1
|
Li W, Xie J, Yang L, Yang Y, Yang L, Li L. 15-deoxy-Δ 12,14-prostaglandin J 2 relieved acute liver injury by inhibiting macrophage migration inhibitory factor expression via PPARγ in hepatocyte. Int Immunopharmacol 2023; 121:110491. [PMID: 37329807 DOI: 10.1016/j.intimp.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jieshi Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Zhang S, Zhuang L, Liu Q, Yu X, Min Q, Chen M, Chen Q. Rosiglitazone affects the progression of surgically‑induced endometriosis in a rat model. Mol Med Rep 2020; 23:35. [PMID: 33179107 PMCID: PMC7684857 DOI: 10.3892/mmr.2020.11673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is closely associated with inflammatory reactions and angiogenesis. Whether PPARγ is a target for the treatment of endometriosis remains unknown. The present study was designed to investigate the impact of a PPARγ agonist (rosiglitazone, RSG) on endometriosis in a rat model and to identify the underlying mechanism. The endometriosis model was established in rats. The pathological state of the endometrium was examined using hematoxylin‑eosin staining. The microstructures of interest were visualized using electron microscopy. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction were used to detect PPARγ and MAT2A expression. VEGF and caspase‑3 expression were investigated using immunohistochemistry. Pathological analysis revealed transparent and red nodules in the model group, and that vasoganglions were present all over the nodules. Endometrial epithelial hyperplasia was observed in the model group, and the shape was columnar. Increased interstitial cell numbers, with compact structure and abundant blood supply, were detected in the model group. Compared with the model group, incomplete epithelial structures with sparse interstitial cells and loose structure were observed in the pathological images from RSG treatment groups. Numerous inflammatory cells and poor blood supply were observed in the endometrial tissues, and the gland was filled mostly with vacuolar cells. Electron microscopy revealed that the tissue structure was integrated. Many vacuoles were formed within the endometrial tissue and the classical morphological changes of apoptotic cells were observed in RSG‑treated groups. Caspase‑3 and PPARγ expression increased and expression of VEGF and MAT2A decreased in RSG‑treated groups. Taken together, these results revealed that RSG impacts the development and progression of endometriosis likely by inhibiting angiogenesis and inducing apoptosis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingling Zhuang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolin Yu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qinghua Min
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minjie Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Huang N, Wang M, Peng J, Wei H. Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit Rev Food Sci Nutr 2020; 61:2399-2410. [PMID: 32662287 DOI: 10.1080/10408398.2020.1777932] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arachidonic acid (ARA), an n-6 essential fatty acid, plays an important role in human and animal growth and development. The ARA presents in the membrane phospholipids can be released by phospholipase A2. These free arachidonic acid molecules are then used to produce eicosanoids through three different pathways. Previous studies have demonstrated that eicosanoids have a wide range of physiological functions. Although they are generally considered to be pro-inflammatory molecules, recent advances have elucidated they have an effect on innate immunity via regulating the development, and differentiation of innate immune cells and the function of the intestinal epithelial barrier. Here, we review eicosanoids generation in intestine and their role in intestinal innate immunity, focusing on intestinal epithelial barrier, innate immune cell in lamina propria (LP) and their crosstalk.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
5
|
Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol 2017; 38:121-132. [PMID: 28975471 DOI: 10.1007/s10571-017-0554-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has been implicated in the pathology of numerous diseases involving diabetes, stroke, cancer, or obesity. It is expressed in diverse cell types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands also exert effects on attenuating degenerative processes in the brain, as well as in peripheral systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight key advances in the understanding of the PPARγ-related mechanisms responsible for neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ antagonists, used in experimental and clinical research. A better understanding of the pleiotropic mechanisms and applications of these drugs to improve the recovery and to repair the acute and chronic induced neuroinflammation after brain injuries will pave the way for more effective therapeutic strategies after brain deficits.
Collapse
|
6
|
miR-27b-3p, miR-181a-1-3p, and miR-326-5p are involved in the inhibition of macrophage activation in chronic liver injury. J Mol Med (Berl) 2017; 95:1091-1105. [DOI: 10.1007/s00109-017-1570-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
|
7
|
Chen K, Li JJ, Li SN, Feng J, Liu T, Wang F, Dai WQ, Xia YJ, Lu J, Zhou YQ, Guo CY. 15-Deoxy-Δ 12,14-prostaglandin J 2 alleviates hepatic ischemia-reperfusion injury in mice via inducing antioxidant response and inhibiting apoptosis and autophagy. Acta Pharmacol Sin 2017; 38:672-687. [PMID: 28216619 PMCID: PMC5457695 DOI: 10.1038/aps.2016.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a common clinical impairment that occurs in many circumstances and leads to poor prognosis. Both apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of the best-studied anti-inflammatory prostaglandins, which has been verified to exert anti-inflammatory and cell-protective functions in various types of cells and animal models. In this study we explored the effects of 15d-PGJ2 on both apoptosis and autophagy in mouse hepatic I/R injury and its possible mechanisms. A model of segmental (70%) hepatic warm ischemia was established in Balb/c mice, and the pathological changes in serum and liver tissues were detected at 6, 12, and 24 h post-surgery, while 15d-PGJ2 (2.5, 7.5, 15 μg, iv) was administered 30 min prior the surgery. Pretreatment with 15d-PGJ2 (7.5, 15 μg) significantly ameliorated I/R-induced hepatic injury evidenced by dose-dependent reduction of serum ALT and AST levels as well as alleviated tissue damages. 15d-PGJ2 pretreatment significantly decreased the serum TNF-α and IL-1β levels and the hepatic expression of F4/80, a major biomarker of macrophages. 15d-PGJ2 pretreatment upregulated the Bcl-2/Bax ratio, thus reducing the number of apoptotic cells in the livers. 15d-PGJ2 pretreatment considerably suppressed the expression of Beclin-1 and LC3, thus decreasing the number of autophagosomes in the livers. Furthermore, 15d-PGJ2 pretreatment activated Nrf2 and inhibited a ROS/HIF1α/BNIP3 pathway in the livers. Pretreatment with the PPARγ receptor blocker GW9662 (2 μg, ip) partly reversed the protective effects of 15d-PGJ2 on hepatic I/R injury. In conclusion, our results confirm the protective effect of 15d-PGJ2 on hepatic I/R injury, an effect that may rely on a reduction in the activation of Kupffer cells and on activation of the Nrf2 pathway, which lead to inhibition of ROS generation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing-jing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sai-nan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wei-qi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-jing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-qun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuan-yong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
8
|
Chen K, Li J, Li S, Feng J, Wu L, Liu T, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S, Wang F, Dai W, Xia Y, Lu J, Zhou Y, Guo C. 15d-PGJ2 alleviates ConA-induced acute liver injury in mice by up-regulating HO-1 and reducing hepatic cell autophagy. Biomed Pharmacother 2016; 80:183-192. [PMID: 27133055 DOI: 10.1016/j.biopha.2016.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE In this study, we confirmed a protective effect of 15d-PGJ2 in concanavalin A (ConA)-induced fulminant hepatitis in mice and investigated the potential mechanism. MATERIALS AND METHODS Balb/C mice were injected with ConA (25mg/kg) to induce acute fulminant hepatitis, and 15d-PGJ2 (2.5-10μg) was administered 30min after the ConA injection. The histological grade, pro-inflammatory cytokine and ROS levels, apoptosis and autophagy activity, the expression of HO-1, Nrf2, JNK and Bcl-2 activity were determined 2, 4, and 8h after the ConA injection. RESULTS Following ConA challenge, the expression of cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) was up-regulated. Treatment with 15d-PGJ2 reduced the pathological effects of ConA-induced fulminant hepatitis and significantly reduced the levels of TNF-α, IL-1β and ROS after injection. 15d-PGJ2 inhibited apoptosis and autophagic cell death, facilitated Nrf2 nuclear translocation, increased HO-1 expression and suppressed the JNK activation. CONCLUSION 15d-PGJ2 alleviates ConA-induced acute liver injury in mice by up-regulating the anti-oxidative stress factor HO-1 and reducing the production of cytokines and ROS, thereby inhibiting hepatic cell autophagy probably induced by ROS.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Keran Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; The First affiliated hospital of Soochow University, Suzhou 215006, China.
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; The First affiliated hospital of Soochow University, Suzhou 215006, China.
| | - Shunfeng Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; The First affiliated hospital of Soochow University, Suzhou 215006, China.
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
9
|
Tsuchiya H, Hohjoh H, Fujiwara Y, Sugimoto Y, Koshimizu TA. Prostaglandin D2 elicits the reversible neurite retraction in hypothalamic cell line. Biochem Biophys Res Commun 2016; 470:804-10. [PMID: 26820529 DOI: 10.1016/j.bbrc.2016.01.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
Prostaglandins (PGs) play important roles in diverse physiological processes in the central nervous system. PGD2 is the most abundant PG in the brain and acts through specific receptors, DP1 and CRTH2. We investigated the effects of PGD2 on the morphology of the hypothalamic cell line mHypoE-N37 (N37). In N37 cells, serum starvation induced neurite outgrowth and PGD2 elicited neurite retraction, although we failed to detect transcripts for DP1 and CRTH2. Such an effect of PGD2 was efficiently mimicked by its metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2. N-acetyl cysteine completely abolished the effect of PGD2, and reactive oxygen species (ROS) were considered to be important. Notably, neurite outgrowth was restored by PGD2 removal. These results suggest that PGD2 induces reversible neurite retraction in a ROS-mediated mechanism that does not involve any known receptor.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yoko Fujiwara
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
10
|
PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res 2015; 2015:549691. [PMID: 26713087 PMCID: PMC4680113 DOI: 10.1155/2015/549691] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022] Open
Abstract
The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.
Collapse
|
11
|
15-Deoxy-Δ(12,14)-Prostaglandin J2 Inhibits Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury via Redox Pathway. PPAR Res 2015; 2015:876160. [PMID: 26457076 PMCID: PMC4592740 DOI: 10.1155/2015/876160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
It has been reported that bone marrow-derived mesenchymal stem cells (BMSCs) have capacity to migrate to the damaged liver and contribute to fibrogenesis in chronic liver diseases. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ), is considered a new inhibitor of cell migration. However, the actions of 15d-PGJ2 on BMSC migration remain unknown. In this study, we investigated the effects of 15d-PGJ2 on the migration of BMSCs using a mouse model of chronic liver fibrosis and primary mouse BMSCs. Our results demonstrated that in vivo, 15d-PGJ2 administration inhibited the homing of BMSCs to injured liver by flow cytometric analysis and, in vitro, 15d-PGJ2 suppressed primary BMSC migration in a dose-dependent manner determined by Boyden chamber assay. Furthermore, the repressive effect of 15d-PGJ2 was blocked by reactive oxygen species (ROS) inhibitor, but not PPARγ antagonist, and action of 15d-PGJ2 was not reproduced by PPARγ synthetic ligands. In addition, 15d-PGJ2 triggered a significant ROS production and cytoskeletal remodeling in BMSCs. In conclusion, our results suggest that 15d-PGJ2 plays a crucial role in homing of BMSCs to the injured liver dependent on ROS production, independently of PPARγ, which may represent a new strategy in the treatment of liver fibrosis.
Collapse
|
12
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
13
|
Chen K, Li J, Wang J, Xia Y, Dai W, Wang F, Shen M, Cheng P, Zhang Y, Wang C, Yang J, Zhu R, Zhang H, Zheng Y, Lu J, Fan Z, Zhou Y, Guo C. 15-Deoxy- γ 12,14-prostaglandin J2 Reduces Liver Impairment in a Model of ConA-Induced Acute Hepatic Inflammation by Activation of PPAR γ and Reduction in NF- κ B Activity. PPAR Res 2014; 2014:215631. [PMID: 25120564 PMCID: PMC4121249 DOI: 10.1155/2014/215631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022] Open
Abstract
Objective. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) reduces inflammation and has been identified as an anti-inflammatory prostaglandin in numerous animal models. In this study, we investigated both effects of 15d-PGJ2 and its protection mechanism in concanavalin A- (ConA-) induced autoimmune hepatitis in mice. Materials and Methods. In vivo, Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and 15d-PGJ2 (10 μg or 25 μg) was administered 1 h before the ConA injection. The histological grade, proinflammatory cytokine levels, and NF-κB and PPARγ activity were determined 6, 12, and 24 h after the ConA injection. In vitro, LO2 cells and RAW264.7 cells were pretreated with 15d-PGJ2 (2 μM) 1 h before the stimulation with ConA (30 μg/mL). The NF-κB and PPARγ activity were determined 30 min after the ConA administration. Results. Pretreatment with 15d-PGJ2 reduced the pathological effects of ConA-induced autoimmune hepatitis and significantly reduced the levels of cytokines after injection. 15d-PGJ2 activated PPARγ, blocked the degradation of IκBα, and inhibited the translocation of NF-κB into the nucleus. Conclusion. These results indicate that 15d-PGJ2 protects against ConA-induced autoimmune hepatitis by reducing proinflammatory cytokines. This reduction in inflammation may correlate with the activation of PPARγ and the reduction in NF-κB activity.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Miao Shen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhuoyi Fan
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
14
|
Fernandez-Bustamante A, Klawitter J, Wilson P, Elkins ND, Agazio A, Shibata T, Uchida K, Christians U, Repine JE. Early increase in alveolar macrophage prostaglandin 15d-PGJ2 precedes neutrophil recruitment into lungs of cytokine-insufflated rats. Inflammation 2014; 36:1030-40. [PMID: 23616184 DOI: 10.1007/s10753-013-9635-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early detection and prevention is an important goal in acute respiratory distress syndrome research. We determined the concentration of the anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin-J2 (15d-PGJ2) and other components of the cyclopentenone prostaglandin cascade in relation to lung inflammation in cytokine (IL-1/LPS)-insufflated rats. We found that 15d-PGJ2 levels increase in the bronchoalveolar lavage (BAL) fluid of rats insufflated with cytokines 2 h before. BAL 15d-PGJ2 increases preceded neutrophil recruitment, lung injury, and oxidative stress in the lungs of cytokine-insufflated rats. 15d-PGJ2 was localized in alveolar macrophages that decreased following cytokine insufflation. 15d-PGJ2 may constitute an early biomarker of lung inflammation and may reflect an endogenous attempt to regulate ongoing inflammation in macrophages and elsewhere after cytokine insufflation.
Collapse
Affiliation(s)
- Ana Fernandez-Bustamante
- Department of Anesthesiology, University of Colorado SOM, AO-1, MS 8202, 12631 E 17th Ave, Aurora, CO, 80045, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Buckner MMC, Antunes LCM, Gill N, Russell SL, Shames SR, Finlay BB. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e69759. [PMID: 23922794 PMCID: PMC3724865 DOI: 10.1371/journal.pone.0069759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.
Collapse
Affiliation(s)
- Michelle M. C. Buckner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Navkiran Gill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Shames
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
16
|
Lu Y, Zhou Q, Zhong F, Guo S, Hao X, Li C, Wang W, Chen N. 15-Deoxy-Δ(12,14)-prostaglandin J(2) modulates lipopolysaccharide-induced chemokine expression by blocking nuclear factor-κB activation via peroxisome proliferator activated receptor-γ-independent mechanism in renal tubular epithelial cells. Nephron Clin Pract 2013; 123:1-10. [PMID: 23887394 DOI: 10.1159/000353232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/25/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/AIMS Inflammation is an unavoidable milieu for renal tubular cells during the development of renal tubulointerstitial fibrosis. It has been demonstrated that chemokines including monocyte chemoattractant protein-1 (MCP-1) and IL-8 are related to tubulointerstitial lesions. 15d-PGJ2 may modulate renal tubulointerstitial fibrosis progression via anti-inflammatory effects. However, no information is known about the effects of 15d-PGJ2 on chemokine expression in human proximal renal tubular cells (HPTECs) under inflammation. METHODS In the present study, HPTECs (HK-2 cells) were stimulated with lipopolysaccharide (LPS) only, or preincubated with 15d-PGJ2. IL-8 and MCP-1 expressions were determined by real-time PCR and ELISA. Nuclear factor-κB (NF-κB) location was detected by immunofluorescence analysis. The p-IKK, p-IκBα and p65/p50 were analyzed by immunoblotting. To investigate the mechanism of inhibitory effects of 15d-PGJ2, the PPAR-γ gene was effectively silenced in HK-2 cells using specific siRNA. RESULTS The results showed that application of LPS significantly increased IL-8 and MCP-1 production. Phosphorylation of IκBα, IKK and nucleus translocation of NF-κB significantly increased in LPS-stimulated HK-2 cells. 15d-PGJ2 downregulated LPS-induced IL-8 and MCP-1 production. Interestingly, in PPAR-γ-deficient HK-2 cells, 15d-PGJ2 was still capable of inhibiting chemokines expression and attenuating phosphorylation of IκBα and nucleus translocation of NF-κB. CONCLUSION Collectively, these results suggest that 15d-PGJ2 exerts anti-inflammatory actions on HK-2 cells by attenuating chemokines expression. 15d-PGJ2 inhibits chemokines expression via a PPAR-γ-independent way, which is related to block NF-κB pathway. Since NF-κB is an important regulator of the response of HPTECs to injury, PPAR-γ agonists may represent a key pharmacological target for ameliorating inflammation-associated tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ying Lu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ji HX, Zou YL, Duan JJ, Jia ZR, Li XJ, Wang Z, Li L, Li YW, Liu GY, Tong MQ, Li XY, Zhang GH, Dai XR, He L, Li ZY, Cao C, Yang Y. The synthetic melanocortin (CKPV)2 exerts anti-fungal and anti-inflammatory effects against Candida albicans vaginitis via inducing macrophage M2 polarization. PLoS One 2013; 8:e56004. [PMID: 23457491 PMCID: PMC3573073 DOI: 10.1371/journal.pone.0056004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/04/2013] [Indexed: 12/30/2022] Open
Abstract
In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation.
Collapse
Affiliation(s)
- Hai-xia Ji
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu-lian Zou
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing-jing Duan
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhi-rong Jia
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xian-jing Li
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhuo Wang
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Li Li
- Department of Pharmacology, Department of Physiology, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Yong-wen Li
- Department of Pharmacology, Department of Physiology, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Gen-yan Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ming-Qing Tong
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiao-yi Li
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Guo-hui Zhang
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Xiang-rong Dai
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Ling He
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhi-yu Li
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| | - Cong Cao
- Neuroscience Institute, Soochow University, Soochow, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| |
Collapse
|