1
|
Valls A, Ruiz-Roldán C, Immanuel J, Alonso-Martín S, Gallardo E, Fernández-Torrón R, Bonilla M, Lersundi A, Hernández-Laín A, Domínguez-González C, Vílchez JJ, Iruzubieta P, López de Munain A, Sáenz A. The Role of Integrin β1D Mislocalization in the Pathophysiology of Calpain 3-Related Limb-Girdle Muscular Dystrophy. Cells 2025; 14:446. [PMID: 40136695 PMCID: PMC11941428 DOI: 10.3390/cells14060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Limb-girdle muscular dystrophy R1 (LGMDR1) is characterized by progressive proximal muscle weakness due to mutations in the CAPN3 gene. Little is known about CAPN3's function in muscle, but its loss results in aberrant sarcomere formation. Human muscle structure was analyzed in this study, with observations including integrin β1D isoform (ITGβ1D) mislocalization, a lack of Talin-1 (TLN1) in the sarcolemma and the irregular expression of focal adhesion kinase (FAK) in LGMDR1 muscles, suggesting a lack of integrin activation with an altered sarcolemma, extracellular matrix (ECM) assembly and signaling pathway deregulation, which may cause frailty in LGMDR1 muscle fibers. Additionally, altered nuclear morphology, centrosome distribution and microtubule organization have been found in muscle cells derived from LGMDR1 patients.
Collapse
Affiliation(s)
- Andrea Valls
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Cristina Ruiz-Roldán
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Jenita Immanuel
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Sonia Alonso-Martín
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Stem Cells and Aging Group, Bioengineering Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Sant Pau, IR-SantPau, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Roberto Fernández-Torrón
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, Osakidetza, 20014 San Sebastian, Spain
| | - Mario Bonilla
- Stem Cells and Aging Group, Bioengineering Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Department of Traumatology, Donostialdea Integrated Health Organisation, Osakidetza, 20014 San Sebastian, Spain
| | - Ana Lersundi
- Department of Traumatology, Donostialdea Integrated Health Organisation, Osakidetza, 20014 San Sebastian, Spain
- Department of Surgery, University of the Basque Country UPV/EHU, 20014 San Sebastian, Spain
| | - Aurelio Hernández-Laín
- Department of Neuropathology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Pathology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Juan Jesús Vílchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Pablo Iruzubieta
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Neurogenetics, RNA Biology and Therapies Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, Osakidetza, 20014 San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastian, Spain
- Faculty of Medicine, University of Deusto, 48007 Bilbao, Spain
| | - Amets Sáenz
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
2
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
3
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 PMCID: PMC11639776 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Beatriz Garcia-Del-Valle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Jack T. Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| |
Collapse
|
4
|
Sirtori R, J Gregoire M, M Potts E, Collins A, Donatelli L, Fallini C. LINC complex alterations are a key feature of sporadic and familial ALS/FTD. Acta Neuropathol Commun 2024; 12:69. [PMID: 38664831 PMCID: PMC11046770 DOI: 10.1186/s40478-024-01778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.
Collapse
Affiliation(s)
- Riccardo Sirtori
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
| | - Michelle J Gregoire
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Emily M Potts
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Alicia Collins
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Liviana Donatelli
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America
| | - Claudia Fallini
- Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Rd, 02881, Kingston, RI, United States of America.
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, 02881, Kingston, RI, United States of America.
- Interdisciplinary Neuroscience Program, University of Rhode Island, 9 Greenhouse Road, 02881, Kingston, RI, United States of America.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, United States of America.
| |
Collapse
|
5
|
Sirtori R, Gregoire M, Potts E, Collins A, Donatelli L, Fallini C. LINC complex alterations are a hallmark of sporadic and familial ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584123. [PMID: 38559165 PMCID: PMC10979905 DOI: 10.1101/2024.03.08.584123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex biopsies. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.
Collapse
|
6
|
Benarroch L, Madsen-Østerbye J, Abdelhalim M, Mamchaoui K, Ohana J, Bigot A, Mouly V, Bonne G, Bertrand AT, Collas P. Cellular and Genomic Features of Muscle Differentiation from Isogenic Fibroblasts and Myoblasts. Cells 2023; 12:1995. [PMID: 37566074 PMCID: PMC10417614 DOI: 10.3390/cells12151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.
Collapse
Affiliation(s)
- Louise Benarroch
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Jessica Ohana
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France; (L.B.); (K.M.); (J.O.); (A.B.); (V.M.); (G.B.)
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (J.M.-Ø.); (M.A.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
7
|
Viegas D, Pereira CD, Martins F, Mateus T, da Cruz e Silva OAB, Herdeiro MT, Rebelo S. Nuclear Envelope Alterations in Myotonic Dystrophy Type 1 Patient-Derived Fibroblasts. Int J Mol Sci 2022; 23:522. [PMID: 35008948 PMCID: PMC8745202 DOI: 10.3390/ijms23010522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (D.V.); (C.D.P.); (F.M.); (T.M.); (O.A.B.d.C.e.S.); (M.T.H.)
| |
Collapse
|
8
|
Ghosh S, Cuevas VC, Seelbinder B, Neu CP. Image-Based Elastography of Heterochromatin and Euchromatin Domains in the Deforming Cell Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006109. [PMID: 33448065 PMCID: PMC7869959 DOI: 10.1002/smll.202006109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Indexed: 05/21/2023]
Abstract
Chromatin of the eukaryotic cell nucleus comprises microscopically dense heterochromatin and loose euchromatin domains, each with distinct transcriptional ability and roles in cellular mechanotransduction. While recent methods are developed to characterize the mechanics of nucleus, measurement of intranuclear mechanics remains largely unknown. Here, the development of "nuclear elastography," which combines microscopic imaging and computational modeling to quantify the relative elasticity of the heterochromatin and euchromatin domains, is described. Using contracting murine embryonic cardiomyocytes, nuclear elastography reveals that the heterochromatin is almost four times stiffer than the euchromatin at peak deformation. The relative elasticity between the two domains changes rapidly during the active deformation of the cardiomyocyte in the normal physiological condition but progresses more slowly in cells cultured in a mechanically stiff environment, although the relative stiffness at peak deformation does not change. Further, it is found that the disruption of the Klarsicht, ANC-1, Syne Homology domain of the Linker of Nucleoskeleton and Cytoskeleton complex compromises the intranuclear elasticity distribution resulting in elastically similar heterochromatin and euchromatin. These results provide insight into the elastography dynamics of heterochromatin and euchromatin domains and provide a noninvasive framework to further investigate the mechanobiological function of subcellular and subnuclear domains limited only by the spatiotemporal resolution of the acquired images.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Victor Crespo Cuevas
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
9
|
LINC complex regulation of genome organization and function. Curr Opin Genet Dev 2021; 67:130-141. [PMID: 33524904 DOI: 10.1016/j.gde.2020.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
The regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function. This connection, potentially allows for the constant detection of environmental mechanical stimuli, resulting in altered regulation of nuclear architecture and genome function, either directly or via the process of mechanotransduction. Here, we review the influences LINC complexes exert on genome functions and their impact on cellular/organismal health.
Collapse
|
10
|
Charar C, Metsuyanim-Cohen S, Gruenbaum Y, Bar DZ. Exploring the nuclear lamina in health and pathology using C. elegans. Curr Top Dev Biol 2021; 144:91-110. [PMID: 33992162 DOI: 10.1016/bs.ctdb.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The eukaryotic genome inside the nucleus is enveloped by two membranes, the Outer Nuclear Membrane (ONM) and the Inner Nuclear Membrane (INM). Tethered to the INM is the nuclear lamina, a fibrillar network composed of lamins-the nuclear intermediate filaments, and membrane associated proteins. The nuclear lamina interacts with several nuclear structures, including chromatin. As most nuclear functions, including regulation of gene expression, chromosome segregation and duplication as well as nuclear structure, are highly conserved in metazoans, the Caenorhabditis elegans nematode serves as a powerful model organism to study nuclear processes and architecture. This translucent organism can easily be observed under a microscope as a live embryo, larvae and even adult. Here we will review the data on nuclear lamina composition and functions gathered from studies using C. elegans model organisms: We will discuss genome spatial organization and its contribution to gene expression. We will review both the interaction between the cytoplasm and the nucleus and mechanotransduction mechanism. Finally, we will discuss disease causing mutation in nuclear lamins, including the use of this animal model in diseases research.
Collapse
Affiliation(s)
- Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sally Metsuyanim-Cohen
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Gurusaran M, Davies OR. A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6:6 assemblies. eLife 2021; 10:60175. [PMID: 33393904 PMCID: PMC7800377 DOI: 10.7554/elife.60175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Owen Richard Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
12
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
13
|
Jacob N, Kumagai K, Abraham JP, Shimodaira Y, Ye Y, Luu J, Blackwood AY, Castanon SL, Stamps DT, Thomas LS, Gonsky R, Shih DQ, Michelsen KS, Targan SR. Direct signaling of TL1A-DR3 on fibroblasts induces intestinal fibrosis in vivo. Sci Rep 2020; 10:18189. [PMID: 33097818 PMCID: PMC7584589 DOI: 10.1038/s41598-020-75168-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease, modulating the location and severity of inflammation and fibrosis. TL1A expression is increased in inflamed mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice causes spontaneous ileitis, and exacerbates induced proximal colitis and fibrosis. Intestinal fibroblasts express Death-receptor 3 (DR3; the only know receptor for TL1A) and stimulation with TL1A induces activation in vitro. However, the contribution of direct TL1A-DR3 activation on fibroblasts to fibrosis in vivo remains unknown. TL1A overexpressing naïve T cells were transferred into Rag-/- , Rag-/- mice lacking DR3 in all cell types (Rag-/-Dr3-/-), or Rag-/- mice lacking DR3 only on fibroblasts (Rag-/-Dr3∆Col1a2) to induce colitis and fibrosis, assessed by clinical disease activity index, intestinal inflammation, and collagen deposition. Rag-/- mice developed overt colitis with intestinal fibrostenosis. In contrast, Rag-/-Dr3-/- demonstrated decreased inflammation and fibrosis. Despite similar clinical disease and inflammation as Rag-/-, Rag-/-Dr3∆Col1a2 exhibited reduced intestinal fibrosis and attenuated fibroblast activation and migration. RNA-Sequencing of TL1A-stimulated fibroblasts identified Rho signal transduction as a major pathway activated by TL1A and inhibition of this pathway modulated TL1A-mediated fibroblast functions. Thus, direct TL1A signaling on fibroblasts promotes intestinal fibrosis in vivo. These results provide novel insight into profibrotic pathways mediated by TL1A paralleling its pro-inflammatory effects.
Collapse
Affiliation(s)
- Noam Jacob
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10945 Le Conte Ave., Suite 2114, Los Angeles, CA, 90095, USA.
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| | - Kotaro Kumagai
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Jay P Abraham
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Yosuke Shimodaira
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Yuefang Ye
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Justin Luu
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Anna Y Blackwood
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Sofi L Castanon
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Dalton T Stamps
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Lisa S Thomas
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Rivkah Gonsky
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - David Q Shih
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Cedars-Sinai Medical Center, Inflammatory Bowel & Immunobiology Research Institute, Los Angeles, CA, 90048, USA
| |
Collapse
|
14
|
Ghosh S, Seelbinder B, Henderson JT, Watts RD, Scott AK, Veress AI, Neu CP. Deformation Microscopy for Dynamic Intracellular and Intranuclear Mapping of Mechanics with High Spatiotemporal Resolution. Cell Rep 2020; 27:1607-1620.e4. [PMID: 31042484 PMCID: PMC8769958 DOI: 10.1016/j.celrep.2019.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/10/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Structural heterogeneity is a hallmark of living cells that drives local mechanical properties and dynamic cellular responses. However, the robust quantification of intracellular mechanics is lacking from conventional methods. Here, we describe the development of deformation microscopy, which leverages conventional imaging and an automated hyperelastic warping algorithm to investigate strain history, deformation dynamics, and changes in structural heterogeneity within the interior of cells and cell nuclei. Using deformation microscopy, we found that partial or complete disruption of LINC complexes in cardiomyocytes in vitro and lamin A/C deficiency in myocytes in vivo abrogate dominant tensile loading in the nuclear interior. We also found that cells cultured on stiff substrates or in hyperosmotic conditions displayed abnormal strain burden and asymmetries at interchromatin regions, which are associated with active transcription. Deformation microscopy represents a foundational approach toward intracellular elastography, with the potential utility to provide mechanistic and quantitative insights in diverse mechanobiological applications. Ghosh et al. show that deformation microscopy, a technique based on image analysis and mechanics, reveals deformation dynamics and structural heterogeneity changes for several applications and at multiple scales, including tissues, cells, and nuclei. They reveal how the disruption of nuclear proteins and pathological conditions abrogate mechanical strain in the nuclear interior.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Jonathan T Henderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ryan D Watts
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Adrienne K Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Alexander I Veress
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Sur-Erdem I, Hussain MS, Asif M, Pınarbası N, Aksu AC, Noegel AA. Nesprin-1 impact on tumorigenic cell phenotypes. Mol Biol Rep 2019; 47:921-934. [PMID: 31741263 DOI: 10.1007/s11033-019-05184-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
The largest protein of the nuclear envelope (NE) is Nesprin-1 which forms a network along the NE interacting with actin, Emerin, Lamin, and SUN proteins. Mutations in the SYNE1 gene and reduction in Nesprin-1 protein levels have been reported to correlate with several age related diseases and cancer. In the present study, we tested whether Nesprin-1 overexpression can reverse the malignant phenotype of Huh7 cells, a human liver cancer cell line, which carries a mutation in the SYNE1 gene resulting in reduced Nesprin-1 protein levels, has altered nuclear shape, altered amounts and localization of NE components, centrosome localization and genome stability. Ectopic expression of a mini-Nesprin-1 led to an improvement of the nuclear shape, corrected the mislocalization of NE proteins, the centrosome positioning, and the alterations in the DNA damage response network. Additionally, Nesprin-1 had a profound effect on cellular senescence. These findings suggest that Nesprin-1 may be effective in tumorigenic cell phenotype correction of human liver cancer.
Collapse
Affiliation(s)
- Ilknur Sur-Erdem
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Koç University School of Medicine, 34450, Istanbul, Turkey. .,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| | - Muhammed Sajid Hussain
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Maria Asif
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Nareg Pınarbası
- Koç University School of Medicine, 34450, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ali Cenk Aksu
- Koç University School of Medicine, 34450, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Šoltić D, Shorrock HK, Allardyce H, Wilson EL, Holt I, Synowsky SA, Shirran SL, Parson SH, Gillingwater TH, Fuller HR. Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2019; 28:3515-3527. [PMID: 31397869 PMCID: PMC6927462 DOI: 10.1093/hmg/ddz195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on β-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.
Collapse
Affiliation(s)
- Darija Šoltić
- Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Hazel Allardyce
- Institute of Education for Medical and Dental Science, College of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Emma L Wilson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Simon H Parson
- Institute of Education for Medical and Dental Science, College of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Heidi R Fuller
- Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
17
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
19
|
Sahinoz M, Khairi S, Cuttitta A, Brady GF, Rupani A, Meral R, Tayeh MK, Thomas P, Riebschleger M, Camelo-Piragua S, Innis JW, Bishr Omary M, Michele DE, Oral EA. Potential association of LMNA-associated generalized lipodystrophy with juvenile dermatomyositis. Clin Diabetes Endocrinol 2018; 4:6. [PMID: 29610677 PMCID: PMC5870259 DOI: 10.1186/s40842-018-0058-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Juvenile dermatomyositis (JDM) is an auto-immune muscle disease which presents with skin manifestations and muscle weakness. At least 10% of the patients with JDM present with acquired lipodystrophy. Laminopathies are caused by mutations in the lamin genes and cover a wide spectrum of diseases including muscular dystrophies and lipodystrophy. The p.T10I LMNA variant is associated with a phenotype of generalized lipodystrophy that has also been called atypical progeroid syndrome. CASE PRESENTATION A previously healthy female presented with bilateral proximal lower extremity muscle weakness at age 4. She was diagnosed with JDM based on her clinical presentation, laboratory tests and magnetic resonance imaging (MRI). She had subcutaneous fat loss which started in her extremities and progressed to her whole body. At age 7, she had diabetes, hypertriglyceridemia, low leptin levels and low body fat on dual energy X-ray absorptiometry (DEXA) scan, and was diagnosed with acquired generalized lipodystrophy (AGL). Whole exome sequencing (WES) revealed a heterozygous c.29C > T; p.T10I missense pathogenic variant in LMNA, which encodes lamins A and C. Muscle biopsy confirmed JDM rather than muscular dystrophy, showing perifascicular atrophy and perivascular mononuclear cell infiltration. Immunofluroscence of skin fibroblasts confirmed nuclear atypia and fragmentation. CONCLUSIONS This is a unique case with p.T10I LMNA variant displaying concurrent JDM and AGL. This co-occurrence raises the intriguing possibility that LMNA, and possibly p.T10I, may have a pathogenic role in not only the occurrence of generalized lipodystrophy, but also juvenile dermatomyositis. Careful phenotypic characterization of additional patients with laminopathies as well as individuals with JDM is warranted.
Collapse
Affiliation(s)
- Melis Sahinoz
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Shafaq Khairi
- Metabolism Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan and Brehm Center for Diabetes, 1000 Wall Street, Room 5313, Ann Arbor, MI MI48105 USA
| | - Ashley Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Graham F. Brady
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Amit Rupani
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI USA
| | - Rasimcan Meral
- Metabolism Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan and Brehm Center for Diabetes, 1000 Wall Street, Room 5313, Ann Arbor, MI MI48105 USA
| | - Marwan K. Tayeh
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI USA
| | - Peedikayil Thomas
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI USA
| | - Meredith Riebschleger
- Division of Pediatric Rheumatology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI USA
| | | | - Jeffrey W. Innis
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI USA
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Elif A. Oral
- Metabolism Endocrinology and Diabetes Division, Department of Internal Medicine, University of Michigan and Brehm Center for Diabetes, 1000 Wall Street, Room 5313, Ann Arbor, MI MI48105 USA
| |
Collapse
|
20
|
Nesprin-1/2: roles in nuclear envelope organisation, myogenesis and muscle disease. Biochem Soc Trans 2018; 46:311-320. [PMID: 29487227 DOI: 10.1042/bst20170149] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Nesprin-1 and -2 are highly expressed in skeletal and cardiac muscles and together with SUN (Sad1p/UNC84) domain-containing proteins form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex at the nuclear envelope in association with lamin A/C and emerin. Mutations in nesprin-1/2 have been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). Several lines of evidence indicate that compromised LINC complex function is the critical step leading to muscle disease. Here, we review recent advances in our understanding of the functions of nesprin-1/2 in the LINC complex and mechanistic insights into how mutations in nesprin-1/2 lead to nesprin-related muscle diseases, in particular DCM and EDMD.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Nuclear envelope links to a wide range of disorders, including several myopathies and neuropathies over the past 2 decades, has spurred research leading to a completely changed view of this important cellular structure and its functions. However, the many functions now assigned to the nuclear envelope make it increasingly hard to determine which functions underlie these disorders. RECENT FINDINGS New nuclear envelope functions in genome organization, regulation and repair, signaling, and nuclear and cellular mechanics have been added to its classical barrier function. Arguments can be made for any of these functions mediating abnormality in nuclear envelope disorders and data exist supporting many. Moreover, transient and/or distal nuclear envelope connections to other cellular proteins and structures may increase the complexity of these disorders. SUMMARY Although the increased understanding of nuclear envelope functions has made it harder to distinguish specific causes of nuclear envelope disorders, this is because it has greatly expanded the spectrum of possible mechanisms underlying them. This change in perspective applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear envelope in a much wider range of myopathies and neuropathies.
Collapse
|
22
|
Biotinylation by antibody recognition-a method for proximity labeling. Nat Methods 2017; 15:127-133. [PMID: 29256494 PMCID: PMC5790613 DOI: 10.1038/nmeth.4533] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/30/2017] [Indexed: 01/12/2023]
Abstract
Identification of protein-protein interactions is a major goal of biological research. Despite technical advances over the last two decades, important but still largely unsolved challenges include the high-throughput detection of interactions directly from primary tissue and the identification of interactors of insoluble proteins that form higher-order structures. We have developed a novel, proximity-based labeling approach that uses antibodies to guide biotin deposition onto adjacent proteins in fixed cells and primary tissues. We showed our method to be specific and sensitive by labeling a mitochondrial matrix protein. Next, we used this method to profile the dynamic interactome of lamin A/C in multiple cell and tissue types under various treatment conditions. The ability to detect proximal proteins and putative interactors in intact tissues, and to quantify changes caused by different conditions or in the presence of disease mutations, can provide a new window into cell biology and disease pathogenesis.
Collapse
|
23
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
24
|
Schwartz C, Fischer M, Mamchaoui K, Bigot A, Lok T, Verdier C, Duperray A, Michel R, Holt I, Voit T, Quijano-Roy S, Bonne G, Coirault C. Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle cell precursors through FHOD1. Sci Rep 2017; 7:1253. [PMID: 28455503 PMCID: PMC5430732 DOI: 10.1038/s41598-017-01324-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/03/2023] Open
Abstract
LINC complexes are crucial for the response of muscle cell precursors to the rigidity of their environment, but the mechanisms explaining this behaviour are not known. Here we show that pathogenic mutations in LMNA or SYNE-1 responsible for severe muscle dystrophies reduced the ability of human muscle cell precursors to adapt to substrates of different stiffness. Plated on muscle-like stiffness matrix, mutant cells exhibited contractile stress fibre accumulation, increased focal adhesions, and higher traction force than controls. Inhibition of Rho-associated kinase (ROCK) prevented cytoskeletal defects, while inhibiting myosin light chain kinase or phosphorylation of focal adhesion kinase was ineffective. Depletion or inactivation of a ROCK-dependent regulator of actin remodelling, the formin FHOD1, largely rescued morphology in mutant cells. The functional integrity of lamin and nesprin-1 is thus required to modulate the FHOD1 activity and the inside-out mechanical coupling that tunes the cell internal stiffness to match that of its soft, physiological-like environment.
Collapse
Affiliation(s)
- Christine Schwartz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
| | - Martina Fischer
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
| | - Anne Bigot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
| | - Thevy Lok
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
| | - Alain Duperray
- INSERM, Institut Albert Bonniot, U1209, F-38000, Grenoble, France
- Université Grenoble Alpes, IAB, F-38000, Grenoble, France
| | - Richard Michel
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Thomas Voit
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
- NIHR Great Ormond Street Biomedical Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | | - Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France
| | - Catherine Coirault
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Centre for Research in Myology, Paris, France.
| |
Collapse
|
25
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
26
|
Sukumaran SK, Stumpf M, Salamon S, Ahmad I, Bhattacharya K, Fischer S, Müller R, Altmüller J, Budde B, Thiele H, Tariq M, Malik NA, Nürnberg P, Baig SM, Hussain MS, Noegel AA. CDK5RAP2 interaction with components of the Hippo signaling pathway may play a role in primary microcephaly. Mol Genet Genomics 2016; 292:365-383. [PMID: 28004182 PMCID: PMC5357305 DOI: 10.1007/s00438-016-1277-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in brain size but with normal architecture. It is often linked to mutations in genes coding for centrosomal proteins; however, their role in brain size regulation is not completely understood. By combining homozygosity mapping and whole-exome sequencing in an MCPH family from Pakistan, we identified a novel mutation (XM_011518861.1; c.4114C > T) in CDK5RAP2, the gene associated with primary microcephaly-3 (MCPH3), leading to a premature stop codon (p.Arg1372*). CDK5RAP2 is a component of the pericentriolar material important for the microtubule-organizing function of the centrosome. Patient-derived primary fibroblasts had strongly decreased CDK5RAP2 amounts, showed centrosomal and nuclear abnormalities and exhibited changes in cell size and migration. We further identified an interaction of CDK5RAP2 with the Hippo pathway components MST1 kinase and the transcriptional regulator TAZ. This finding potentially provides a mechanism through which the Hippo pathway with its roles in the regulation of centrosome number is linked to the centrosome. In the patient fibroblasts, we observed higher levels of TAZ and YAP. However, common target genes of the Hippo pathway were downregulated as compared to the control with the exception of BIRC5 (Survivin), which was significantly upregulated. We propose that the centrosomal deficiencies and the altered cellular properties in the patient fibroblasts can also result from the observed changes in the Hippo pathway components which could thus be relevant for MCPH and play a role in brain size regulation and development.
Collapse
Affiliation(s)
- Salil K Sukumaran
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Maria Stumpf
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Sarah Salamon
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany
| | - Ilyas Ahmad
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Kurchi Bhattacharya
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Sarah Fischer
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Birgit Budde
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Muhammad Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Naveed Altaf Malik
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany. .,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany.
| | - Shahid Mahmood Baig
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - Muhammad Sajid Hussain
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany.,Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Köln, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Köln, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Köln, Germany.
| |
Collapse
|
27
|
Barker AR, McIntosh KV, Dawe HR. Centrosome positioning in non-dividing cells. PROTOPLASMA 2016; 253:1007-1021. [PMID: 26319517 DOI: 10.1007/s00709-015-0883-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.
Collapse
Affiliation(s)
- Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London
| | - Kate V McIntosh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
28
|
Pitangui NDS, Sardi JDCO, Voltan AR, Dos Santos CT, da Silva JDF, da Silva RAM, Souza FO, Soares CP, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages. Front Microbiol 2016; 6:1526. [PMID: 26793172 PMCID: PMC4707385 DOI: 10.3389/fmicb.2015.01526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022] Open
Abstract
Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.
Collapse
Affiliation(s)
- Nayla de Souza Pitangui
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Aline R Voltan
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Claudia T Dos Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Rosangela A M da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Felipe O Souza
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Christiane P Soares
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Gabriela Rodríguez-Arellanes
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autónoma de México México City, México
| | - Maria Lucia Taylor
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autónoma de México México City, México
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
29
|
Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cell Mol Bioeng 2015; 9:12-37. [PMID: 26900408 PMCID: PMC4746215 DOI: 10.1007/s12195-015-0422-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
The aim of cardiovascular regeneration is to mimic the biological and mechanical functioning of tissues. For this it is crucial to recapitulate the in vivo cellular organization, which is the result of controlled cellular orientation. Cellular orientation response stems from the interaction between the cell and its complex biophysical environment. Environmental
biophysical cues are continuously detected and transduced to the nucleus through entwined mechanotransduction pathways. Next to the biochemical cascades invoked by the mechanical stimuli, the structural mechanotransduction pathway made of focal adhesions and the actin cytoskeleton can quickly transduce the biophysical signals directly to the nucleus. Observations linking cellular orientation response to biophysical cues have pointed out that the anisotropy and cyclic straining of the substrate influence cellular orientation. Yet, little is known about the mechanisms governing cellular orientation responses in case of cues applied separately and in combination. This review provides the state-of-the-art knowledge on the structural mechanotransduction pathway of adhesive cells, followed by an overview of the current understanding of cellular orientation responses to substrate anisotropy and uniaxial cyclic strain. Finally, we argue that comprehensive understanding of cellular orientation in complex biophysical environments requires systematic approaches based on the dissection of (sub)cellular responses to the individual cues composing the biophysical niche.
Collapse
|
30
|
Li P, Noegel AA. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res 2015; 43:9874-88. [PMID: 26476453 PMCID: PMC4787764 DOI: 10.1093/nar/gkv1058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| |
Collapse
|
31
|
Meinke P, Schirmer EC. LINC'ing form and function at the nuclear envelope. FEBS Lett 2015; 589:2514-21. [PMID: 26096784 DOI: 10.1016/j.febslet.2015.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/15/2022]
Abstract
The nuclear envelope is an amazing piece of engineering. On one hand it is built like a mediaeval fortress with filament systems reinforcing its membrane walls and its double membrane structure forming a lumen like a castle moat. On the other hand its structure can adapt while maintaining its integrity like a reed bending in a river. Like a fortress it has guarded drawbridges in the nuclear pore complexes, but also has other mechanical means of communication. All this is enabled largely because of the LINC complex, a multi-protein structure that connects the intermediate filament nucleoskeleton across the lumen of the double membrane nuclear envelope to multiple cytoplasmic filament systems that themselves could act simultaneously both like mediaeval buttresses and like lines on a suspension bridge. Although many details of the greater LINC structure remain to be discerned, a number of recent findings are giving clues as to how its structural organization can yield such striking dynamic yet stable properties. Combining double- and triple-helical coiled-coils, intrinsic disorder and order, tissue-specific components, and intermediate filaments enables these unique properties.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Coyaud E, Mis M, Laurent EMN, Dunham WH, Couzens AL, Robitaille M, Gingras AC, Angers S, Raught B. BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates. Mol Cell Proteomics 2015; 14:1781-95. [PMID: 25900982 DOI: 10.1074/mcp.m114.045658] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF(β-TrCP1) and SCF(β-TrCP2) are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF(β-TrCP1/2) interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCF(β-TrCP1/2) substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for β-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that β-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network
| | - Monika Mis
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | | | - Wade H Dunham
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Amber L Couzens
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Melanie Robitaille
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | - Anne-Claude Gingras
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; ‖Department of Molecular Genetics, University of Toronto
| | - Stephane Angers
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto; **Department of Biochemistry, University of Toronto
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network; ‡‡Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
33
|
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. ACTA ACUST UNITED AC 2015; 208:11-22. [PMID: 25559183 PMCID: PMC4284225 DOI: 10.1083/jcb.201409047] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Wakam Chang
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Howard J Worman
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
34
|
Kosmas K, Eskandarnaz A, Khorsandi AB, Kumar A, Ranjan R, Eming SA, Noegel AA, Peche VS. CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds. Eur J Cell Biol 2015; 94:32-45. [DOI: 10.1016/j.ejcb.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022] Open
|
35
|
Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan GJM, Cavanagh DR, Wehnert M, Schirmer EC, Walter MC. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2014; 25:127-36. [PMID: 25454731 PMCID: PMC4317192 DOI: 10.1016/j.nmd.2014.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 12/02/2022]
Abstract
X-linked female presenting with EDMD1 not explained by uneven X-inactivation. First EDMD blood phenotype with highly lobulated lymphocytes in EDMD1 patient. Found high incidence of spontaneous differentiation in cultured patient myoblasts. Faster proliferation of emerin-null than emerin-positive EDMD1 patient myoblasts. Loss of satellite cells from the above might explain EDMD pathology.
Emery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells – a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Peter Schneiderat
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Vlastimil Srsen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Phú Lê Thành
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Graeme J M Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - David R Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Manfred Wehnert
- Institute of Human Genetics Greifswald, University Medicine, University of Greifswald, Germany (retired)
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Maggie C Walter
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
36
|
Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Straatman KR, Worman HJ, Gundersen GG, Lattanzi G, Wehnert M, Shackleton S. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 2014; 10:e1004605. [PMID: 25210889 PMCID: PMC4161305 DOI: 10.1371/journal.pgen.1004605] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning. Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder involving muscle wasting and weakness, accompanied by cardiac defects. The disease is variable in its severity and also in its genetic cause. So far, 6 genes have been linked to EDMD, most encoding proteins that form a structural network that supports the nucleus of the cell and connects it to structural elements of the cytoplasm. This network is particularly important in muscle cells, providing resistance to mechanical strain. Weakening of this network is thought to contribute to development of muscle disease in these patients. Despite rigorous screening, at least 50% of patients with EDMD have no detectable mutation in the 6 known genes. We therefore undertook screening and identified mutations in two additional genes that encode other components of the nuclear structural network, SUN1 and SUN2. Our findings add to the genetic complexity of this disease since some individuals carry mutations in more than one gene. We also show that the mutations disrupt connections between the nucleus and the structural elements of cytoplasm, leading to mis-positioning and clustering of nuclei in muscle cells. This nuclear mis-positioning is likely to be another factor contributing to pathogenesis of EDMD.
Collapse
Affiliation(s)
- Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Elisabetta Mattioli
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Farhana Haque
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Howard J. Worman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Giovanna Lattanzi
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
The nucleus is the defining feature of eukaryotic cells and often represents the largest organelle. Over the past decade, it has become apparent that the nucleus is tightly integrated into the structural network of the cell through so-called LINC (linker of the nucleoskeleton and cytoskeleton) complexes, which enable transmission of forces between the nucleus and cytoskeleton. This physical connection between the nucleus and the cytoskeleton is essential for a broad range of cellular functions, including intracellular nuclear movement and positioning, cytoskeletal organization, cell polarization, and cell migration. Recent reports further indicate that forces transmitted from the extracellular matrix to the nucleus via the cytoskeleton may also directly contribute to the cell's ability to probe its mechanical environment by triggering force-induced changes in nuclear structures. In addition, it is now emerging that the physical properties of the nucleus play a crucial role during cell migration in three-dimensional (3D) environments, where cells often have to transit through narrow constrictions that are smaller than the nuclear diameter, e.g., during development, wound healing, or cancer metastasis. In this review, we provide a brief overview of how LINC complex proteins and lamins facilitate nucleo-cytoskeletal coupling, highlight recent findings regarding the role of the nucleus in cellular mechanotransduction and cell motility in 3D environments, and discuss how mutations and/or changes in the expression of these nuclear envelope proteins can result in a broad range of human diseases, including muscular dystrophy, dilated cardiomyopathy, and premature aging.
Collapse
|
38
|
Abstract
Nuclear envelope (NE) proteins have fundamental roles in maintaining nuclear structure, cell signaling, chromatin organization, and gene regulation, and mutations in genes encoding NE components were identified as primary cause of a number of age associated diseases and cancer. Nesprin-1 belongs to a family of multi-isomeric NE proteins that are characterized by spectrin repeats. We analyzed NE components in various tumor cell lines and found that Nesprin-1 levels were strongly reduced associated with alterations in further NE components. By reducing the amounts of Nesprin-1 by RNAi mediated knockdown, we could reproduce those alterations in mouse and human cell lines. In a search for novel Nesprin-1 binding proteins, we identified MSH2 and MSH6, proteins of the DNA damage response pathway, as interactors and found alterations in the corresponding pathways in cells with lower Nesprin-1 levels. We also noticed increased number of γH2AX foci in the absence of exogenous DNA damage as was seen in tumor cells. The levels of phosphorylated kinases Chk1 and 2 were altered in a manner resembling tumor cells and the levels of Ku70 were low and the protein was not recruited to the DNA after hydroxyurea (HU) treatment. Our findings indicate a role for Nesprin-1 in the DNA damage response pathway and propose Nesprin-1 as novel player in tumorigenesis and genome instability.
Collapse
Affiliation(s)
- Ilknur Sur
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Sascha Neumann
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| |
Collapse
|
39
|
Banerjee I, Zhang J, Moore-Morris T, Pfeiffer E, Buchholz KS, Liu A, Ouyang K, Stroud MJ, Gerace L, Evans SM, McCulloch A, Chen J. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet 2014; 10:e1004114. [PMID: 24586179 PMCID: PMC3930490 DOI: 10.1371/journal.pgen.1004114] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/27/2013] [Indexed: 11/17/2022] Open
Abstract
Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.
Collapse
Affiliation(s)
- Indroneal Banerjee
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America
| | - Jianlin Zhang
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America
| | - Thomas Moore-Morris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, United States of America
| | - Emily Pfeiffer
- Department of Bioengineering, University of California-San Diego, La Jolla, California, United States of America
| | - Kyle S Buchholz
- Department of Bioengineering, University of California-San Diego, La Jolla, California, United States of America
| | - Ao Liu
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America
| | - Kunfu Ouyang
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America ; Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Matthew J Stroud
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America
| | - Larry Gerace
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, United States of America
| | - Andrew McCulloch
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America ; Department of Bioengineering, University of California-San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California-San Diego, La Jolla, California, United States of America
| |
Collapse
|
40
|
Li P, Meinke P, Huong LTT, Wehnert M, Noegel AA. Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum Mutat 2014; 35:452-61. [PMID: 24375709 DOI: 10.1002/humu.22504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023]
Abstract
Mutations in several genes encoding nuclear envelope (NE) associated proteins cause Emery-Dreifuss muscular dystrophy (EDMD). We analyzed fibroblasts from a patient who had a mutation in the EMD gene (p.L84Pfs*6) leading to loss of Emerin and a heterozygous mutation in SUN1 (p.A203V). The second patient harbored a heterozygous mutation in LAP2alpha (p.P426L) and a further mutation in SUN1 (p.A614V). p.A203V is located in the N-terminal domain of SUN1 facing the nucleoplasm and situated in the vicinity of the Nesprin-2 and Emerin binding site. p.A614V precedes the SUN domain, which interacts with the KASH domain of Nesprins in the periplasmic space and forms the center of the LINC complex. At the cellular level, we observed alterations in the amounts for several components of the NE in patient fibroblasts and further phenotypic characteristics generally attributed to laminopathies such as increased sensitivity to heat stress. The defects were more severe than observed in EDMD cells with mutations in a single gene. In particular, in patient fibroblasts carrying the p.A203V mutation in SUN1, the alterations were aggravated. Moreover, SUN1 of both patient fibroblasts exhibited reduced interaction with Lamin A/C and when expressed ectopically in wild-type fibroblasts, the SUN1 mutant proteins exhibited reduced interactions with Emerin as well.
Collapse
Affiliation(s)
- Ping Li
- Institute for Biochemistry I, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Neumann S, Noegel AA. Nesprins in Cell Stability and Migration. CANCER BIOLOGY AND THE NUCLEAR ENVELOPE 2014; 773:491-504. [DOI: 10.1007/978-1-4899-8032-8_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Cartwright S, Karakesisoglou I. Nesprins in health and disease. Semin Cell Dev Biol 2013; 29:169-79. [PMID: 24374011 DOI: 10.1016/j.semcdb.2013.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 01/20/2023]
Abstract
LINC (Linker of Nucleoskeleton and Cytoskeleton) complex is an evolutionary conserved structure that spans the entire nuclear envelope (NE), and integrates the nuclear interior with the cytoskeleton, in order to support a diverse array of fundamental biological processes. Key components of the LINC complex are the nesprins (Nuclear Envelope SPectrin Repeat proteINS) that were initially described as large integral NE proteins. However, nesprin genes are complex and generate many variants, which occupy various sub-cellular compartments suggesting additional functions. Hence, the potential involvement of nesprins in disease has expanded immensely on what we already know. That is, nesprins are implicated in diseases such as cancer, myopathies, arthrogryposis, neurological disorders and hearing loss. Here we review nesprins by providing an in depth account of their structure, molecular interactions and cellular functions with relevance to their potential roles in disease. Specifically, we speculate about possible pathomechanisms underlying nesprin-associated diseases.
Collapse
Affiliation(s)
- Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
44
|
Yang L, Munck M, Swaminathan K, Kapinos LE, Noegel AA, Neumann S. Mutations in LMNA modulate the lamin A--Nesprin-2 interaction and cause LINC complex alterations. PLoS One 2013; 8:e71850. [PMID: 23977161 PMCID: PMC3748058 DOI: 10.1371/journal.pone.0071850] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background In eukaryotes the genetic material is enclosed by a continuous membrane system, the nuclear envelope (NE). Along the NE specific proteins assemble to form meshworks and mutations in these proteins have been described in a group of human diseases called laminopathies. Laminopathies include lipodystrophies, muscle and cardiac diseases as well as metabolic or progeroid syndromes. Most laminopathies are caused by mutations in the LMNAgene encoding lamins A/C. Together with Nesprins (Nuclear Envelope Spectrin Repeat Proteins) they are core components of the LINC complex (Linker of Nucleoskeleton and Cytoskeleton). The LINC complex connects the nucleoskeleton and the cytoskeleton and plays a role in the transfer of mechanically induced signals along the NE into the nucleus, and its components have been attributed functions in maintaining nuclear and cellular organization as well as signal transduction. Results Here we narrowed down the interaction sites between lamin A and Nesprin-2 to aa 403–425 in lamin A and aa 6146–6347 in Nesprin-2. Laminopathic mutations in and around the involved region of lamin A (R401C, G411D, G413C, V415I, R419C, L421P, R427G, Q432X) modulate the interaction with Nesprin-2 and this may contribute to the disease phenotype. The most notable mutation is the lamin A mutation Q432X that alters LINC complex protein assemblies and causes chromosomal and transcription factor rearrangements. Conclusion Mutations in Nesprin-2 and lamin A are characterised by complex genotype phenotype relations. Our data show that each mutation in LMNAanalysed here has a distinct impact on the interaction among both proteins that substantially explains how distinct mutations in widely expressed genes lead to the formation of phenotypically different diseases.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Martina Munck
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Karthic Swaminathan
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Larisa E. Kapinos
- Biozentrum and the Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Angelika A. Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail: (AAN); (SN)
| | - Sascha Neumann
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail: (AAN); (SN)
| |
Collapse
|
45
|
Abstract
Nuclear envelope
spectrin-repeat
proteins (Nesprins), are a novel family of
nuclear and cytoskeletal proteins with rapidly expanding roles as intracellular scaffolds
and linkers. Originally described as proteins that localise to the nuclear envelope (NE)
and establish nuclear-cytoskeletal connections, nesprins have now been found to comprise a
diverse spectrum of tissue specific isoforms that localise to multiple sub-cellular
compartments. Here, we describe how nesprins are necessary in maintaining cellular
architecture by acting as essential scaffolds and linkers at both the NE and other
sub-cellular domains. More importantly, we speculate how nesprin mutations may disrupt
tissue specific nesprin scaffolds and explain the tissue specific nature of many
nesprin-associated diseases, including laminopathies.
Collapse
|
46
|
Wang W, Shi Z, Jiao S, Chen C, Wang H, Liu G, Wang Q, Zhao Y, Greene MI, Zhou Z. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res 2012; 22:1440-52. [PMID: 22945352 DOI: 10.1038/cr.2012.126] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domain-containing proteins and bridge the inner and outer membranes of the nuclear envelope. LINC complexes play critical roles in nuclear positioning, cell polarization and cellular stiffness. Previously, we reported the homotrimeric structure of human SUN2. We have now determined the crystal structure of the human SUN2-KASH complex. In the complex structure, the SUN domain homotrimer binds to three independent "hook"-like KASH peptides. The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state. A major conformational change involves the AA'-loop of KASH-bound SUN domain, which rearranges to form a mini β-sheet that interacts with the KASH peptide. The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain, which we termed the BI-pocket. Moreover, two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding. Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro. In addition, transfection of wild-type, but not mutant, SUN2 promotes cell migration in Ovcar-3 cells. These results provide a structural model of the LINC complex, which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.
Collapse
Affiliation(s)
- Wenjia Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|