1
|
Terraza-Silvestre E, Villamuera R, Bandera-Linero J, Letek M, Oña-Sánchez D, Ramón-Barros C, Moyano-Jimeno C, Pimentel-Muiños FX. An unconventional autophagic pathway that inhibits ATP secretion during apoptotic cell death. Nat Commun 2025; 16:3409. [PMID: 40210636 PMCID: PMC11986000 DOI: 10.1038/s41467-025-58619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Mobilisation of Damage-Associated Molecular Patterns (DAMPs) determines the immunogenic properties of apoptosis, but the mechanisms that control DAMP exposure are still unclear. Here we describe an unconventional autophagic pathway that inhibits the release of ATP, a critical DAMP in immunogenic apoptosis, from dying cells. Mitochondrial BAK activated by BH3-only molecules interacts with prohibitins and stomatin-1 through its latch domain, indicating the existence of an interactome specifically assembled by unfolded BAK. This complex engages the WD40 domain of the autophagic effector ATG16L1 to induce unconventional autophagy, and the resulting LC3-positive vesicles contain ATP. Functional interference with the pathway increases ATP release during cell death, reduces ATP levels remaining in the apoptotic bodies, and improves phagocyte activation. These results reveal that an unconventional component of the autophagic burst that often accompanies apoptosis sequesters intracellular ATP to prevent its release, thus favouring the immunosilent nature of apoptotic cell death.
Collapse
Affiliation(s)
- Elena Terraza-Silvestre
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Raquel Villamuera
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Julia Bandera-Linero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Michal Letek
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071, León, Spain
| | - Daniel Oña-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Cristina Ramón-Barros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Clara Moyano-Jimeno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Felipe X Pimentel-Muiños
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Zhong X, Baur SSM, Ongenae VMA, Guerrero Egido G, Shitut S, Du C, Vijgenboom E, van Wezel GP, Carrion Bravo V, Briegel A, Bramkamp M, Claessen D. The stomatin-like protein StlP organizes membrane microdomains to govern polar growth in filamentous actinobacteria under hyperosmotic stress. Nat Commun 2025; 16:2669. [PMID: 40102465 PMCID: PMC11920096 DOI: 10.1038/s41467-025-58093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
The cell wall represents an essential structure conserved among most bacteria, playing a crucial role in growth and development. While extensively studied model bacteria have provided insights into cell wall synthesis coordination, the mechanism governing polar growth in actinobacteria remains enigmatic. Here we identify the stomatin-like protein StlP as a pivotal factor for orchestrating polar growth in filamentous actinobacteria under hyperosmotic stress. StlP facilitates the establishment of a membrane microdomain with increased membrane fluidity, a process crucial for maintaining proper growth. The absence of StlP leads to branching of filaments, aberrant cell wall synthesis, thinning of the cell wall, and the extrusion of cell wall-deficient cells at hyphal tips. StlP interacts with key components of the apical glycan synthesis machinery, providing protection to filaments during apical growth. Introduction of StlP in actinobacteria lacking this protein enhances polar growth and resilience under hyperosmotic stress, accompanied by the formation of a membrane microdomain. Our findings imply that stomatin-like proteins, exemplified by StlP, confer a competitive advantage to actinobacteria encountering hyperosmotic stress. Given the widespread conservation of StlP in filamentous actinobacteria, our results propose that the mediation of polar growth through membrane microdomain formation is a conserved phenomenon in these bacteria.
Collapse
Affiliation(s)
- Xiaobo Zhong
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Sarah S M Baur
- Institute for General Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Veronique M A Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Shraddha Shitut
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chao Du
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor Carrion Bravo
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Integrative Structural Cell Biology Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, 75724, Paris, France
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Schwartz HT, Sternberg PW. A sequencing-based screening method identifies regulators of EGFR signaling from nonviable mutants in Caenorhabditis elegans. Sci Signal 2025; 18:eadp9377. [PMID: 39999212 DOI: 10.1126/scisignal.adp9377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Suppressor screens can identify genetic modifiers of biochemical pathways but generally require that the suppressed mutant be viable and fertile. We developed a screening method that obviated this requirement and enabled the identification of mutations that partially suppressed the early developmental arrest and lethality caused by loss of the epidermal growth factor (EGF) receptor ortholog LET-23 in Caenorhabditis elegans. We chemically mutagenized animals carrying the loss-of-function allele let-23(sy15), recovered let-23(sy15) homozygotes that escaped early developmental arrest but were nevertheless inviable, and sequenced their genomes. Testing of candidate causal mutations identified 11 genes that, when mutated, mitigated the early lethality caused by loss of EGF signaling. These included genes encoding homologs of the small guanosine triphosphatase (GTPase) Ras (let-60), which is a downstream effector of LET-23, and of regulators of the small GTPase Rho, including the homolog of the phosphotyrosine-binding protein TENSIN (tns-1). We also recovered suppressing mutations in genes encoding nuclear proteins that protect against DNA damage, including the homolog of MutS homolog 4 (him-14). Genetic experiments were consistent with the repression of Rho activity or the activation of the DNA damage response compensating for the loss of EGF signaling. This sequencing-based, whole-animal screening method may be adapted to other organisms to enable the identification of mutations for which the phenotype does not allow the recovery of viable animals.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
5
|
Szlachta B, Birková A, Čižmárová B, Głogowska-Gruszka A, Zalejska-Fiolka P, Dydoń M, Zalejska-Fiolka J. Erythrocyte Oxidative Status in People with Obesity: Relation to Tissue Losses, Glucose Levels, and Weight Reduction. Antioxidants (Basel) 2024; 13:960. [PMID: 39199206 PMCID: PMC11351941 DOI: 10.3390/antiox13080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND This study aimed to investigate the impact of reductions in various body mass components on the erythrocyte oxidative status and glycemic state of people with obesity (PWO). METHODS A total of 53 PWO followed a six-month individualized low-calorie diet with exercise, during which anthropometric, biochemical, and oxidative parameters were measured. The participants were divided into groups based on weight (W), visceral fat area (VFA), total body water (TBW), and skeletal muscle mass (SMM) losses, as well as normoglycemia (NG) and hyperglycemia (HG). RESULTS Weight reduction normalized glycemia and influenced erythrocyte enzyme activity. Regardless of the tissue type lost (VFA, TBW, or SMM), glutathione peroxidase activity decreased in all groups, accompanied by an increase in glutathione reductase activity. Lipofuscin (LPS) and malondialdehyde (MDA) concentrations decreased regardless of the type of tissue lost. The α-/γ-tocopherol ratio increased in those losing >10% body weight, >15% VFA, and >5% TBW. In the NG group, compared to the HG group, there was a decrease in glutathione peroxidase and an increase in glutathione reductase, with these changes being stronger in the HG group. The LPS and MDA concentrations decreased in both groups. Significant correlations were observed between glucose reduction and changes in catalase, retinol, and α-tocopherol, as well as between VFA reduction and changes in vitamin E, L-LPS, and the activities of L-GR and L-GST. CONCLUSIONS This analysis highlights the complex interactions between glucose metabolism, oxidative state, and erythrocyte membrane integrity, crucial for understanding diabetes and its management. This study shows the significant metabolic adaptability of erythrocytes in response to systemic changes induced by obesity and hyperglycemia, suggesting potential therapeutic targets to improve metabolic health in obese individuals.
Collapse
Affiliation(s)
- Beata Szlachta
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Anna Głogowska-Gruszka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Paulina Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Maria Dydoń
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.-G.); (P.Z.-F.); (M.D.); (J.Z.-F.)
| |
Collapse
|
6
|
Chen Z, Wang X, Teng Z, Liu M, Liu F, Huang J, Liu Z. Modifiable lifestyle factors influencing psychiatric disorders mediated by plasma proteins: A systemic Mendelian randomization study. J Affect Disord 2024; 350:582-589. [PMID: 38246286 DOI: 10.1016/j.jad.2024.01.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Psychiatric disorders are emerging as a serious public health hazard, influencing an increasing number of individuals worldwide. However, the effect of modifiable lifestyle factors on psychiatric disorders remains unclear. METHODS Genome-wide association studies (GWAS) summary statistics were obtained mainly from Psychiatric Genomics Consortium and UK Biobank, with sample sizes varying between 10,000 and 1,200,000. The two-sample Mendelian randomization (MR) method was applied to investigate the causal associations between 45 lifestyle factors and 13 psychiatric disorders, and screen potential mediator proteins from 2992 candidate plasma proteins. We implemented a four-step framework with step-by-step screening incorporating two-step, univariable, and multivariable MR. RESULTS We found causal effects of strenuous sports or other exercise on Tourette's syndrome (OR [95%CI]: 0.0047 [5.24E-04-0.042]); lifelong smoking index on attention-deficit hyperactivity disorder (10.53 [6.96-15.93]), anxiety disorders (3.44 [1.95-6.05]), bipolar disorder (BD) (2.25 [1.64-3.09]), BD II (2.89 [1.81-4.62]), and major depressive disorder (MDD) (2.47 [1.90-3.20]); and educational years on anorexia nervosa (AN) (1.47 [1.22-1.76]), and MDD (0.74 [0.66-0.83]). Five proteins were found to have causal associations with psychiatric disorders, namely ADH1B, GHDC, STOM, CD226, and TP63. STOM, a membrane protein deficient in the erythrocytes of hereditary stomatocytosis patients, may mediate the effect of educational attainment on AN. LIMITATIONS The mechanisms underlying the effects of lifestyle factors on psychiatric disorders require further investigation. CONCLUSIONS These findings could help assess the risk of psychiatric disorders based on lifestyle factors and also support lifestyle interventions as a prevention strategy for mental illness.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Centre for Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengdong Liu
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Centre for Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Li X, Zheng Y, Yu K, Hou S, Cui H, Yin R, Zhou Y, Sun Q, Zhang J, Huang C. Stomatin-like protein 2 promotes cell proliferation and survival under 5-Fluorouracil stress in hepatocellular carcinoma. Mol Biol Rep 2024; 51:228. [PMID: 38281294 DOI: 10.1007/s11033-023-09104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The crucial role of STOML2 in tumor progression has been documented recently in various cancers. Previous studies have shown that STOML2 promoted cancer cell proliferation, but the underlying mechanism is not fully illustrated. METHODS AND RESULTS The expression and clinical relevance of STOML2 in pan-cancer was analyzed by TIMER2 web platform in pan-cancer. The prognostic significance of STOML2 in HCC was evaluated utilizing KM curve and a nomogram model. Signaling pathways associated with STOML2 expression were discovered by GSEA. CCK-8 assay was performed to evaluate the proliferative capacity of HCC cells after manipulating STOML2 expression. Flow cytometry was utilized to analyze cell cycle progression. Results indicated that increased STOML2 expression in HCC linked to unfavorable clinical outcomes. Cell cycle and cell division related terms were enriched under conditions of elevated STOML2 expression via GSEA analysis. A notable decrease in cell proliferation was observed in MHCC97H with STOML2 knocked-down, accompanied by G1-phase arrest, up-regulation of p21, down-regulation of CyclinD1 and its regulatory factor MYC, while STOML2 overexpression in Huh7 showed the opposite results. These results indicated that STOML2 was responsible for HCC proliferation by regulating the expression level of MYC/cyclin D1 and p21. Furthermore, an inverse correlation was found between STOML2 expression and 5-FU sensitivity. CONCLUSIONS STOML2 promotes cell cycle progression in HCC which is associated with activation of MYC/CyclinD1/p21 pathway, and modulates the response of HCC to 5-FU.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Yahui Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Sen Hou
- Department of General Surgery, Xuchang Central Hospital, 30 Huatuo Road, Xuchang, 461001, Henan, China
| | - Huxiao Cui
- Department of General Surgery, Xuchang Central Hospital, 30 Huatuo Road, Xuchang, 461001, Henan, China
| | - Ruiqi Yin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Yu Zhou
- Department of Infectious Disease, the Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Ruian, 325207, Zhejiang, China.
| | - Qingfeng Sun
- Department of Infectious Disease, the Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Ruian, 325207, Zhejiang, China.
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
8
|
Li N, Liang XR, Bai X, Liang XH, Dang LH, Jin QQ, Cao J, Du QX, Sun JH. Novel ratio-expressions of genes enables estimation of wound age in contused skeletal muscle. Int J Legal Med 2024; 138:197-206. [PMID: 37804331 DOI: 10.1007/s00414-023-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xue Bai
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| |
Collapse
|
9
|
Min Y, Wang X, İş Ö, Patel TA, Gao J, Reddy JS, Quicksall ZS, Nguyen T, Lin S, Tutor-New FQ, Chalk JL, Mitchell AO, Crook JE, Nelson PT, Van Eldik LJ, Golde TE, Carrasquillo MM, Dickson DW, Zhang K, Allen M, Ertekin-Taner N. Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nat Commun 2023; 14:6801. [PMID: 37919278 PMCID: PMC10622416 DOI: 10.1038/s41467-023-42626-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shu Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica L Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Julia E Crook
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
10
|
Sanfeliu-Cerdán N, Català-Castro F, Mateos B, Garcia-Cabau C, Ribera M, Ruider I, Porta-de-la-Riva M, Canals-Calderón A, Wieser S, Salvatella X, Krieg M. A MEC-2/stomatin condensate liquid-to-solid phase transition controls neuronal mechanotransduction during touch sensing. Nat Cell Biol 2023; 25:1590-1599. [PMID: 37857834 PMCID: PMC10635833 DOI: 10.1038/s41556-023-01247-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
A growing body of work suggests that the material properties of biomolecular condensates ensuing from liquid-liquid phase separation change with time. How this aging process is controlled and whether the condensates with distinct material properties can have different biological functions is currently unknown. Using Caenorhabditis elegans as a model, we show that MEC-2/stomatin undergoes a rigidity phase transition from fluid-like to solid-like condensates that facilitate transport and mechanotransduction, respectively. This switch is triggered by the interaction between the SH3 domain of UNC-89 (titin/obscurin) and MEC-2. We suggest that this rigidity phase transition has a physiological role in frequency-dependent force transmission in mechanosensitive neurons during body wall touch. Our data demonstrate a function for the liquid and solid phases of MEC-2/stomatin condensates in facilitating transport or mechanotransduction, and a previously unidentified role for titin homologues in neurons.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Frederic Català-Castro
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Borja Mateos
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Ribera
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iris Ruider
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Montserrat Porta-de-la-Riva
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Adrià Canals-Calderón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stefan Wieser
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
| |
Collapse
|
11
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 38067638 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
12
|
The Lipid Raft-Associated Protein Stomatin Is Required for Accumulation of Dectin-1 in the Phagosomal Membrane and for Full Activity of Macrophages against Aspergillus fumigatus. mSphere 2023; 8:e0052322. [PMID: 36719247 PMCID: PMC9942578 DOI: 10.1128/msphere.00523-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time. Previously, we showed that this conidial pigment interferes with the formation of flotillin-dependent lipid raft microdomains in the phagosomal membrane, thereby preventing the formation of functional phagolysosomes. Besides flotillins, stomatin is a major component of lipid rafts and can be targeted to the membrane. However, only limited information on stomatin is available, in particular on its role in defense against pathogens. To determine the function of this integral membrane protein, a stomatin-deficient macrophage line was generated by CRISPR/Cas9 gene editing. Immunofluorescence microscopy and flow cytometry revealed that stomatin contributes to the phagocytosis of conidia and is important for recruitment of the β-glucan receptor dectin-1 to both the cytoplasmic membrane and phagosomal membrane. In stomatin knockout cells, fusion of phagosomes and lysosomes, recruitment of the vATPase to phagosomes, and tumor necrosis factor alpha (TNF-α) levels were reduced when cells were infected with pigmentless conidia. Thus, our data suggest that stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. IMPORTANCE Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the β-glucan receptor dectin-1 to the phagosomal membrane of macrophages. Furthermore, stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. The data provide new insights on the important role of stomatin in the immune response against human-pathogenic fungi.
Collapse
|
13
|
Conrad KA, Kim H, Qasim M, Djehal A, Hernday AD, Désaubry L, Rauceo JM. Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox. Pathogens 2023; 12:126. [PMID: 36678474 PMCID: PMC9861074 DOI: 10.3390/pathogens12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections caused by Candida species remain a significant public health problem worldwide. The increasing prevalence of drug-resistant infections and a limited arsenal of antifungal drugs underscore the need for novel interventions. Here, we screened several classes of pharmacologically active compounds against mammalian diseases for antifungal activity. We found that the synthetic triazine-based compound melanogenin (Mel) 56 is fungicidal in Candida albicans laboratory and clinical strains with minimal inhibitory concentrations of 8−16 µg/mL. Furthermore, Mel56 has general antifungal activity in several non-albicans Candida species and the non-pathogenic yeast Saccharomyces cerevisiae. Surprisingly, Mel56 inhibited the yeast-to-hyphae transition at sublethal concentrations, revealing a new role for triazine-based compounds in fungi. In human cancer cell lines, Mel56 targets the inner mitochondrial integral membrane prohibitin proteins, PHB1 and PHB2. However, Mel56 treatment did not impact C. albicans mitochondrial activity, and antifungal activity was similar in prohibitin single, double, and triple homozygous mutant strains compared to the wild-type parental strain. These results suggests that Mel56 has a novel mechanism-of-action in C. albicans. Therefore, Mel56 is a promising antifungal candidate warranting further analyses.
Collapse
Affiliation(s)
- Karen A. Conrad
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Hyunjeong Kim
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Amel Djehal
- Higher National School of Biotechnology of Constantine, Constantine 25100, Algeria
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| |
Collapse
|
14
|
Liu Y, Sun L, Guo H, Zhou S, Wang C, Ji C, Meng F, Liang S, Zhang B, Yuan Y, Ma K, Li X, Guo X, Cui T, Zhang N, Wang J, Liu Y, Liu L. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene 2023; 42:374-388. [PMID: 36473908 DOI: 10.1038/s41388-022-02551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
SLP2, a protein located on mitochondrial, has been shown to be associated with mitochondrial biosynthesis. Here we explored the potential mechanisms by which SLP2 regulates the development of hepatocellular carcinoma. SLP2 could bind to the c-terminal of JNK2 to affect the ubiquitinated proteasomal degradation pathway of JNK2 and maintain the protein stability of JNK2. The increase of JNK2 markedly increases SREBP1 activity, promoting SREBP1 translocation into the nucleus to promote de novo lipogenesis. Alteration of the JNK2 C-terminal disables SLP2 from mediating SLP2-enhanced de novo lipogenesis. YTHDF1 interacts with SLP2 mRNA in a METTL3/m6A-dependent manner. In a spontaneous HCC animal model, SLP2/c-Myc/sgP53 increases the incidence rate of spontaneous HCC, tumor volume, and tumor number. Importantly, statistical analyses show that levels of SLP2 correlate with tumor sizes, tumor metastasis, overall survival, and disease-free survival of the patients. Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo combined with lenvatinib. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic SLP2, providing a mechanistic link between de novo lipogenesis and HCC.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Chunxu Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yubin Yuan
- Department of Hepatobiliary Surgery, Heze City Hospital, Heze, 274000, China
| | - Kun Ma
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
15
|
Morgan M, Thai J, Nencini S, Xu J, Ivanusic JJ. Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. Mol Pain 2023; 19:17448069231222407. [PMID: 38073226 PMCID: PMC10734363 DOI: 10.1177/17448069231222407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Sara Nencini
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - James Xu
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Machado PC, Brito LF, Martins R, Pinto LFB, Silva MR, Pedrosa VB. Genome-Wide Association Analysis Reveals Novel Loci Related with Visual Score Traits in Nellore Cattle Raised in Pasture-Based Systems. Animals (Basel) 2022; 12:ani12243526. [PMID: 36552446 PMCID: PMC9774243 DOI: 10.3390/ani12243526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.
Collapse
Affiliation(s)
- Pamela C. Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Luis Fernando B. Pinto
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros 500, Ondina, Salvador 40170-110, BA, Brazil
| | - Marcio R. Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes 16700-000, SP, Brazil
| | - Victor B. Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
17
|
Komatsu T, Matsui I, Yokoyama H. Structural and mutational studies suggest key residues to determine whether stomatin SPFH domains form dimers or trimers. Biochem Biophys Rep 2022; 32:101384. [DOI: 10.1016/j.bbrep.2022.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
|
18
|
Donà F, Özbalci C, Paquola A, Ferrentino F, Terry SJ, Storck EM, Wang G, Eggert US. Removal of Stomatin, a Membrane-Associated Cell Division Protein, Results in Specific Cellular Lipid Changes. J Am Chem Soc 2022; 144:18069-18074. [PMID: 36136763 PMCID: PMC9545149 DOI: 10.1021/jacs.2c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lipids are key constituents
of all cells, which express thousands
of different lipid species. In most cases, it is not known why cells
synthesize such diverse lipidomes, nor what regulates their metabolism.
Although it is known that dividing cells specifically regulate their
lipid content and that the correct lipid complement is required for
successful division, it is unclear how lipids connect with the cell
division machinery. Here, we report that the membrane protein stomatin
is involved in the cytokinesis step of cell division. Although it
is not a lipid biosynthetic enzyme, depletion of stomatin causes cells
to change their lipidomes. These changes include specific lipid species,
like ether lipids, and lipid families like phosphatidylcholines. Addition
of exogenous phosphatidylcholines rescues stomatin-induced defects.
These data suggest that stomatin interfaces with lipid metabolism.
Stomatin has multiple contacts with the plasma membrane and we identify
which sites are required for its role in cell division, as well as
associated lipid shifts. We also show that stomatin’s mobility
on the plasma membrane changes during division, further supporting
the requirement for a highly regulated physical interaction between
membrane lipids and this newly identified cell division protein.
Collapse
Affiliation(s)
- Federico Donà
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Andrea Paquola
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| | - Federica Ferrentino
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| | - Stephen J Terry
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Gaoge Wang
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
19
|
Rougé S, Genetet S, Leal Denis MF, Dussiot M, Schwarzbaum PJ, Ostuni MA, Mouro-Chanteloup I. Mechanosensitive Pannexin 1 Activity Is Modulated by Stomatin in Human Red Blood Cells. Int J Mol Sci 2022; 23:ijms23169401. [PMID: 36012667 PMCID: PMC9409209 DOI: 10.3390/ijms23169401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom− clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition.
Collapse
Affiliation(s)
- Sarah Rougé
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Maria Florencia Leal Denis
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Michael Dussiot
- Université Paris Cité, INSERM U1163, IMAGINE, F-75015 Paris, France
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
| | - Mariano Anibal Ostuni
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
| | - Isabelle Mouro-Chanteloup
- Université Paris Cité and Université des Antilles, INSERM U1134, BIGR, F-75014 Paris, France
- Correspondence:
| |
Collapse
|
20
|
Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth. Nat Commun 2022; 13:4174. [PMID: 35854007 PMCID: PMC9296665 DOI: 10.1038/s41467-022-31825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist. Stomatin is a component of lipid rafts. Here, Wu et al. show that stomatin modulates the differentiation and functions of adipocytes by regulating adipogenesis signaling and fatty acid influx such that with excessive calorie intake, increased stomatin induces adiposity.
Collapse
|
21
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
22
|
Ma C, Wang C, Luo D, Yan L, Yang W, Li N, Gao N. Structural insights into the membrane microdomain organization by SPFH family proteins. Cell Res 2022; 32:176-189. [PMID: 34975153 PMCID: PMC8807802 DOI: 10.1038/s41422-021-00598-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
The lateral segregation of membrane constituents into functional microdomains, conceptually known as lipid raft, is a universal organization principle for cellular membranes in both prokaryotes and eukaryotes. The widespread Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) family proteins are enriched in functional membrane microdomains at various subcellular locations, and therefore were hypothesized to play a scaffolding role in microdomain formation. In addition, many SPFH proteins are also implicated in highly specific processes occurring on the membrane. However, none of these functions is understood at the molecular level. Here we report the structure of a supramolecular complex that is isolated from bacterial membrane microdomains and contains two SPFH proteins (HflK and HflC) and a membrane-anchored AAA+ protease FtsH. HflK and HflC form a circular 24-mer assembly, featuring a laterally segregated membrane microdomain (20 nm in diameter) bordered by transmembrane domains of HflK/C and a completely sealed periplasmic vault. Four FtsH hexamers are embedded inside this microdomain through interactions with the inner surface of the vault. These observations provide a mechanistic explanation for the role of HflK/C and their mitochondrial homologs prohibitins in regulating membrane-bound AAA+ proteases, and suggest a general model for the organization and functionalization of membrane microdomains by SPFH proteins.
Collapse
Affiliation(s)
- Chengying Ma
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengkun Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dingyi Luo
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Lu Yan
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Wenxian Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ningning Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
23
|
Zhang H, Wu G, Feng J, Lu X, Liu P. Expression of STOML2 promotes proliferation and glycolysis of multiple myeloma cells via upregulating PAI-1. J Orthop Surg Res 2021; 16:667. [PMID: 34774067 PMCID: PMC8590323 DOI: 10.1186/s13018-021-02819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of STOML2 and the relationship between STOML2 and PAI-1 in the development of multiple myeloma (MM). METHODS Cell proliferation was tested using CCK-8 assay and cell colony formation assay. Glucose consumption, lactate production and ATP level were measured using commercial kits. The mRNA and protein expression were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. RESULTS Both mRNA and protein expression of STOML2 were upregulated in MM patients compared to healthy volunteers. CCK-8 and colony formation assays demonstrated that STOML2 silencing inhibited cell proliferation in MM cells. Knockdown of STOML2 reduced glucose consumption, lactate production and ATP/ADP ratios. STOML2 silencing by shSTOML2 led to reduced PAI-1 expression. Overexpression of PAI-1 reversed the inhibitory effects of shSTOML2 on MM cell growth. CONCLUSION Results from this study demonstrated that STOML2 silencing inhibits cell proliferation and glycolysis through downregulation of PAI-1 expression, suggesting a new therapeutic target for MM.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, 832008, Xinjiang Uygur Autonomous Region, China
| | - Guangsheng Wu
- Department of Hematology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, 832008, Xinjiang Uygur Autonomous Region, China
| | - Junjian Feng
- Department of Intensive Care Unit, Luzhou People's Hospital, Luzhou City, 646000, Sichuan Province, China
| | - Xiaohong Lu
- Department of Hematology, Luzhou People's Hospital, Luzhou City, 646000, Sichuan Province, China
| | - Ping Liu
- Department of Pathology, Luzhou People's Hospital, Section 2 of JiuGu Avenue, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
24
|
Serricchio M, Bütikofer P. A Conserved Mitochondrial Chaperone-Protease Complex Involved in Protein Homeostasis. Front Mol Biosci 2021; 8:767088. [PMID: 34859054 PMCID: PMC8630662 DOI: 10.3389/fmolb.2021.767088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
25
|
The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence. Microorganisms 2021; 9:microorganisms9112287. [PMID: 34835412 PMCID: PMC8624314 DOI: 10.3390/microorganisms9112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans.
Collapse
|
26
|
Sato A, Rahman NIA, Shimizu A, Ogita H. Cell-to-cell contact-mediated regulation of tumor behavior in the tumor microenvironment. Cancer Sci 2021; 112:4005-4012. [PMID: 34420253 PMCID: PMC8486192 DOI: 10.1111/cas.15114] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor growth and progression are complex processes mediated by mutual interactions between cancer cells and their surrounding stroma that include diverse cell types and acellular components, which form the tumor microenvironment. In this environment, direct intercellular communications play important roles in the regulation of the biological behaviors of tumors. However, the underlying molecular mechanisms are insufficiently defined. We used an in vitro coculture system to identify genes that were specifically expressed at higher levels in cancer cells associated with stromal cells. Major examples included epithelial membrane protein 1 (EMP1) and stomatin, which positively and negatively regulate tumor progression, respectively. EMP1 promotes tumor cell migration and metastasis via activation of the small GTPase Rac1, while stomatin strongly suppresses cell proliferation and induces apoptosis of cancer cells via inhibition of Akt signaling. Here we highlight important aspects of EMP1, stomatin, and their family members in cancer biology. Furthermore, we consider the molecules that participate in intercellular communications and signaling transduction between cancer cells and stromal cells, which may affect the phenotypes of cancer cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Akira Sato
- Division of Molecular Medical BiochemistryDepartment of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Nor Idayu A. Rahman
- Division of Molecular Medical BiochemistryDepartment of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akio Shimizu
- Division of Molecular Medical BiochemistryDepartment of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Hisakazu Ogita
- Division of Molecular Medical BiochemistryDepartment of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
27
|
Richardson J, Kotevski A, Poole K. From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J 2021; 289:4447-4469. [PMID: 34060230 DOI: 10.1111/febs.16041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023]
Abstract
The ability of cells to convert mechanical perturbations into biochemical information is an essential aspect of mammalian physiology. The molecules that mediate such mechanotransduction include mechanically activated ion channels, which directly convert mechanical inputs into electrochemical signals. The unifying feature of these channels is that their open probability increases with the application of a mechanical input. However, the structure, activation profile and sensitivity of distinct mechanically activated ion channels vary from channel to channel. In this review, we discuss how ionic currents can be mechanically evoked and monitored in vitro, and describe the distinct activation profiles displayed by a range of mammalian channels. In addition, we discuss the various mechanisms by which the best-characterized mammalian, mechanically activated ion channel, PIEZO1, can be modulated. The diversity of activation and modulation of these mammalian ion channels suggest that these molecules may facilitate a finely controlled and diverse ability to sense mechanical inputs in mammalian cells.
Collapse
Affiliation(s)
- Jessica Richardson
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Adrian Kotevski
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Kate Poole
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia.,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Hu Y, Xu Y, Chen W, Qiu Z. Stomatin-Like Protein-2: A Potential Target to Treat Mitochondrial Cardiomyopathy. Heart Lung Circ 2021; 30:1449-1455. [PMID: 34088631 DOI: 10.1016/j.hlc.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022]
Abstract
Stomatin-like protein-2 (SLP-2) is a mitochondrial-associated protein that is abundant in cardiomyocytes. Many reports have shown that SLP-2 plays an important role in mitochondria. The treatment of mitochondrial cardiomyopathy (MCM) needs further improvement, so the relationship between SLP-2 and MCM is worth exploring. This study reviewed some protective mechanisms of SLP-2 on mitochondria. Published studies have shown that SLP-2 protects mitochondria by stabilising the function of optic atrophy 1 (OPA1), promoting mitofusin (Mfn) 2 expression, interacting with prohibitins and cardiolipin, forming SLP-2-PARL-YME1L (SPY) complex, and stabilising respiratory chain complexes, suggesting that SLP-2 is a new potential target for the treatment of MCM. However, the specific mechanism of SLP-2 needs to be confirmed by further research.
Collapse
Affiliation(s)
- Yuntao Hu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
29
|
Rahman NIA, Sato A, Tsevelnorov K, Shimizu A, Komeno M, Ahmat Amin MKB, Molla MR, Soh JEC, Nguyen LKC, Wada A, Kawauchi A, Ogita H. Stomatin-Mediated Inhibition of the Akt Signaling Axis Suppresses Tumor Growth. Cancer Res 2021; 81:2318-2331. [PMID: 33757977 DOI: 10.1158/0008-5472.can-20-2331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
The growth and progression of cancers are crucially regulated by the tumor microenvironment where tumor cells and stromal cells are mutually associated. In this study, we found that stomatin expression was markedly upregulated by the interaction between prostate cancer cells and stromal cells. Stomatin suppressed cancer cell proliferation and enhanced apoptosis in vitro and inhibited xenograft tumor growth in vivo. Stomatin inhibited Akt activation, which is mediated by phosphoinositide-dependent protein kinase 1 (PDPK1). PDPK1 protein stability was maintained by its binding to HSP90. Stomatin interacted with PDPK1 and interfered with the PDPK1-HSP90 complex formation, resulting in decreased PDPK1 expression. Knockdown of stomatin in cancer cells elevated Akt activation and promoted cell increase by promoting the interaction between PDPK1 and HSP90. Clinically, stomatin expression levels were significantly decreased in human prostate cancer samples with high Gleason scores, and lower expression of stomatin was associated with higher recurrence of prostate cancer after the operation. Collectively, these findings demonstrate the tumor-suppressive effect of stromal-induced stomatin on cancer cells. SIGNIFICANCE: These findings reveal that interactions with stromal cells induce expression of stomatin in prostate cancer cells, which suppresses tumor growth via attenuation of the Akt signaling axis.
Collapse
Affiliation(s)
- Nor Idayu A Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| | - Khurelbaatar Tsevelnorov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mohammad Khusni Bin Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akinori Wada
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
30
|
A Role for STOML3 in Olfactory Sensory Transduction. eNeuro 2021; 8:ENEURO.0565-20.2021. [PMID: 33637538 PMCID: PMC7986538 DOI: 10.1523/eneuro.0565-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.
Collapse
|
31
|
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, Chen J, Zhang J. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol 2021; 14:16. [PMID: 33446239 PMCID: PMC7807703 DOI: 10.1186/s13045-020-01029-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significance and biological involvement of mitochondrial inner membrane protein STOML2 in HCC. METHODS STOML2 was identified by gene expression profiles of HCC tissues and was measured in tissue microarray and cell lines. Gain/loss-of-function experiment was applied to study the biological function of STOML2 in HCC. Flow cytometry, Western blotting, laser confocal microscopy, transmission electron microscopy, and co-immunoprecipitation were used to detect and analyze mitophagy. ChIP and luciferase reporter assay were conducted to evaluate the relationship between STOML2 and HIF-1α. The sensitivity to lenvatinib was assessed in HCC both in vitro and in vivo. RESULTS Increased expression of STOML2 was found in HCC compared with paired peritumoral tissues. It was more significant in HCC with metastasis and correlated with worse overall survival and higher probability of recurrence after hepatectomy. Upregulation of STOML2 accelerated HCC cells colony formation, migration and invasion. Mechanically, TCGA dataset-based analysis showed enrichment of autophagy-related pathways in STOML2 highly-expressed HCC. Next, STOML2 was demonstrated to interact and stabilize PINK1 under cellular stress, amplify PINK1-Parkin-mediated mitophagy and then promote HCC growth and metastasis. Most interestingly, HIF-1α was upregulated and transcriptionally increased STOML2 expression in HCC cells under the treatment of lenvatinib. Furthermore, higher sensitivity to lenvatinib was found in HCC cells when STOML2 was downregulated. Combination therapy with lenvatinib and mitophagy inhibitor hydroxychloroquine obtained best efficacy. CONCLUSIONS Our findings suggested that STOML2 could amplify mitophagy through interacting and stabilizing PINK1, which promote HCC metastasis and modulate the response of HCC to lenvatinib. Combinations of pharmacologic inhibitors that concurrently block both angiogenesis and mitophagy may serve as an effective treatment for HCC.
Collapse
Affiliation(s)
- Yahui Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Zhao
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qingfeng Sun
- Department of Infectious Diseases, Ruian People's Hospital, Ruian, 325200, China
| | - Zhifei Lin
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinhong Chen
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
32
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
34
|
Structure and Energy-Conversion Mechanism of the Bacterial Na+-Driven Flagellar Motor. Trends Microbiol 2020; 28:719-731. [DOI: 10.1016/j.tim.2020.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
|
35
|
Guizouarn H, Allegrini B. Erythroid glucose transport in health and disease. Pflugers Arch 2020; 472:1371-1383. [PMID: 32474749 DOI: 10.1007/s00424-020-02406-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Glucose transport is intimately linked to red blood cell physiology. Glucose is the unique energy source for these cells, and defects in glucose metabolism or transport activity are associated with impaired red blood cell morphology and deformability leading to reduced lifespan. In vertebrate erythrocytes, glucose transport is mediated by GLUT1 (in humans) or GLUT4 transporters. These proteins also account for dehydroascorbic acid (DHA) transport through erythrocyte membrane. The peculiarities of glucose transporters and the red blood cell pathologies involving GLUT1 are summarized in the present review.
Collapse
Affiliation(s)
- Hélène Guizouarn
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, 28 av. Valrose, 06100, Nice, France.
| | - Benoit Allegrini
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, 28 av. Valrose, 06100, Nice, France
| |
Collapse
|
36
|
Wang D, Qi H, Li A, Deng F, Xu Y, Hu Z, Liu Q, Wang Y. Coexisting overexpression of STOML1 and STOML2 proteins may be associated with pathology of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:591-599.e3. [PMID: 32402568 DOI: 10.1016/j.oooo.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/17/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aimed to investigate the expression and co-localization of stomatin-like protein-1 (STOML1) and stomatin-like protein-2 (STOML2) in oral squamous cell carcinoma (OSCC) tissues in situ and evaluate their pathologic roles in OSCC. STUDY DESIGN STOML1 and STOML2 in human OSCC tissues (n = 109) and normal oral/paracancerous tissues (n = 19) were detected by using multiple immunohistochemistry (IHC) staining. Positive staining scores and clinicopathologic features during the OSCC process were analyzed. RESULTS STOML1 and STOML2 were significantly overexpressed in OSCC tissues compared with normal oral tissue/paracancerous tissues (P < .0001 and P < .0001, respectively). Furthermore, both STOML1 and STOML2 were positively associated with pathologic tumor (T) stages. Positive signals of both STOML1 and STOML2 were mainly localized to the cell membrane and the cytoplasm, whereas those of STOML1 were also expressed in the cell nucleus. CONCLUSIONS Our results indicated that overexpression of STOML1 and STOML2 was significantly associated with T1 and T2 stages of OSCC. STOML1 and STOML2 were mainly co-localized at the cell membrane and the cytoplasm. These findings suggested that either STOML1 or STOML2 may play critical roles in OSCC development and may serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Daiwei Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Qi
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ang Li
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Deng
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ying Xu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhangli Hu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiong Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Appelman MD, Robin MJ, Vogels EW, Wolzak C, Vos WG, Vos HR, Van Es RM, Burgering BM, Van de Graaf SF. The Lipid Raft Component Stomatin Interacts with the Na + Taurocholate Cotransporting Polypeptide (NTCP) and Modulates Bile Salt Uptake. Cells 2020; 9:cells9040986. [PMID: 32316189 PMCID: PMC7226988 DOI: 10.3390/cells9040986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein–protein interactions that could play a role in the regulation of NTCP. To this end, NTCP was precipitated from HA-tagged hNTCP-expressing HepG2 cells, and chloride channel CLIC-like 1 (CLCC1) and stomatin were identified as interacting proteins by mass spectrometry. Interaction was confirmed by co-immunoprecipitation. NTCP, CLCC1 and stomatin were found at the plasma membrane in lipid rafts, as demonstrated by a combination of immunofluorescence, cell surface biotinylation and isolation of detergent-resistant membranes. Neither CLCC1 overexpression nor its knockdown had an effect on NTCP function. However, both stomatin overexpression and knockdown increased NTCP-mediated taurocholate uptake while NTCP abundance at the plasma membrane was only increased in stomatin depleted cells. These findings identify stomatin as an interactor of NTCP and show that the interaction modulates bile salt transport.
Collapse
Affiliation(s)
- Monique D. Appelman
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Marion J.D. Robin
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Esther W.M. Vogels
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Christie Wolzak
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Winnie G. Vos
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Robert M. Van Es
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Boudewijn M.T. Burgering
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Stan F.J. Van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
- Amsterdam UMC, Department of Gastroenterology and Hepatology, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam 1105 AZ, The Netherlands
- Correspondence:
| |
Collapse
|
38
|
Freitas Leal JK, Lasonder E, Sharma V, Schiller J, Fanelli G, Rinalducci S, Brock R, Bosman G. Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences. Proteomes 2020; 8:proteomes8020006. [PMID: 32244435 PMCID: PMC7356037 DOI: 10.3390/proteomes8020006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.
Collapse
Affiliation(s)
- Joames K. Freitas Leal
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Edwin Lasonder
- Department of Applied Sciences, Faculty of Life and Health Sciences, Northumbria University, Newcastle-Upon-Tyne NE1 8ST, UK;
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 4107 Leipzig, Germany;
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Roland Brock
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Giel Bosman
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
- Correspondence:
| |
Collapse
|
39
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
40
|
Wang M, Li C, Shi W. Stomatin-like protein-2 confers neuroprotection effect in oxygen-glucose deprivation/reoxygenation-injured neurons by regulating AMPK/Nrf2 signalling. J Drug Target 2019; 28:600-608. [PMID: 31791154 DOI: 10.1080/1061186x.2019.1700262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stomatin-like protein-2 (SLP-2) has emerged as a cytoprotective protein that confers a protective effect against various stresses. However, whether SLP-2 confers neuroprotection during cerebral ischemia/reperfusion injury remains unclear. In the present study, we investigated the role of SLP-2 in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress, which has been used as an in vitro model of cerebral ischemia/reperfusion injury. We found that OGD/R treatment resulted in a significant reduction in SLP-2 expression in neurons. Functional experiments demonstrated that SLP-2 overexpression significantly increased cell viability and decreased cell apoptosis and reactive oxygen species (ROS) production in OGD/R-exposed neurons, while SLP-2 inhibition showed the opposite effect. Notably, SLP-2 overexpression was shown to up-regulate the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). In addition, SLP-2 overexpression increased the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 and reinforced the activity of Nrf2/antioxidant response element (ARE)-mediated transcription. However, AMPK inhibition or Nrf2/ARE inhibition partially reversed SLP-2-mediated neuroprotection effect in OGD/R-exposed neurons. Taken together, these results demonstrate that SLP-2 confers neuroprotection effect in OGD/R-injured neurons associated with reinforcing AMPK/Nrf2 signalling, suggesting SLP-2 as a potential therapeutic target for cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Minjuan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Chengliang Li
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wei Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS NANO 2019; 13:13545-13559. [PMID: 31689081 DOI: 10.1021/acsnano.9b07499] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Collapse
Affiliation(s)
- Navid Bavi
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jessica Richardson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Celine Heu
- Biomedical Imaging Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW 2010 , Australia
- St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW 2010 , Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
42
|
Sahu SN, Moharana M, Sahu R, Pattanayak SK. Impact of mutation on podocin protein involved in type 2 nephrotic syndrome: Insights into docking and molecular dynamics simulation study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
An H, Ma X, Liu M, Wang X, Wei X, Yuan W, Ma J. Stomatin plays a suppressor role in non-small cell lung cancer metastasis. Chin J Cancer Res 2019; 31:930-944. [PMID: 31949395 PMCID: PMC6955161 DOI: 10.21147/j.issn.1000-9604.2019.06.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective Metastasis is one of the key causes of high mortality in lung cancer. Aberrant DNA methylation is a common event in metastatic lung cancer. We aimed to identify new epigenetic regulation of metastasis-associated genes and characterize their effects on lung cancer progression. Methods We screened genes associated with non-small cell lung cancer (NSCLC) metastasis by integrating datasets from the Gene Expression Omnibus (GEO) database. We obtained epigenetic-regulated candidate genes by analyzing the expression profile of demethylation genes. By overlapping analysis, epigenetically modulated metastasis-associated genes were obtained. Kaplan-Meier plotter (KM plotter) was utilized to assess the overall survival (OS) of stomatin in lung cancer. Immunohistochemistry (IHC) was conducted to determine the association between stomatin and metastasis-associated clinical indicators. Both in vitro and in vivo assays were performed to investigate the potential role of stomatin in metastasis. The regulation mechanisms of transforming growth factor β1 (TGFβ1) on stomatin were determined by Sequenom MassARRAY quantitative methylation and western blot assays.
Results A series of bioinformatic analyses revealed stomatin as the metastasis-associated gene regulated by DNA methylation. The KM plotter analysis showed a positive association between stomatin and the OS of lung cancer. IHC analysis indicated that the decreased stomatin expression is linked with advanced TNM stage. Loss- and gain-of-function experiments displayed that stomatin could inhibit the migration and invasion of NSCLC cells. Furthermore, TGFβ1 repressed stomatin expression during epithelial-to-mesenchymal transition (EMT). The negative correlation between stomatin and TGFβ1 was also validated in advanced stage III lung tumor samples. The underlying mechanism by which TGFβ1 inhibits stomatin is due in part to DNA methylation. Conclusions Our results suggest that stomatin may be a target for epigenetic regulation and can be used to prevent metastatic diseases.
Collapse
Affiliation(s)
- Huaying An
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingyi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
44
|
Cerletti M, Giménez MI, Tröetschel C, D' Alessandro C, Poetsch A, De Castro RE, Paggi RA. Proteomic Study of the Exponential-Stationary Growth Phase Transition in the Haloarchaea Natrialba magadii and Haloferax volcanii. Proteomics 2018; 18:e1800116. [PMID: 29888524 DOI: 10.1002/pmic.201800116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 11/12/2022]
Abstract
The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - María Ines Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | | | - Celeste D' Alessandro
- Laboratório de Patologia e Controle Microbiano de Insetos, ESALQ-USP, Piracicaba-SP, 13418-900, Brazil
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Rosana Ester De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| |
Collapse
|
45
|
Conrad KA, Rodriguez R, Salcedo EC, Rauceo JM. The Candida albicans stress response gene Stomatin-Like Protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells. PLoS One 2018; 13:e0192250. [PMID: 29389961 PMCID: PMC5794166 DOI: 10.1371/journal.pone.0192250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
The ubiquitous presence of SPFH (Stomatin, Prohibitin, Flotillin, HflK/HflC) proteins in all domains of life suggests that their function would be conserved. However, SPFH functions are diverse with organism-specific attributes. SPFH proteins play critical roles in physiological processes such as mechanosensation and respiration. Here, we characterize the stomatin ORF19.7296/SLP3 in the opportunistic human pathogen Candida albicans. Consistent with the localization of stomatin proteins, a Slp3p-Yfp fusion protein formed visible puncta along the plasma membrane. We also visualized Slp3p within the vacuolar lumen. Slp3p primary sequence analyses identified four putative S-palmitoylation sites, which may facilitate membrane localization and are conserved features of stomatins. Plasma membrane insertion sequences are present in mammalian and nematode SPFH proteins, but are absent in Slp3p. Strikingly, Slp3p was present in yeast cells, but was absent in hyphal cells, thus categorizing it as a yeast-phase specific protein. Slp3p membrane fluorescence significantly increased in response to cellular stress caused by plasma membrane, cell wall, oxidative, or osmotic perturbants, implicating SLP3 as a general stress-response gene. A slp3Δ/Δ homozygous null mutant had no detected phenotype when slp3Δ/Δ mutants were grown in the presence of a variety of stress agents. Also, we did not observe a defect in ion accumulation, filamentation, endocytosis, vacuolar structure and function, cell wall structure, or cytoskeletal structure. However, SLP3 over-expression triggered apoptotic-like death following prolonged exposure to oxidative stress or when cells were induced to form hyphae. Our findings reveal the cellular localization of Slp3p, and for the first time associate Slp3p function with the oxidative stress response.
Collapse
Affiliation(s)
- Karen A. Conrad
- Department of Sciences, John Jay College of the City University of New York, New York, New York, United States of America
| | - Ronald Rodriguez
- Department of Sciences, John Jay College of the City University of New York, New York, New York, United States of America
| | - Eugenia C. Salcedo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, United States of America
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol 2017; 18:771-783. [PMID: 28974772 DOI: 10.1038/nrm.2017.92] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular mechanotransduction, the process of translating mechanical forces into biological signals, is crucial for a wide range of physiological processes. A role for ion channels in sensing mechanical forces has been proposed for decades, but their identity in mammals remained largely elusive until the discovery of Piezos. Recent research on Piezos has underscored their importance in somatosensation (touch perception, proprioception and pulmonary respiration), red blood cell volume regulation, vascular physiology and various human genetic disorders.
Collapse
|
47
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
48
|
Nagarajan A, Dogra SK, Sun L, Gandotra N, Ho T, Cai G, Cline G, Kumar P, Cowles RA, Wajapeyee N. Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport. Mol Cell 2017; 67:685-701.e6. [PMID: 28803777 DOI: 10.1016/j.molcel.2017.07.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022]
Abstract
Metabolic deregulation is a hallmark of human cancers, and the glycolytic and glutamine metabolism pathways were shown to be deregulated in pancreatic ductal adenocarcinoma (PDAC). To identify new metabolic regulators of PDAC tumor growth and metastasis, we systematically knocked down metabolic genes that were overexpressed in human PDAC tumor samples using short hairpin RNAs. We found that p53 transcriptionally represses paraoxonase 2 (PON2), which regulates GLUT1-mediated glucose transport via stomatin. The loss of PON2 initiates the cellular starvation response and activates AMP-activated protein kinase (AMPK). In turn, AMPK activates FOXO3A and its transcriptional target, PUMA, which induces anoikis to suppress PDAC tumor growth and metastasis. Pharmacological or genetic activation of AMPK, similar to PON2 inhibition, blocks PDAC tumor growth. Collectively, our results identify PON2 as a new modulator of glucose transport that regulates a pharmacologically tractable pathway necessary for PDAC tumor growth and metastasis.
Collapse
Affiliation(s)
- Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shaillay Kumar Dogra
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A(∗)STAR), Brenner Center for Molecular Medicine, Singapore 117609, Singapore
| | - Lisha Sun
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Neeru Gandotra
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thuy Ho
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gary Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Robert A Cowles
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Structure-function analysis of human stomatin: A mutation study. PLoS One 2017; 12:e0178646. [PMID: 28575093 PMCID: PMC5456319 DOI: 10.1371/journal.pone.0178646] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Stomatin is an ancient, widely expressed, oligomeric, monotopic membrane protein that is associated with cholesterol-rich membranes/lipid rafts. It is part of the SPFH superfamily including stomatin-like proteins, prohibitins, flotillin/reggie proteins, bacterial HflK/C proteins and erlins. Biochemical features such as palmitoylation, oligomerization, and hydrophobic “hairpin” structure show similarity to caveolins and other integral scaffolding proteins. Recent structure analyses of the conserved PHB/SPFH domain revealed amino acid residues and subdomains that appear essential for the structure and function of stomatin. To test the significance of these residues and domains, we exchanged or deleted them, expressed respective GFP-tagged mutants, and studied their subcellular localization, molecular dynamics and biochemical properties. We show that stomatin is a cholesterol binding protein and that at least two domains are important for the association with cholesterol-rich membranes. The conserved, prominent coiled-coil domain is necessary for oligomerization, while association with cholesterol-rich membranes is also involved in oligomer formation. FRAP analyses indicate that the C-terminus is the dominant entity for lateral mobility and binding site for the cortical actin cytoskeleton.
Collapse
|
50
|
Martzoukou O, Amillis S, Zervakou A, Christoforidis S, Diallinas G. The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. eLife 2017; 6. [PMID: 28220754 PMCID: PMC5338921 DOI: 10.7554/elife.20083] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
Filamentous fungi provide excellent systems for investigating the role of the AP-2 complex in polar growth. Using Aspergillus nidulans, we show that AP-2 has a clathrin-independent essential role in polarity maintenance and growth. This is in line with a sequence analysis showing that the AP-2 β subunit (β2) of higher fungi lacks a clathrin-binding domain, and experiments showing that AP-2 does not co-localize with clathrin. We provide genetic and cellular evidence that AP-2 interacts with endocytic markers SlaBEnd4 and SagAEnd3 and the lipid flippases DnfA and DnfB in the sub-apical collar region of hyphae. The role of AP-2 in the maintenance of proper apical membrane lipid and cell wall composition is further supported by its functional interaction with BasA (sphingolipid biosynthesis) and StoA (apical sterol-rich membrane domains), and its essentiality in polar deposition of chitin. Our findings support that the AP-2 complex of dikarya has acquired, in the course of evolution, a specialized clathrin-independent function necessary for fungal polar growth. DOI:http://dx.doi.org/10.7554/eLife.20083.001
Collapse
Affiliation(s)
- Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Amalia Zervakou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|