1
|
Bian X, Piipponen M, Liu Z, Luo L, Geara J, Chen Y, Sangsuwan T, Maselli M, Diaz C, Bain CA, Eenjes E, Genander M, Crichton M, Cash JL, Archambault L, Haghdoost S, Fradette J, Sommar P, Halle M, Xu Landén N. Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors. Nat Commun 2024; 15:9286. [PMID: 39468077 PMCID: PMC11519383 DOI: 10.1038/s41467-024-53295-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Radiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT+) and non-irradiated (RT-) sites in breast cancer survivors who underwent RT years ago. Here we show that the RT+ skin has compromised healing capacity and fibroblast functions. Using ATAC-seq, we discover altered chromatin landscapes in RT+ fibroblasts, with THBS1 identified as a crucial epigenetically primed wound repair-related gene. This is further confirmed by single-cell RNA-sequencing and spatial transcriptomic analysis of human wounds. Notably, fibroblasts in both murine and human post-radiation wound models show heightened and sustained THBS1 expression, impairing fibroblast motility and contractility. Treatment with anti-THBS1 antibodies promotes ex vivo wound closure in RT+ skin from breast cancer survivors. Our findings suggest that fibroblasts retain a long-term radiation memory in the form of epigenetic changes. Targeting this maladaptive epigenetic memory could mitigate RT's late-onset adverse effects, improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Traimate Sangsuwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Monica Maselli
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Candice Diaz
- Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada
| | - Connor A Bain
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Evelien Eenjes
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Michael Crichton
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jenna L Cash
- Centre for Inflammation Research, Institute for Regeneration and Repair, 4-5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Louis Archambault
- Department of Physics, Université Laval/Centre de Recherche sur le Cancer, Université Laval/Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ABTE/ToxEMAC laboratory, University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Halle
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Zhang J, Zhang J, Fu Z, Zhang Y, Luo Z, Zhang P, Xu Y, Huang C. CHREBP suppresses gastric cancer progression via the cyclin D1-Rb-E2F1 pathway. Cell Death Dis 2022; 8:300. [PMID: 35768405 PMCID: PMC9243070 DOI: 10.1038/s41420-022-01079-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022]
Abstract
Accumulating evidence has demonstrated that carbohydrate response element binding protein (CHREBP) has a crucial function in tumor pathology. In this study, we found CHREBP downregulation in gastric cancer (GC) tissues, and CHREBP was determined to be an independent diagnostic marker of GC. The downregulation of CHREBP promoted cell proliferation and inhibited apoptosis. Moreover, the level of cyclin D1 was significantly correlated with CHREBP expression in GC and paracancerous normal samples. In addition, CHREBP transcriptionally inhibited cyclin D1 expression in GC cells. Tumor suppressor activity of CHREBP could be affected by the upregulation of cyclin D1. In summary, CHREBP was found to be an independent diagnostic marker of GC and to influence GC growth and apoptosis via targeting the cyclin D1-Rb-E2F1 pathway.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
3
|
Nikolouzakis TK, Falzone L, Lasithiotakis K, Krüger-Krasagakis S, Kalogeraki A, Sifaki M, Spandidos DA, Chrysos E, Tsatsakis A, Tsiaoussis J. Current and Future Trends in Molecular Biomarkers for Diagnostic, Prognostic, and Predictive Purposes in Non-Melanoma Skin Cancer. J Clin Med 2020; 9:2868. [PMID: 32899768 PMCID: PMC7564050 DOI: 10.3390/jcm9092868] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Skin cancer represents the most common type of cancer among Caucasians and presents in two main forms: melanoma and non-melanoma skin cancer (NMSC). NMSC is an umbrella term, under which basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and Merkel cell carcinoma (MCC) are found along with the pre-neoplastic lesions, Bowen disease (BD) and actinic keratosis (AK). Due to the mild nature of the majority of NMSC cases, research regarding their biology has attracted much less attention. Nonetheless, NMSC can bear unfavorable characteristics for the patient, such as invasiveness, local recurrence and distant metastases. In addition, late diagnosis is relatively common for a number of cases of NMSC due to the inability to recognize such cases. Recognizing the need for clinically and economically efficient modes of diagnosis, staging, and prognosis, the present review discusses the main etiological and pathological features of NMSC as well as the new and promising molecular biomarkers available including telomere length (TL), telomerase activity (TA), CpG island methylation (CIM), histone methylation and acetylation, microRNAs (miRNAs), and micronuclei frequency (MNf). The evaluation of all these aspects is important for the correct management of NMSC; therefore, the current review aims to assist future studies interested in exploring the diagnostic and prognostic potential of molecular biomarkers for these entities.
Collapse
Affiliation(s)
- Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece;
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, I-80131 Naples, Italy;
| | - Konstantinos Lasithiotakis
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | | | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, 70013 Heraklion, Crete, Greece;
| | - Maria Sifaki
- Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece;
| |
Collapse
|
4
|
Lopez Perez R, Brauer J, Rühle A, Trinh T, Sisombath S, Wuchter P, Grosu AL, Debus J, Saffrich R, Huber PE, Nicolay NH. Human mesenchymal stem cells are resistant to UV-B irradiation. Sci Rep 2019; 9:20000. [PMID: 31882818 PMCID: PMC6934474 DOI: 10.1038/s41598-019-56591-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Albeit being an effective therapy for various cutaneous conditions, UV-B irradiation can cause severe skin damage. While multipotent mesenchymal stem cells (MSCs) may aid the regeneration of UV-B-induced skin injuries, the influence of UV-B irradiation on MSCs remains widely unknown. Here, we show that human MSCs are relatively resistant to UV-B irradiation compared to dermal fibroblasts. MSCs exhibited higher clonogenic survival, proliferative activity and viability than dermal fibroblasts after exposure to UV-B irradiation. Cellular adhesion, morphology and expression of characteristic surface marker patterns remained largely unaffected in UV-irradiated MSCs. The differentiation ability along the adipogenic, osteogenic and chondrogenic lineages was preserved after UV-B treatment. However, UV-B radiation resulted in a reduced ability of MSCs and dermal fibroblasts to migrate. MSCs exhibited low apoptosis rates after UV-B irradiation and repaired UV-B-induced cyclobutane pyrimidine dimers more efficiently than dermal fibroblasts. UV-B irradiation led to prolonged p53 protein stability and increased p21 protein expression resulting in a prolonged G2 arrest and senescence induction in MSCs. The observed resistance may contribute to the ability of these multipotent cells to aid the regeneration of UV-B-induced skin injuries.
Collapse
Affiliation(s)
- Ramon Lopez Perez
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
| | - Jannek Brauer
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Alexander Rühle
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
- Department of Radiation Oncology, University of Freiburg - Medical Center, 79106, Freiburg, Germany
| | - Thuy Trinh
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sonevisay Sisombath
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg - Medical Center, 79106, Freiburg, Germany
| | - Jürgen Debus
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Peter E Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), 69120, Heidelberg, Germany.
- Department of Radiation Oncology, University of Freiburg - Medical Center, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Ventura A, Pellegrini C, Cardelli L, Rocco T, Ciciarelli V, Peris K, Fargnoli MC. Telomeres and Telomerase in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20061333. [PMID: 30884806 PMCID: PMC6470499 DOI: 10.3390/ijms20061333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
The role of telomere biology and telomerase activation in skin cancers has been investigated in melanoma and basal cell carcinoma but limited evidence is available for cutaneous squamous cell carcinoma (cSCC). We will review the current knowledge on the role of telomere and telomerase pathway in cSCC pathogenesis. At the somatic level, both long and short telomere lengths have been described in cSCC. This telomere dichotomy is probably related to two different mechanisms of tumour initiation which determines two tumour subtypes. Telomere shortening is observed during the invasive progression from in situ forms of cSCC, such as Bowen's disease (BD) and actinic keratosis (AK), to invasive cSCC. At the germline level, controversial results have been reported on the association between constitutive telomere length and risk of cSCC. Approximately 75⁻85% of cSCC tumours are characterized by a high level of telomerase activity. Telomerase activation has been also reported in AKs and BD and in sun-damaged skin, thus supporting the hypothesis that UV modulates telomerase activity in the skin. Activating TERT promoter mutations have been identified in 32⁻70% of cSCCs, with the majority showing the UV-signature. No significant correlation was observed between TERT promoter mutations and cSCC clinico-pathological features. However, TERT promoter mutations have been recently suggested to be independent predictors of an adverse outcome. The attention on telomere biology and telomerase activity in cSCC is increasing for the potential implications in the development of effective tools for prognostic assessment and of therapeutic strategies in patients with cutaneous cSCC.
Collapse
Affiliation(s)
- Alessandra Ventura
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cristina Pellegrini
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ludovica Cardelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Tea Rocco
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ketty Peris
- Institute of Dermatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00186 Rome, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
6
|
Bertozzi N, Simonacci F, Greco MP, Grignaffini E, Raposio E. Single center evidence for the treatment of basal cell carcinoma of the head and neck. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:77-82. [PMID: 30889158 PMCID: PMC6502149 DOI: 10.23750/abm.v90i1.6395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/15/2023]
Abstract
AIM Basal Cell Carcinoma (BCC) alone accounts for 80% of cases of non-melanoma skin cancer (NMSC), which characteristically develops on sun-exposed skin. Indeed the most common site of BCC is the head and neck region (80%). The purpose of this study to review the experience of our center with BCC in the head and neck region to report the sites of occurrence and treatment. MATERIALS AND METHOD We retrospectively reviewed 77 patients with BCC of the head and neck, who revived surgical treatment within our plastic surgery division. Basic demographic data, cancer site and size, surgical treatment and histological data were collected. The mean follow-up period was 12 months. RESULTS The study population included 37 males and 40 females, with a mean age of 74.12 years. The nasal unit was the main site of BCC (31.82%), followed by the periorbital (13.64%) and cervical (12.5%) units. Primary closure was the main surgical procedure performed (72.5%), followed by local flap (26.1%) and full-thickness skin grafts (1.4%). The safety resection margin ranged from 4.5 to 9 mm, with a 98.7% complete removal rate. Neither recurrence nor any newly-developed lesions were reported during follow-up in any patient. DISCUSSION Our work reflects the shift in the incidence of BCC, which now seems to be more frequent in females. Furthermore, our data strengthens the association between UVR exposure and BCC, confirms its predilection to occur on the nasal unit and validates surgical excision as the gold standard treatment for skin cancer.
Collapse
Affiliation(s)
- Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy..
| | | | | | | | | |
Collapse
|
7
|
Inhibition of CREPT restrains gastric cancer growth by regulation of cycle arrest, migration and apoptosis via ROS-regulated p53 pathway. Biochem Biophys Res Commun 2018; 496:1183-1190. [PMID: 29402413 DOI: 10.1016/j.bbrc.2018.01.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
CREPT (cell-cycle related and expression-elevated protein in tumor) was reported to be associated with growth of several human cancers; however, its clinical significance and regulatory mechanism still remain unclear in human gastric cancer. In the present study, we found CREPT was significantly increased in gastric cancer tissues compared to the matched adjacent normal tissues. CREPT silence inhibited the proliferation of gastric cancer cells through inducing G0/G1 phase cell cycle arrest, which was linked to the reduction of Cyclin D1 and Cyclin D-dependent kinase 4 (CDK4), and the elevation of p53 and p21. In addition, CREPT knockdown (KD) decreased migration of gastric cancer cells through up-regulating E-cadherin and down-regulating vimentin, N-cadherin and matrix metalloproteinase 1 (MMP-1) expressions. Further, CREPT KD induced apoptosis in gastric cancer cells, as evidenced by the increase of cleaved Caspase-3 and poly (ADP-ribose) polymerase (PARP). Intriguingly, suppressing p53 expressions significantly abolished CREPT silence-induced apoptosis, and reduction of cell viability. Moreover, CREPT KD caused reactive oxygen species (ROS) generation using discounted cash flow (DCF) analysis, which was reversed by ROS scavenger, N-acetyl-l-cysteine (NAC), pretreatment. Of note, NAC pretreatment abrogated apoptotic cell death in CREPT KD gastric cancer cells. In vivo, suppressing CREPT reduced the gastric tumor growth in gastric cancer xenograft models. Altogether, our results provided a novel insight into CREPT in regulating gastric cancer progression through apoptosis regulated by ROS/p53 pathways.
Collapse
|
8
|
Effector Antitumor and Regulatory T Cell Responses Influence the Development of Nonmelanoma Skin Cancer in Kidney Transplant Patients. Transplantation 2017; 101:2102-2110. [PMID: 28403126 DOI: 10.1097/tp.0000000000001759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic immunosuppression promotes nonmelanocytic squamous cell carcinoma (SCC) after kidney transplantation. Adaptive and innate immunity play a key role controlling tumor growth and are influenced by different immunosuppressive agents. We hypothesized that functional impairment of tumor-specific T cell responses due to calcineurin inhibitors (CNI) could contribute to SCC development, whereas conversion to mammalian target of rapamycin inhibitors (mTOR-i) could recover this protective immune response. METHODS Peripheral tumor-specific T cell responses against main SCC-derived antigens using the IFN-γ enzyme-linked immunospot assay and intratumor (IT) and circulating immune phenotypes (CD4 + T, CD8 + T, CD20 + B, CD56 + NK, FOXP3 + regulatory T [Treg] cells) were explored in a cross-sectional analysis in 59 kidney transplant patients with SCC on CNI (KT-CNI-SCC) or mTOR-i (KT-mTORi-SCC), 25 nontransplants developing SCC (NoKT-SCC) and 6 healthy controls. Moreover, 25 KT-CNI-SCC were switched to mTOR-i and evaluated after 12 months. RESULTS Kidney transplant patients showed lower IT infiltrates and tumor-specific T cell responses than NoKT-SCC, and intratumoral and circulating FOXP3 + Treg cells were higher in KT-mTORi-SCC (P < 0.05). Tumor-specific T cell responses were significantly lower in KT-CNI-SCC than KT-mTORi-SCC and NoKT-SCC and predicted SCC relapses (area under the curve = 0.837; P < 0.05). One-year after mTOR-i conversion, a significant increase in FOXP3 + Treg cell numbers and tumor-specific T cell responses were observed, reaching similar levels than KT-mTORi-SCC and NoKT-SCC patients. CONCLUSIONS Tumor-specific T cell responses are strongly impaired in CNI-treated patients but recover after mTOR-i conversion, reducing SCC relapses.
Collapse
|
9
|
Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, Barshack I, Roszik J, Leibowitz-Amit R, Sidi Y, Avni D. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 2017; 37:218-230. [PMID: 28925390 DOI: 10.1038/onc.2017.315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Skin carcinogenesis is known to be a multi-step process with several stages along its malignant evolution. We hypothesized that transformation of normal epidermis to cutaneous squamous cell carcinoma (cSCC) is causally linked to alterations in microRNAs (miRNA) expression. For this end we decided to evaluate their alterations in the pathologic states ending in cSCC. Total RNA was extracted from formalin fixed paraffin embedded biopsies of five stages along the malignant evolution of keratinocytes towards cSCC: Normal epidermis, solar elastosis, actinic keratosis KIN1-2, advanced actinic keratosis KIN3 and well-differentiated cSCC. Next-generation small RNA sequencing was performed. We found that 18 miRNAs are overexpressed and 28 miRNAs are underexpressed in cSCC compared to normal epidermis. miR-424, miR-320, miR-222 and miR-15a showed the highest fold change among the overexpressed miRNAs. And miR-100, miR-101 and miR-497 showed the highest fold change among the underexpressed miRNAs. Heat map of hierarchical clustering analysis of significantly changed miRNAs and principle component analysis disclosed that the most prominent change in miRNAs expression occurred in the switch from 'early' stages; normal epidermis, solar elastosis and early actinic keratosis to the 'late' stages of epidermal carcinogenesis; late actinic keratosis and cSCC. We found several miRNAs with 'stage specific' alterations while others display a clear 'gradual', either progressive increase or decrease in expression along the malignant evolution of keratinocytes. The observed alterations focused in miRNAs involved in the regulation of AKT/mTOR or in those involved in epithelial to mesenchymal transition. We chose to concentrate on the evaluation of the molecular role of miR-497. We found that it induces reversion of epithelial to mesenchymal transition. We proved that SERPINE-1 is its biochemical target. The present study allows us to further study the pathways that are regulated by miRNAs along the malignant evolution of keratinocytes towards cSCC.
Collapse
Affiliation(s)
- A Mizrahi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - A Barzilai
- Department of Dermatology and Institute of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - D Gur-Wahnon
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - I Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Glassberg
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - T Meningher
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - E Elharar
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - M Masalha
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Jacob-Hirsch
- Center for Cancer Research, Sheba Medical Center, Tel Hashomer, Israel
| | - H Tabibian-Keissar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - I Barshack
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - J Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Leibowitz-Amit
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Y Sidi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
10
|
p16 expression in cutaneous squamous cell carcinoma of the head and neck is not associated with integration of high risk HPV DNA or prognosis. Pathology 2017; 49:494-498. [DOI: 10.1016/j.pathol.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
|
11
|
Ashford BG, Clark J, Gupta R, Iyer NG, Yu B, Ranson M. Reviewing the genetic alterations in high-risk cutaneous squamous cell carcinoma: A search for prognostic markers and therapeutic targets. Head Neck 2017; 39:1462-1469. [PMID: 28370784 DOI: 10.1002/hed.24765] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is second only in incidence to basal cell carcinoma (BCC), effecting up to 500 000 people in the United States annually. Metastasis to regional lymph nodes occurs in approximately 5% of cases and imparts significant morbidity. Standard treatment in this group involves a combination of surgery and adjuvant radiation. Currently, there are no clinically useful biomarkers of metastatic potential in primary cutaneous SCC and histological predictors can be unreliable. The high level of mutational burden in normal UV-exposed skin has hampered the search for novel drivers of invasive disease, and indeed metastatic potential. This review outlines the clinical problems in high-risk and metastatic cutaneous SCCs, reviews the known genetic events and molecular mechanisms in high-risk primary cutaneous SCC and metastasis, and identifies avenues for further investigation and potential therapy.
Collapse
Affiliation(s)
- Bruce G Ashford
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute (IHMRI), Northfields Avenue, Wollongong, New South Wales, 2522, Australia.,Illawarra and Shoalhaven Local Health District (ISLHD), Loftus Street, Wollongong, New South Wales, 2500, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, 2170, Australia
| | - Jonathan Clark
- Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery Chris O'Brien Lifehouse, 119-143 Missenden Road, Camperdown, New South Wales, 2050, Australia.,Central Clinical School, the University of Sydney, New South Wales, 2006, Australia.,South Western Clinical School, University of New South Wales, Goulburn Street, Liverpool, New South Wales, 2170, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales, 2050, Australia.,University of Sydney, New South Wales, 2006, Australia
| | - N Gopalakrishna Iyer
- Singhealth/Duke-NUS Head and Neck Center, National Cancer Center, Singapore (NCCS), 11 Hospital Drive, Singapore, 169610
| | - Bing Yu
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales, 2050, Australia.,University of Sydney, New South Wales, 2006, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute (IHMRI), Northfields Avenue, Wollongong, New South Wales, 2522, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, 2170, Australia.,School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
12
|
Salopek KM, Jukić S, Babić D. Correlation of the HPV detection, protein expression and DNA content in cutaneous pre-invasive and invasive carcinoma among Croatian patients. Exp Mol Pathol 2017; 102:123-127. [DOI: 10.1016/j.yexmp.2017.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/11/2017] [Indexed: 01/30/2023]
|
13
|
Joshi S, Schjølberg AR, Ekstrøm PO, De Angelis PM, Zucknick M, Andersen SN, Clausen OPF. Tp53/p53 status in keratoacanthomas. J Cutan Pathol 2016; 43:571-8. [DOI: 10.1111/cup.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Sarita Joshi
- Department of Pathology; Oslo University Hospital, Rikshospitalet; Oslo Norway
- Institute of clinical medicine, Department of Pathology; Akershus University Hospital; Lørenskog Norway
| | - Aasa R. Schjølberg
- Department of Pathology; Oslo University Hospital, Rikshospitalet; Oslo Norway
| | - Per Olaf Ekstrøm
- Institute for Cancer Research; The Norwegian Radium Hospital; Oslo Norway
| | - Paula M. De Angelis
- Department of Pathology; Oslo University Hospital, Rikshospitalet; Oslo Norway
| | - Manuela Zucknick
- Department of Biostatistics, Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - Solveig Norheim Andersen
- Institute of clinical medicine, Department of Pathology; Akershus University Hospital; Lørenskog Norway
| | | |
Collapse
|
14
|
Bergner S, Halec G, Schmitt M, Aubin F, Alonso A, Auvinen E. Individual and Complementary Effects of Human Papillomavirus Oncogenes on Epithelial Cell Proliferation and Differentiation. Cells Tissues Organs 2015; 201:97-108. [PMID: 26636751 DOI: 10.1159/000441716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
Previous studies on human papillomavirus (HPV) type 16 protein functions have established the oncogenic nature of three viral proteins: E5, E6 and E7. Here we have studied the functions of these proteins by functional deletion of the individual E5, E6 or E7, or both E6 and E7 oncogenes in the context of the whole viral genome. These mutants, or the intact wild-type genome, were expressed from the natural viral promoters along with differentiation of epithelial HaCaT cells in three-dimensional collagen raft cultures. High episomal viral copy numbers were obtained using a transfection-based loxp-HPV16-eGFP-N1 vector system. All epithelial equivalents carrying the different HPV type 16 genomes showed pronounced hyperplastic and dysplastic morphology. Particularly the E7 oncogene, with contribution of E6, was shown to enhance cell proliferation. Specifically, the crucial role of E7 in HPV-associated hyperproliferation was clearly manifested. Based on morphological characteristics, immunohistochemical staining for differentiation and proliferation markers, and low expression of E1^E4, we propose that our raft culture models produce cervical intraepithelial neoplasia (CIN)1 and CIN2-like tissue. Our experimental setting provides an alternative tool to study concerted functions of HPV proteins in the development of epithelial dysplasia.
Collapse
Affiliation(s)
- Sven Bergner
- Research Program in Infection and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Brasanac D, Stojkovic-Filipovic J, Bosic M, Tomanovic N, Manojlovic-Gacic E. Expression of G1/S-cyclins and cyclin-dependent kinase inhibitors in actinic keratosis and squamous cell carcinoma. J Cutan Pathol 2015; 43:200-10. [PMID: 26349899 DOI: 10.1111/cup.12623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/09/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Actinic keratosis (AK) and Bowen's disease (squamous cell carcinoma in situ, SCCIS) are pre-invasive stages in the development of squamous cell carcinoma (SCC). METHODS Immunohistochemical study of cyclin D1, cyclin E, p16(INK4a) and p21(Cip1) (/Waf1) in AK (53 cases), SCCIS (16 cases) and SCC (40 cases), in relation to the type of the lesion and SCC prognostic parameters (grade, diameter and thickness). RESULTS Diffuse cyclin D1 distribution was more frequent in SCCIS and SCC than in AK (p = 0.03) and similar pattern was observed for p16(INK4a) . For cyclin E, central distribution dominated in SCC compared with the AK (p = 0.001) and SCCIS (p = 0.03). p21(Cip1) (/Waf1) displayed suprabasal distribution more frequently in AK than in SCCIS (p = 0.001) and SCC (p = 0.0004). Semiquantitative assessment showed more positive cells in AK (p = 0.04) and SCCIS (p = 0.04) than in SCC for cyclin E. SCC with diameter over 20 mm and those thicker than 6 mm revealed higher labeling index with p16(INK4a) and p21(Cip1) (/Waf1) , respectively. CONCLUSIONS Our results suggest different alterations for p16(INK4a) and p21(Cip1) (/Waf1) in AK, SCCIS and SCC. Immunostaining distribution showed closer correlation with the type of the lesion, whereas percentage of positive cells displayed better association with the SCC prognostic parameters.
Collapse
Affiliation(s)
- Dimitrije Brasanac
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Stojkovic-Filipovic
- Clinic of Dermatovenereology, Clinical Center of Serbia, and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Martina Bosic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Tomanovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L, Yan Y. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chem Biol Interact 2015; 239:26-33. [DOI: 10.1016/j.cbi.2015.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/09/2022]
|
17
|
Schwarz M, Thielmann HW, Meischner V, Fartasch M. Relevance of the mouse skin initiation-promotion model for the classification of carcinogenic substances encountered at the workplace. Regul Toxicol Pharmacol 2015; 72:150-7. [PMID: 25846367 DOI: 10.1016/j.yrtph.2015.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
The Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission of the Deutsche Forschungsgemeinschaft) evaluates chemical substances using scientific criteria to prevent adverse effects on health at the work place. As part of this task there is a need to evaluate tumor promoting activity of chemicals (enhancement of formation of squamous cell carcinomas via premalignant papillomas) obtained from two-stage initiation/promotion experiments using the mouse skin model. In the present communication we address this issue by comparing responses seen in mouse skin with those in humans. We conclude that tumor promotional effects seen in such animal models be carefully analyzed on a case by case basis. Substances that elicit a rather non-specific effect that is restricted to the high dose range are considered to be irrelevant to humans and thus do not require classification as carcinogens. In contrast, substances that might have both a mode of action and a potency similar to the specific effects seen with TPA (12-O-tetradecanoylphorbol-13-acetate), the prototype tumor promoter in mouse skin, which triggers receptor-mediated signal cascades in the very low dose range, have to be classified in a category for carcinogens.
Collapse
Affiliation(s)
- Michael Schwarz
- Eberhard Karls University of Tübingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany.
| | - Heinz W Thielmann
- German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Veronika Meischner
- Scientific Secretariat of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission), Hohenbachernstr. 15-17, D-85354 Freising-Weihenstephan, Germany
| | - Manigé Fartasch
- Ruhr University Bochum, Institute for Prevention and Occupational Medicine of the DGUV, Department for Clinical and Experimental Occupational Dermatology, Bürkle-de-la-Camp-Platz 1, D-44789 Bochum, Germany
| |
Collapse
|
18
|
Lin R, Xiao D, Guo Y, Tian D, Yun H, Chen D, Su M. Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis. Oncotarget 2015; 6:2856-64. [PMID: 25650663 PMCID: PMC4413622 DOI: 10.18632/oncotarget.3091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023] Open
Abstract
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.
Collapse
Affiliation(s)
- Runhua Lin
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Dejun Xiao
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- Clinical Laboratory of Ganzhou People's Hospital, Ganzhou, Jiangxi, PR China
| | - Yi Guo
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Dongping Tian
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Hailong Yun
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Donglin Chen
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Min Su
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
19
|
Sobel K, Tham M, Stark HJ, Stammer H, Prätzel-Wunder S, Bickenbach JR, Boukamp P. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction. Int J Cancer 2014; 136:2786-98. [PMID: 25403422 DOI: 10.1002/ijc.29336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022]
Abstract
Aberrant Wnt regulation, detectable by nuclear translocation of beta-catenin, is a hallmark of many cancers including skin squamous cell carcinomas (SCCs). By analyzing primary human skin SCCs, we demonstrate that nuclear beta-catenin is not restricted to SCC cells but also detected in stromal fibroblasts, suggesting an important role for aberrant Wnt regulation also in the tumor microenvironment. When human keratinocytes and fibroblasts were treated with Wnt-3a, fibroblasts proved to be more responsive. Accordingly, Wnt-3a did not alter HaCaT cell functions in a cell-autonomous manner. However, when organotypic cultures (OTCs) were treated with Wnt-3a, HaCaT keratinocytes responded with increased proliferation. As nuclear beta-catenin was induced only in the fibroblasts, this argued for a Wnt-dependent, paracrine keratinocyte stimulation. Global gene expression analysis of Wnt-3a-stimulated fibroblasts identified genes encoding interleukin-8 (IL-8) and C-C motif chemokine 2 (CCL-2) as well as matrix metalloproteinase-1 (MMP-1) as Wnt-3a targets. In agreement, we show that IL-8 and CCL-2 were secreted in high amounts by Wnt-3a-stimulated fibroblasts also in OTCs. The functional role of IL-8 and CCL-2 as keratinocyte growth regulators was confirmed by directly stimulating HaCaT cell proliferation in conventional cultures. Most important, neutralizing antibodies against IL-8 and CCL-2 abolished the Wnt-dependent HaCaT cell hyperproliferation in OTCs. Additionally, MMP-1 was expressed in high amounts in Wnt-3a-stimulated OTCs and degraded the stromal matrix. Thus, our data show that Wnt-3a stimulates fibroblasts to secrete both keratinocyte proliferation-inducing cytokines and stroma-degrading metalloproteinases, thereby providing evidence for a novel Wnt deregulation in the tumor-stroma directly contributing to skin cancer progression.
Collapse
Affiliation(s)
- Katrin Sobel
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Benazzi C, Al-Dissi A, Chau CH, Figg WD, Sarli G, de Oliveira JT, Gärtner F. Angiogenesis in spontaneous tumors and implications for comparative tumor biology. ScientificWorldJournal 2014; 2014:919570. [PMID: 24563633 PMCID: PMC3916025 DOI: 10.1155/2014/919570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/03/2013] [Indexed: 12/16/2022] Open
Abstract
Blood supply is essential for development and growth of tumors and angiogenesis is the fundamental process of new blood vessel formation from preexisting ones. Angiogenesis is a prognostic indicator for a variety of tumors, and it coincides with increased shedding of neoplastic cells into the circulation and metastasis. Several molecules such as cell surface receptors, growth factors, and enzymes are involved in this process. While antiangiogenic therapy for cancer has been proposed over 20 years ago, it has garnered much controversy in recent years within the scientific community. The complex relationships between the angiogenic signaling cascade and antiangiogenic substances have indicated the angiogenic pathway as a valid target for anticancer drug development and VEGF has become the primary antiangiogenic drug target. This review discusses the basic and clinical perspectives of angiogenesis highlighting the importance of comparative biology in understanding tumor angiogenesis and the integration of these model systems for future drug development.
Collapse
Affiliation(s)
- C. Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - A. Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4
| | - C. H. Chau
- National Cancer Institute, Bethesda, MD 20892, USA
| | - W. D. Figg
- National Cancer Institute, Bethesda, MD 20892, USA
| | - G. Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - J. T. de Oliveira
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200-456 Porto, Portugal
- Abel Salazar Institute of Biomedical Science, University of Porto (ICBAS-UP), 4200-456 Porto, Portugal
| | - F. Gärtner
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200-456 Porto, Portugal
- Abel Salazar Institute of Biomedical Science, University of Porto (ICBAS-UP), 4200-456 Porto, Portugal
| |
Collapse
|
21
|
Leufke C, Leykauf J, Krunic D, Jauch A, Holtgreve-Grez H, Böhm-Steuer B, Bröcker EB, Mauch C, Utikal J, Hartschuh W, Purdie KJ, Boukamp P. The telomere profile distinguishes two classes of genetically distinct cutaneous squamous cell carcinomas. Oncogene 2013; 33:3506-18. [DOI: 10.1038/onc.2013.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
|
22
|
Saha K, Hornyak TJ, Eckert RL. Epigenetic cancer prevention mechanisms in skin cancer. AAPS JOURNAL 2013; 15:1064-71. [PMID: 23904153 DOI: 10.1208/s12248-013-9513-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022]
Abstract
Epigenetics is an important emerging area for study of mechanisms of cancer prevention. In recent years, it has been realized that cancer prevention agents, derived from natural dietary sources, impact cancer cell survival by modulating epigenetic processes. In the present manuscript, we review key epigenetic regulatory mechanisms and examine the impact of sulforaphane and green tea polyphenols on these processes. We also discuss available information on the epigenetics in the context of skin cancer. These studies indicate that diet-derived chemopreventive agents modulate DNA methylation status and histone modification via multiple processes and point to additional areas for study of epigenetic mechanisms in skin cancer.
Collapse
Affiliation(s)
- Kamalika Saha
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, Maryland, 21201, USA
| | | | | |
Collapse
|
23
|
Leverkus M. Malignant epithelial tumors: Part I. Pathophysiology and clinical features. J Dtsch Dermatol Ges 2012; 10:457-71; quiz 472. [PMID: 22726597 DOI: 10.1111/j.1610-0387.2012.07963.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epithelial skin cancer is a major burden for western societies. In the 21(st) century there will be a steady increase in the incidence of these tumors in the elderly population. The article summarizes the pathophysiology of epithelial tumors and gives a systematic outline of the different clinical features of keratinocytic tumors. Furthermore, the article gives an overview of inherited syndromes that predispose to malignant epithelial tumors.
Collapse
Affiliation(s)
- Martin Leverkus
- Department of Dermatology, Venereology and Allergology of the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
24
|
Zalaudek I, Giacomel J, Schmid K, Bondino S, Rosendahl C, Cavicchini S, Tourlaki A, Gasparini S, Bourne P, Keir J, Kittler H, Eibenschutz L, Catricalà C, Argenziano G. Dermatoscopy of facial actinic keratosis, intraepidermal carcinoma, and invasive squamous cell carcinoma: A progression model. J Am Acad Dermatol 2012; 66:589-97. [DOI: 10.1016/j.jaad.2011.02.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/03/2011] [Accepted: 02/19/2011] [Indexed: 10/17/2022]
|
25
|
Boehnke K, Falkowska-Hansen B, Stark HJ, Boukamp P. Stem cells of the human epidermis and their niche: composition and function in epidermal regeneration and carcinogenesis. Carcinogenesis 2012; 33:1247-58. [PMID: 22461521 DOI: 10.1093/carcin/bgs136] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skin, as the largest organ, has long been subject of excellent and pioneering studies on stem cells and their role in tissue regulation and tumor formation. In particular, intensive research on mouse skin, and here especially the hair follicle, has largely extended our knowledge. Surprisingly, human skin, although the most easily accessible tissue in man, is far less conceived with regard to its stem cells and their specific environment (the niche). In consequence, these features are as yet only insufficiently defined and it still has to be elucidated how insights in cutaneous stem cell biology gained in mice can be extrapolated to humans. In the last few years, human model systems such as humanized mice or in vitro organotypic cultures that support maintenance or reconstruction of human skin and long-term epidermal regeneration have been developed. These models allow lineage tracing experiments and can be modified by adopting genetically manipulated cell types. Accordingly, they represent proper tools for human stem cell research and will clearly help to improve our still incomplete understanding. Like normal skin, the non-melanoma skin cancers and their respective tumors have gained considerable interest in basic as well as in clinical research. Being the most frequent human tumors globally, basal cell carcinomas and cutaneous squamous cell carcinomas (SCCs) continue to increase in incidence and specifically SCCs predominate in immunosuppressed transplant recipients. This review intends to compile the present knowledge on keratinocyte stem cells and their niches in normal skin and skin carcinomas with a special focus on the human situation. In particular, the role of the microenvironment, the niche, is emphasized, promoting our view of the decisive importance of the niche as a key regulatory element for controlling position, fate and regenerative potential of the stem cell population both in healthy skin and in carcinomas.
Collapse
Affiliation(s)
- Karsten Boehnke
- Division of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
26
|
Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 2012; 122:464-72. [PMID: 22293185 DOI: 10.1172/jci57415] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with over 250,000 new cases annually in the US and is second in incidence only to basal cell carcinoma. cSCC typically manifests as a spectrum of progressively advanced malignancies, ranging from a precursor actinic keratosis (AK) to squamous cell carcinoma (SCC) in situ (SCCIS), invasive cSCC, and finally metastatic SCC. In this Review we discuss clinical and molecular parameters used to define this range of cutaneous neoplasia and integrate these with the multiple experimental approaches used to study this disease. Insights gained from modeling cSCCs have suggested innovative therapeutic targets for treating these lesions.
Collapse
Affiliation(s)
- Vladimir Ratushny
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
27
|
Henkin J, Volpert OV. Therapies using anti-angiogenic peptide mimetics of thrombospondin-1. Expert Opin Ther Targets 2011; 15:1369-86. [PMID: 22136063 DOI: 10.1517/14728222.2011.640319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The role of hrombospondin-1 (TSP1) as a major endogenous angiogenesis inhibitor has been confirmed by numerous studies and subsequent mechanistic discoveries. It has yielded a new class of potential drugs against cancer and other angiogenesis-driven diseases. AREAS COVERED An overview of TSP1 functions and molecular mechanisms, including regulation and signaling. Functions in endothelial and non-endothelial cells, with emphasis on the role of TSP1 in the regulation of angiogenesis and inflammation. The utility of duplicating these activities for drug discovery. Past and current literature on endogenous TSP1 and its role in the progression of cancer and non-cancerous pathological conditions is summarized, as well as the research undertaken to identify and optimize short bioactive peptides derived from the two TSP1 anti-angiogenic domains, which bind CD47 and CD36 cell surface receptors. Lastly, there is an overview of the efficacy of some of these peptides in pre-clinical and clinical models of angiogenesis-dependent disease. EXPERT OPINION It is concluded that TSP1-derived peptides and peptide mimetics hold great promise as future agents for the treatment of cancer and other diseases driven by excessive angiogenesis. They may fulfill unmet medical needs including neovascular ocular disease and the diseases of the female reproductive tract including ovarian cancer.
Collapse
Affiliation(s)
- Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
28
|
Progression From Atypical/Dysplastic Intraepidermal Proliferations and Carcinoma In Situ to Invasive Tumors: A Pathway Based on Current Knowledge. Am J Dermatopathol 2011; 33:803-10. [DOI: 10.1097/dad.0b013e31820fdc5e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 2011; 4:ra33. [PMID: 21610251 DOI: 10.1126/scisignal.2001823] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Hippo pathway regulates contact inhibition of cell proliferation and, ultimately, organ size in diverse multicellular organisms. Inactivation of the Hippo pathway promotes nuclear localization of the transcriptional coactivator Yap1, a Hippo pathway effector, and can cause cancer. Here, we show that deletion of αE (α epithelial) catenin in the hair follicle stem cell compartment resulted in the development of skin squamous cell carcinoma in mice. Tumor formation was accelerated by simultaneous deletion of αE-catenin and the tumor suppressor-encoding gene p53. A small interfering RNA screen revealed a functional connection between αE-catenin and Yap1. By interacting with Yap1, αE-catenin promoted its cytoplasmic localization, and Yap1 showed constitutive nuclear localization in αE-catenin-null cells. We also found an inverse correlation between αE-catenin abundance and Yap1 activation in human squamous cell carcinoma tumors. These findings identify αE-catenin as a tumor suppressor that inhibits Yap1 activity and sequesters it in the cytoplasm.
Collapse
Affiliation(s)
- Mark R Silvis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu CH, Liang CH, Shiu LY, Chang LC, Lin TS, Lan CCE, Tsai JC, Wong TW, Wei KJ, Lin TK, Chang NS, Sheu HM. Solanum incanum extract (SR-T100) induces human cutaneous squamous cell carcinoma apoptosis through modulating tumor necrosis factor receptor signaling pathway. J Dermatol Sci 2011; 63:83-92. [PMID: 21612892 DOI: 10.1016/j.jdermsci.2011.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Solanum species herbs have been used to treat cancer for centuries; however, the underlying mechanisms and effectiveness in vivo remain unclear. OBJECTIVES SR-T100, extracted from the Solanum incanum, contains solamargine alkaloid as the main active ingredient. Here, we investigated the apoptosis-inducing effects of SR-T100 for targeting squamous cell carcinoma (SCC) in vitro and in vivo. METHODS We elucidated the mechanism by which SR-T100 induces apoptosis of human SCCs (A431, SCC4, SCC9, and SCC25) cells. The efficacy and safety issues were addressed regarding topical treatment of SR-T100 on UVB-induced cutaneous SCC of hairless mice and actinic keratoses (AKs) of human. RESULTS SR-T100 induces apoptosis in human SCCs cell lines by up-regulating the expressions of tumor necrosis factor receptors (TNFRs) and Fas, and downstream adaptors FADD/TRADD of the TNF-α and Fas ligand signaling cascades. SR-T100 also triggered the mitochondrial apoptotic pathway, as up-regulated cytochrome c and Bax, down-regulated Bcl-X(L). Animal experiments showed that all papillomas (35/35) and 27 of 30 UVB-induced microinvasive SCCs in hairless mice disappeared within 10 weeks after once-daily application of topical SR-T100. Furthermore, 13 patients, who suffered with 14 AKs, were treated with once-daily topical SR-T100 gel and 10 AKs cured after 16 weeks, showing negligible discomforts. CONCLUSION Our studies indicate that SR-T100 induces apoptosis of SCC cells via death receptors and the mitochondrial death pathway. The high efficacy of SR-T100 in our preclinical trial suggests that SR-T100 is a highly promising herb for AKs and related disorders.
Collapse
Affiliation(s)
- Chin-Han Wu
- Department of Dermatology, National Cheng Kung University College of Medicine and Hospital, 138 Sheng-Li Road, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Woodward KN. Origins of injection-site sarcomas in cats: the possible role of chronic inflammation-a review. ISRN VETERINARY SCIENCE 2011; 2011:210982. [PMID: 23738095 PMCID: PMC3658838 DOI: 10.5402/2011/210982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/13/2011] [Indexed: 12/26/2022]
Abstract
The etiology of feline injection-site sarcomas remains obscure. Sarcomas and other tumors are known to be associated with viral infections in humans and other animals, including cats. However, the available evidence suggests that this is not the case with feline injection-site sarcomas. These tumors have more in common with sarcomas noted in experimental studies with laboratory animals where foreign materials such as glass, plastics, and metal are the causal agent. Tumors arising with these agents are associated with chronic inflammation at the injection or implantation sites. Similar tumors have been observed, albeit infrequently, at microchip implantation sites, and these also are associated with chronic inflammation. It is suggested that injection-site sarcomas in cats may arise at the administration site as a result of chronic inflammation, possibly provoked by adjuvant materials, with subsequent DNA damage, cellular transformation, and clonal expansion. However, more fundamental research is required to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Kevin N. Woodward
- Technology Sciences (Europe) Limited, Concordia House, St James Business Park, Grimbald Crag Court, Knaresborough, North Yorkshire, HG5 8QB, UK
- Intervet/Schering-Plough Animal Health, Breakspear Road South, Harefield, Uxbridge, Middlesex, UB9 6LS, UK
| |
Collapse
|
32
|
Skyrlas A, Hantschke M, Passa V, Gaitanis G, Malamou-Mitsi V, Bassukas ID. Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp Dermatol 2011; 20:674-6. [DOI: 10.1111/j.1600-0625.2011.01249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Souza LR, Fonseca-Silva T, Pereira CS, Santos EP, Lima LC, Carvalho HA, Gomez RS, Guimarães ALS, De Paula AMB. Immunohistochemical analysis of p53, APE1, hMSH2 and ERCC1 proteins in actinic cheilitis and lip squamous cell carcinoma. Histopathology 2011; 58:352-60. [PMID: 21323960 DOI: 10.1111/j.1365-2559.2011.03756.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS This study has compared the tissue expression of the p53 tumour suppressor protein and DNA repair proteins APE1, hMSH2 and ERCC1 in normal, dysplastic and malignant lip epithelium. METHODS AND RESULTS Morphological analysis and immunohistochemistry were performed on archived specimens of normal lip mucosa (n=15), actinic cheilitis (AC) (n=30), and lip squamous cell carcinoma (LSCC) (n=27). AC samples were classified morphologically according to the severity of epithelial dysplasia and risk of malignant transformation. LSCC samples were morphologically staged according to WHO and invasive front grading (IFG) criteria. Differences between groups and morphological stages were determined by bivariate statistical analysis. Progressive increases in the percentage of epithelial cells expressing p53 and APE1 were associated with increases in morphological malignancy from normal lip mucosa to LSCC. There was also a significant reduction in epithelial cells expressing hMSH2 and ERCC1 proteins in the AC and LSCC groups. A higher percentage of malignant cells expressing APE1 was found in samples with an aggressive morphological IFG grade. CONCLUSIONS Our data showed that epithelial cells from premalignant to malignant lip disease exhibited changes in the expression of p53, APE1, hMSH2 and ERCC1 proteins; these molecular change might contribute to lip carcinogenesis.
Collapse
Affiliation(s)
- Ludmilla R Souza
- Health Science Programme, State University of Montes Claros, Montes Claros, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
de Feraudy S, Ridd K, Richards LM, Kwok PY, Revet I, Oh D, Feeney L, Cleaver JE. The DNA damage-binding protein XPC is a frequent target for inactivation in squamous cell carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:555-62. [PMID: 20616346 DOI: 10.2353/ajpath.2010.090925] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
XPC, the main damage-recognition protein responsible for nucleotide excision repair of UVB damage to DNA, is lost or mutated in xeroderma pigmentosum group C (XP-C), a rare inherited disease characterized by high incidence and early onset of non-melanoma and melanoma skin cancers. The high incidence of skin cancers in XP-C patients suggests that loss of expression of XPC protein might also provide a selective advantage for initiation and progression of similar cancers in non XP-C patients in the general population. To test whether XPC is selectively lost in squamous cell carcinomas from non XP-C patients, we examined XPC expression by immunohistochemistry on a tissue microarray with 244 tissue cores, including in situ and invasive squamous-cell carcinomas (SCCs), keratoacanthoma (KA), and normal skin samples from both immunocompetent and immunosuppressed patients. We found that XPC expression was lost in 49% of invasive squamous cell carcinomas from immunocompetent patients and 59% from immunosuppressed patients. Loss of expression was correlated with deletions of chromosomal 3p and mutations in the XPC gene. The XPC gene is consequently inactivated or lost in almost half of squamous cell carcinomas from non XP-C patients. Loss or mutation of XPC may be an early event during skin carcinogenesis that provides a selective advantage for initiation and progression of squamous cell carcinomas in non XP-C patients.
Collapse
Affiliation(s)
- Sebastien de Feraudy
- Department of Dermatology, University of California, San Francisco, CA 94143-0808, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Miura N, Osaki Y, Nagashima M, Kohno M, Yorozu K, Shomori K, Kanbe T, Oyama K, Kishimoto Y, Maruyama S, Noma E, Horie Y, Kudo M, Sakaguchi S, Hirooka Y, Ito H, Kawasaki H, Hasegawa J, Shiota G. A novel biomarker TERTmRNA is applicable for early detection of hepatoma. BMC Gastroenterol 2010; 10:46. [PMID: 20482774 PMCID: PMC2881114 DOI: 10.1186/1471-230x-10-46] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/18/2010] [Indexed: 12/28/2022] Open
Abstract
Backgrounds We previously reported a highly sensitive method for serum human telomerase reverse transcriptase (hTERT) mRNA for hepatocellular carcinoma (HCC). α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) are good markers for HCC. In this study, we verified the significance of hTERTmRNA in a large scale multi-centered trial, collating quantified values with clinical course. Methods In 638 subjects including 303 patients with HCC, 89 with chronic hepatitis (CH), 45 with liver cirrhosis (LC) and 201 healthy individuals, we quantified serum hTERTmRNA using the real-time RT-PCR. We examined its sensitivity and specificity in HCC diagnosis, clinical significance, ROC curve analysis in comparison with other tumor markers, and its correlations with the clinical parameters using Pearson relative test and multivariate analyses. Furthermore, we performed a prospective and comparative study to observe the change of biomarkers, including hTERTmRNA in HCC patients receiving anti-cancer therapies. Results hTERTmRNA was demonstrated to be independently correlated with clinical parameters; tumor size and tumor differentiation (P < 0.001, each). The sensitivity/specificity of hTERTmRNA in HCC diagnosis showed 90.2%/85.4% for hTERT. hTERTmRNA proved to be superior to AFP, AFP-L3, and DCP in the diagnosis and underwent an indisputable change in response to therapy. The detection rate of small HCC by hTERTmRNA was superior to the other markers. Conclusions hTERTmRNA is superior to conventional tumor markers in the diagnosis and recurrence of HCC at an early stage.
Collapse
Affiliation(s)
- Norimasa Miura
- Department of Pathophysiological and Therapeutic Science, Tottori University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Meng F, Bermudez E, McKinzie PB, Andersen ME, Clewell HJ, Parsons BL. Measurement of tumor-associated mutations in the nasal mucosa of rats exposed to varying doses of formaldehyde. Regul Toxicol Pharmacol 2010; 57:274-83. [PMID: 20347909 DOI: 10.1016/j.yrtph.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 01/09/2023]
Abstract
This study examined the potential induction of tumor-associated mutations in formaldehyde-exposed rat nasal mucosa using a sensitive method, allele-specific competitive blocker-PCR (ACB-PCR). Levels of p53 codon 271 CGT to CAT and K-Ras codon 12 GGT to GAT mutations were quantified in nasal mucosa of rats exposed to formaldehyde. In addition, nasal mucosa cell proliferation was monitored because regenerative cell proliferation is considered a key event in formaldehyde-induced carcinogenesis. Male F344 rats (6-7 weeks old, 5 rats/group) were exposed to 0, 0.7, 2, 6, 10, and 15 ppm formaldehyde for 13 weeks (6 h/day, 5 days/week). ACB-PCR was used to determine levels of p53 and K-Ras mutations. Although two of five untreated rats had measureable spontaneous p53 mutant fractions (MFs), most nasal mucosa samples had p53 MFs below 10(-5). All K-Ras MF measurements were below 10(-5). No dose-related increases in p53 or K-Ras MF were observed, even though significant increases in bromodeoxyuridine incorporation demonstrated induced cell proliferation in the 10 and 15 ppm formaldehyde-treatment groups. Therefore, induction of tumor-associated p53 mutation likely occurs after several other key events in formaldehyde-induced carcinogenesis.
Collapse
Affiliation(s)
- Fanxue Meng
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Reproductive Toxicology, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Mackenzie KA, Wells JE, Lynn KL, Simcock JW, Robinson BA, Roake JA, Currie MJ. First and subsequent nonmelanoma skin cancers: incidence and predictors in a population of New Zealand renal transplant recipients. Nephrol Dial Transplant 2009; 25:300-6. [PMID: 19783601 DOI: 10.1093/ndt/gfp482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) have an increased risk of developing nonmelanoma skin cancers (NMSCs). The aims of this study were to determine the incidence and subsequent history of NMSCs in RTRs, together with risk factors. METHODS All patients transplanted between July 1972 and March 2007, and followed up at Christchurch Hospital, New Zealand, were studied. Immunosuppression regimens were mostly prednisone, azathioprine, cyclosporine and prednisone, mycophenolate mofetil, cyclosporine since 1998. RESULTS Of 384 RTRs, 96 developed at least one NMSC. The median time to first NMSC was 18.3 years (95% CI 14.2, 22.9) from transplant, as estimated by survival analysis. Individual predictors of first NMSC in RTRs were older age at first transplant (P < 0.0001), male sex (P = 0.006) and initial immunosuppression regimen (P = 0.001); only age (P < 0.0001) and male gender (P = 0.003) were significant predictors in a joint model. The mean rate of subsequent NMSCs was 1.67 per year (95% CI = 1.32, 2.11). Older age at first renal transplant (P = 0.009) or at discovery of the first NMSC (P = 0.01) was associated with a higher annual rate of new NMSC following the discovery of the first NMSC. The median survival time to a second NMSC was 2.2 years (CI 1.4, 3.0). Fourteen patients died of metastatic squamous cell carcinoma (15% case fatality). CONCLUSIONS NMSCs are a major health issue for RTRs, especially in older males. Once RTRs have developed their first NMSC, ongoing surveillance and prompt treatment are essential.
Collapse
|
38
|
Kwon EJ, Kish LS, Jaworsky C. The histologic spectrum of epithelial neoplasms induced by sorafenib. J Am Acad Dermatol 2009; 61:522-7. [PMID: 19700018 DOI: 10.1016/j.jaad.2008.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 10/03/2008] [Accepted: 10/22/2008] [Indexed: 01/19/2023]
Abstract
Sorafenib is a multikinase inhibitor newly approved for the treatment of renal cell carcinoma and hepatocellular carcinoma. Multiple cutaneous adverse effects of sorafenib have been described. We present a 68-year-old patient with renal cell carcinoma who developed multiple tender hyperkeratotic papules within weeks of starting sorafenib. The degree of symptoms and size of lesions corresponded directly with his sorafenib dosing. Four biopsy specimens of representative lesions were taken. Three lesions showed keratin-filled endophytic epithelial-lined invaginations, one with a coexistent actinic keratosis. The fourth biopsy specimen revealed an invasive squamous cell carcinoma with keratoacanthoma-like features. To our knowledge, diffuse eruptions of epidermal invaginations, ectatic follicular infundibula, and follicular infundibular cysts have not been reported previously with sorafenib, although they are well known to occur with epidermal growth factor receptor inhibitor therapy. Keratoacanthoma and squamous cell carcinoma as a result of sorafenib use are only beginning to be reported in the literature. At the time of acceptance of our manuscript, sorafenib-induced keratoacanthoma was noted only once in the literature, and deeply invasive squamous cell carcinoma has been reported once in the setting of sorafenib and tipifarnib combination therapy. We review the spectrum of dermatologic side effects of sorafenib to facilitate their recognition.
Collapse
Affiliation(s)
- Eun Ji Kwon
- Department of Dermatology at Case Western Reserve University and Metrohealth Medical Center, Cleveland, Ohio 44109, USA
| | | | | |
Collapse
|
39
|
Im S, Yoo C, Jung JH, Choi HJ, Yoo J, Kang SJ, Lee KY. Alteration of G1/S Cell Cycle Regulatory Proteins in Carcinogenesis of Cutaneous Squamous Cell Carcinomas. KOREAN JOURNAL OF PATHOLOGY 2009. [DOI: 10.4132/koreanjpathol.2009.43.6.542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Soyoung Im
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Changyoung Yoo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Han Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Joo Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jinyoung Yoo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Jin Kang
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyo Young Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
40
|
Suk JD, Park WS, Kim DK. Low rates of somatic p53 mutations in keratoacanthomas. J Dermatol Sci 2009; 53:72-73. [PMID: 18829268 DOI: 10.1016/j.jdermsci.2008.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/30/2008] [Accepted: 08/01/2008] [Indexed: 11/17/2022]
|
41
|
Richardson CJ, Gao Q, Mitsopoulous C, Zvelebil M, Pearl LH, Pearl FMG. MoKCa database--mutations of kinases in cancer. Nucleic Acids Res 2008; 37:D824-31. [PMID: 18986996 PMCID: PMC2686448 DOI: 10.1093/nar/gkn832] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data.
Collapse
Affiliation(s)
- Christopher J Richardson
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
42
|
|