1
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025; 39:1319-1343. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
2
|
Li X, Yu H, Liu R, Miao J, Lv J, Yang S, Zhu Y, Chen Y, Lu K, Huang C, Wang X. Activation of the Nrf2 Signaling Pathway by Tetrahydroberberine Suppresses Ferroptosis and Enhances Functional Recovery Following Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-04791-y. [PMID: 40011360 DOI: 10.1007/s12035-025-04791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Recent research has identified ferroptosis, a newly recognized form of programmed cell death, is a crucial factor in spinal cord injury (SCI). Tetrahydroberberine (THB) is a tetrahydroisoquinoline alkaloid derived from the tuber of the poppy family plant, Corydalis, which is recognized for its antioxidant and neuroprotective properties. Despite these attributes, the potential protective effects of THB against SCI are yet to be thoroughly investigated. Therefore, the aim of this study was to elucidate the protective effects and underlying mechanisms of action of THB in SCI. A mouse model of SCI was used for the in vivo experiments. Functional recovery was evaluated using the Basso Mouse Scale (BMS), footprint analysis, and hematoxylin and eosin (HE), Masson's trichrome, and Nissl staining. Lipid peroxidation was quantified using malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). The expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and ferroptosis markers were analyzed using western blot (WB) and immunofluorescence (IF) staining. To further elucidate the mechanism through which THB inhibits ferroptosis, an in vitro ferroptosis model was established in PC12 cells using RSL3, a known ferroptosis activator. THB markedly improved tissue and motor function restoration in mice post-SCI, with the BMS score increasing by approximately 50% compared with that in the control group. Lipid peroxidation assays revealed that THB significantly reduced MDA levels and increased GSH and SOD levels. Both in vivo and in vitro experiments demonstrated that THB significantly activated the Nrf2 pathway and inhibited ferroptosis in mice and in PC12 cells. This protective effect was reversed by the Nrf2 inhibitor, ML385, as evidenced by suppression of the Nrf2 pathway, increased lipid peroxidation, and elevated ferroptosis levels. Our in vivo and in vitro experiments indicate that THB promotes functional recovery after SCI by activating the Nrf2 signaling pathway, which attenuates lipid peroxidation and suppresses ferroptosis, thereby contributing to neuronal survival. Our findings contribute to a more comprehensive understanding of how THB exerts its recovery effects in SCI and demonstrate the potential of THB as a novel therapeutic strategy for the clinical management of SCI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongjie Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
4
|
Abstract
The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to survive and thrive, and accumulating evidence points to ghrelin being a key regulator of adult hippocampal neurogenesis and memory function. Aberrant neurogenesis is linked to cognitive decline in aging and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neuron formation is an important objective in understanding the link between nutritional status and CNS function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
5
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
6
|
André E, De Pauw A, Verdoy R, Brusa D, Bouzin C, Timmermans A, Bertrand L, Balligand JL. Changes of Metabolic Phenotype of Cardiac Progenitor Cells During Differentiation: Neutral Effect of Stimulation of AMP-Activated Protein Kinase. Stem Cells Dev 2019; 28:1498-1513. [PMID: 31530214 DOI: 10.1089/scd.2019.0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac progenitor cells (CPCs) in the adult mammalian heart, as well as exogenous CPCs injected at the border zone of infarcted tissue, display very low differentiation rate into cardiac myocytes and marginal repair capacity in the injured heart. Emerging evidence supports an obligatory metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) during stem cells differentiation, suggesting that pharmacological modulation of metabolism may improve CPC differentiation and, potentially, healing properties. In this study, we investigated the metabolic transition underlying CPC differentiation toward cardiac myocytes. In addition, we tested whether activators of adenosine monophosphate-activated protein kinase (AMPK), known to promote mitochondrial biogenesis in other cell types would also improve CPC differentiation. Stem cell antigen 1 (Sca1+) CPCs were isolated from adult mouse hearts and their phenotype compared with more mature neonatal rat cardiac myocytes (NRCMs). Under normoxia, glucose consumption and lactate release were significantly higher in CPCs than in NRCMs. Both parameters were increased in hypoxia together with increased abundance of Glut1 (glucose transporter), of the monocarboxylic transporter Mct4 (lactate efflux mediator) and of Pfkfb3 (key regulator of glycolytic rate). CPC proliferation was critically dependent on glucose and glutamine availability in the media. Oxygen consumption analysis indicates that, compared with NRCMs, CPCs exhibited lower basal and maximal respirations with lower Tomm20 protein expression and mitochondrial DNA content. This CPC metabolic phenotype profoundly changed upon in vitro differentiation, with a decrease of glucose consumption and lactate release together with increased abundance of Tnnt2, Pgc-1α, Tomm20, and mitochondrial DNA content. Proliferative CPCs express both alpha1 and -2 catalytic subunits of AMPK that is activated by A769662. However, A769662 or resveratrol (an activator of Pgc-1α and AMPK) did not promote either mitochondrial biogenesis or CPC maturation during their differentiation. We conclude that although CPC differentiation is accompanied with an increase of mitochondrial oxidative metabolism, this is not potentiated by activation of AMPK in these cells.
Collapse
Affiliation(s)
- Emilie André
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurélia De Pauw
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Roxane Verdoy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- I2P Imaging Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Aurélie Timmermans
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Liu Y, Tong L, Luo Y, Li X, Chen G, Wang Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J Cell Biochem 2018; 119:6162-6172. [PMID: 29663499 DOI: 10.1002/jcb.26822] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Aerobic glycolysis is an important metabolic rewiring in cancer cells to promote glucose uptake and lactate production, and targeting aerobic glycolysis becomes a promising therapeutic approach for cancer. Here we reported that a small polyphenol resveratrol exhibited profound anti-tumor efficacy on human ovarian cancer. Resveratrol markedly inhibited the proliferation, migration, and invasion of A2780 and SKOV3 ovarian cancer cells, while impaired glycolysis, and induced apoptosis in these cells. Exposure to resveratrol increased the expression and activation of AMPK and Caspase 3, and decreased the expression and activation of AMPK downstream kinase mTOR. Moreover, AMPK inhibitor Compound C significantly abolished the effects of resveratrol on the activation of AMPK and Caspase 3 and the inhibition of mTOR. In addition, in vivo data indicated that resveratrol suppressed ovarian cancer growth and liver metastasis in xenograft mouse model. In conclusion, our findings provide new insight into the mechanism underlying anticancer efficacy of resveratrol and help the utilization of resveratrol as a novel agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lin Tong
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yan Luo
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaowen Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xu M, Cheng Z, Ding Z, Wang Y, Guo Q, Huang C. Resveratrol enhances IL-4 receptor-mediated anti-inflammatory effects in spinal cord and attenuates neuropathic pain following sciatic nerve injury. Mol Pain 2018; 14:1744806918767549. [PMID: 29592782 PMCID: PMC5881959 DOI: 10.1177/1744806918767549] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol has been showed to relieve neuropathic pain through its anti-inflammatory effects on the peripheral nerve system. However, it is not clear whether resveratrol, especially when administered systemically, is effective in alleviating the peripheral neuropathy-induced imbalance between pro- and anti-inflammatory responses in the central nervous system. To test this, we used a rat neuropathic pain model resulting from chronic constriction injury of the sciatic nerve. Resveratrol (200 mg/kg) or vehicle (dimethylsulfoxide) were administered intraperitoneally once daily for 14 consecutive days after chronic constriction injury. We found that resveratrol attenuated mechanical allodynia and thermal hyperalgesia in rats with chronic constriction injury. After 14 days of resveratrol treatment, expression of several anti-inflammatory cytokine receptors, including IL-1RA and IL-1R2, was increased in the dorsal spinal cord of rats with chronic constriction injury, and IL-4Rα was increased in dorsal spinal cord neurons. Knockdown of IL-4Rα in a neuronal cell line reversed the resveratrol-induced upregulation of IL-1RA and IL-1R2. These results indicate that resveratrol enhances IL-4 receptor-mediated anti-inflammatory responses in the spinal cord and thus might contribute to the alleviation of central sensitization following peripheral nerve injury.
Collapse
Affiliation(s)
- Mu Xu
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| | - Zhigang Cheng
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| | - Zhuofeng Ding
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| | - Yunjiao Wang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| | - Qulian Guo
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| | - Changsheng Huang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, China
| |
Collapse
|
9
|
Morgan AH, Rees DJ, Andrews ZB, Davies JS. Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease? Neuropharmacology 2017; 136:317-326. [PMID: 29277488 DOI: 10.1016/j.neuropharm.2017.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is a common age-related neurodegenerative disorder affecting 10 million people worldwide, but the mechanisms underlying its pathogenesis are still unclear. The disease is characterised by dopamine nerve cell loss in the mid-brain and intra-cellular accumulation of α-synuclein that results in motor and non-motor dysfunction. In this review, we discuss the neuroprotective effects of the stomach hormone, ghrelin, in models of Parkinson's disease. Recent findings suggest that it may modulate mitochondrial function and autophagic clearance of impaired organelle in response to changes in cellular energy balance. We consider the putative cellular mechanisms underlying ghrelin-action and the possible role of ghrelin mimetics in slowing or preventing Parkinson's disease progression. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Alwena H Morgan
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Daniel J Rees
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Zane B Andrews
- Biomedicine Discovery Institute & Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK.
| |
Collapse
|
10
|
Takakura K, Ito S, Sonoda J, Tabata K, Shiozaki M, Nagai K, Shibata M, Koike M, Uchiyama Y, Gotow T. Cordyceps militaris improves the survival of Dahl salt-sensitive hypertensive rats possibly via influences of mitochondria and autophagy functions. Heliyon 2017; 3:e00462. [PMID: 29264419 PMCID: PMC5727564 DOI: 10.1016/j.heliyon.2017.e00462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/15/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
The genus Cordyceps and its specific ingredient, cordycepin, have attracted much attention for multiple health benefits and expectations for lifespan extension. We analyzed whether Cordyceps militaris (CM), which contains large amounts of cordycepin, can extend the survival of Dahl salt-sensitive rats, whose survival was reduced to ∼3 months via a high-salt diet. The survival of these life-shortened rats was extended significantly when supplemented with CM, possibly due to a minimization of the effects of stroke. Next, we analyzed the effect of CM on hypertension-sensitive organs, the central nervous systems (CNS), heart, kidney and liver of these rats. We attempted to ascertain how the organs were improved by CM, and we paid particular attention to mitochondria and autophagy functions. The following results were from CM-treated rats in comparison with control rats. Microscopically, CNS neurons, cardiomyocytes, glomerular podocytes, renal epithelial cells, and hepatocytes all were improved. However, immunoblot and immunohistochemical analysis showed that the expressions of mitochondria-related proteins, ATP synthase β subunit, SIRT3 and SOD2, and autophagy-related proteins, LC3-II/LC3-I ratio and cathepsin D all were reduced significantly in the CNS neurons, but increased significantly in the cells of the other three organs, although p62 was decreased in its expression in all the organs tested. Activity of Akt and mTOR was enhanced but that of AMPK was reduced in the CNS, while such kinase activity was completely the opposite in the other organs. Together, the influence of CM may differ between mitochondria and autophagy functioned between the two organ groups, as mitochondria and autophagy seemed to be repressed and promoted, respectively, in the CNS, while both mitochondria and autophagy were activated in the others. This could possibly be related to the steady or improved cellular activity in both the organs, which might result in the life extension of these rats.
Collapse
Affiliation(s)
- Kentaro Takakura
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| | - Shogo Ito
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| | - Junya Sonoda
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| | - Koji Tabata
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| | - Motoko Shiozaki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kaoru Nagai
- Laboratory of Cellular Biochemistry, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| | - Masahiro Shibata
- Department of Morphological Science, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8580, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Gotow
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Takarazuka, Hyogo 665-0006, Japan
| |
Collapse
|
11
|
Morgan AH, Andrews ZB, Davies JS. Less is more: Caloric regulation of neurogenesis and adult brain function. J Neuroendocrinol 2017; 29. [PMID: 28771924 DOI: 10.1111/jne.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Calorie intake is essential for regulating normal physiological processes and is fundamental to maintaining life. Indeed, both extremes of calorie intake result in increased morbidity and mortality. In this review, we discuss the effect of calorie intake on adult brain function, with an emphasis on the beneficial effects of mild calorie restriction. Recent findings relating to the regenerative and protective effects of the gastrointestinal hormone, ghrelin, suggest that it may underlie the beneficial effects of calorie restriction. We discuss the putative cellular mechanisms underlying the action of ghrelin and their possible role in supporting healthy brain ageing.
Collapse
Affiliation(s)
- A H Morgan
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| | - Z B Andrews
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
12
|
de Oliveira MR. The Effects of Ellagic Acid upon Brain Cells: A Mechanistic View and Future Directions. Neurochem Res 2016; 41:1219-28. [PMID: 26846140 DOI: 10.1007/s11064-016-1853-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022]
Abstract
Ellagic acid (EA, 2,3,7,8-tetrahydroxy-chromeno; C14H6O8) is a polyphenol derived from fruits (pomegranates, berries) and nuts. EA exhibits antioxidant capacity and induces anti-inflammatory actions in several mammalian tissues. EA has been characterized as a possible neuroprotective agent, but the number of reports is still limited to conclude whether and how EA exerts neuroprotection in humans. In this regard, performing additional studies considering the potential beneficial and/or toxicological roles for EA on brain cells would be an important step towards fully understanding of when and how EA may be securely utilized by humans as a neuroprotective agent. The aim of the present work is to discuss data related to the neuronal and glial effects of EA and the mechanisms underlying such events. Moreover, future directions are suggested as a potential guide to be utilized by researchers interested in investigating the neuronal and glial actions of EA hereafter.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.
| |
Collapse
|
13
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Abstract
During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia.
Collapse
|
15
|
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26:2694-701. [DOI: 10.1016/j.cellsig.2014.08.019] [Citation(s) in RCA: 646] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
|
16
|
Lea MA, Pourat J, Patel R, desBordes C. Growth inhibition of colon cancer cells by compounds affecting AMPK activity. World J Gastrointest Oncol 2014; 6:244-252. [PMID: 25024815 PMCID: PMC4092340 DOI: 10.4251/wjgo.v6.i7.244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/16/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine if other molecules reported to modulate AMP-dependent protein kinase (AMPK) activity would have effects resembling those of metformin and phenformin on colon cancer cell proliferation and metabolism.
METHODS: Studies were performed with four human colon cancer cell lines, Caco-2, HCT116, HT29 and SW1116. The compounds that were studied included A-769662, 5-aminoimidazole-4-carboxamide-1-ribofuranoside, butyrate, (-)-epigallocatechin gallate (EGCG), KU-55933, quercetin, resveratrol and salicylates. The parameters that were measured were cell proliferation and viability, glucose uptake, lactate production and acidification of the incubation medium.
RESULTS: Investigations with several molecules that have been reported to be associated with AMPK activation (A-769662, 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside, EGCG, KU-55933, quercetin, resveratrol and salicylates) or AMPK inhibition (compound C) failed to reveal increased medium acidification and increased glucose uptake in colon cancer cells as previously established with metformin and phenformin. The only exception was 5-aminosalicylic acid with which there were apparently lower glucose levels in the medium after incubation for 72 h. Further study in the absence of cells revealed that the effect was an artifact due to inhibition of the enzyme-linked glucose assay. The compounds were studied at concentrations that inhibited cell proliferation.
CONCLUSION: It was concluded that treatment with several agents that can affect AMPK activity resulted in the inhibition of the proliferation of colon cancer cells under conditions in which glucose metabolism is not enhanced, in contrast to the effect of biguanides.
Collapse
|