyses. CONCLUSIONS The results illustrate the utility of proteomics to identify alterations of proteins which underlie pathogenesis of SCA17, and may serve as potential therapeutic targets.
Collapse
|
14
|
Boal F, Le Pevelen S, Cziepluch C, Scotti P, Lang J. Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:109-19. [PMID: 17034881 DOI: 10.1016/j.bbamcr.2006.08.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 07/27/2006] [Accepted: 08/02/2006] [Indexed: 11/24/2022]
Abstract
Cysteine string proteins (CSPs) belong to the DnaJ-like chaperone family and play an important role in regulated exocytosis in neurons and endocrine cells. The palmitoylation of several residues in a cysteine string domain may anchor CSPs to the exocytotic vesicle surface and in pancreatic beta-cells, Cspalpha is localized on insulin containing large dense core vesicles (LDCVs). An isoform closely related to Cspalpha, Cspbeta, has been obtained from testis cell cDNA libraries. To gain insights on this isoform and more generally on the properties of CSPs, we compared Cspalpha and Cspbeta. In pull-down experiments, Cspbeta was able to interact to the same extent with two of the known Cspalpha chaperone partners, Hsc70 and SGT. Upon transient overexpression in clonal beta-cells, Cspbeta but not Cspalpha was mainly produced as a non-palmitoylated protein and mutational analysis indicated that domains distinct from the cysteine string are responsible for this difference. As Cspbeta remained tightly bound to membranes, intrinsic properties of CSPs are sufficient for interactions with membranes. Indeed, recombinant Cspalpha and Cspbeta were capable to interact with membranes even in their non-palmitoylated forms. Furthermore, overexpressed Cspbeta was not associated with LDCVs, but was localized at the trans-Golgi network. Our results suggest a possible correlation between the specific membrane targeting and the palmitoylation level of CSPs.
Collapse
Affiliation(s)
- Frédéric Boal
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, F-33607 Pessac, France
| | | | | | | | | |
Collapse
|
15
|
Fei G, Guo C, Sun HS, Feng ZP. Chronic hypoxia stress-induced differential modulation of heat-shock protein 70 and presynaptic proteins. J Neurochem 2007; 100:50-61. [PMID: 17227434 DOI: 10.1111/j.1471-4159.2006.04194.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia exposure can cause neurobehavioral dysfunction, but the underlying cellular and molecular mechanisms remain unclear. Here, we found that adult Lymnaea stagnalis snails maintained in low O(2) (approximately 5%) for 4 days developed slowed reactions to light stimuli, and reduced righting movement. Semiquantitative immunoblotting analyses showed that hypoxia exposure induced increased expression of heat-shock protein (HSP)70 in ganglion preparations, and suppressed expression of the presynaptic proteins syntaxin I, synaptic vesicle protein 2 (SV2) and synaptotagmin I. Detailed time course analyses showed that an early moderate increase developed within 6 h, preceding a substantial up-regulation of HSP70 after 4 days; an early reduction of syntaxin I in the first 24 h; a delayed reduction of synaptotagmin I after 4 days; and a biphasic change in SV2. Using a double-stranded RNA interference approach, we demonstrated that preventing the hypoxia inducible HSP70 enhanced down-regulation of syntaxin and synaptotagmin, and aggravated motor and sensory suppression. Co-immunoprecipitation analysis revealed an interaction between HSP70 and syntaxin. We have thus provided the first evidence that early induction of HSP70 by chronic hypoxia is critical for maintaining expression levels of presynaptic proteins. These findings implicate a new molecular mechanism underlying chronic hypoxia-induced neurobehavioral adaptation and impairment.
Collapse
Affiliation(s)
- Guanghe Fei
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Swayne LA, Beck KE, Braun JEA. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006; 348:83-91. [PMID: 16875662 DOI: 10.1016/j.bbrc.2006.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 12/15/2022]
Abstract
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|