1
|
Yeshna, Singh M, Monika, Kumar A, Garg V, Jhawat V. Pathophysiology and emerging therapeutic strategies for cervical spondylosis: The role of pro-inflammatory mediators, kinase inhibitors, and Organogel based drug delivery systems. Int Immunopharmacol 2025; 151:114350. [PMID: 40010157 DOI: 10.1016/j.intimp.2025.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Cervical spondylosis is a prevalent ailment characterized by chronic wear and degenerative changes affecting the cervical spine, leading to various clinical syndromes such as axial neck pain, cervical myelopathy, and cervical radiculopathy. The pathophysiology of the development of cervical alterations is multifaceted, with alterations in the normal physiology and pathogenesis of intervertebral disc degeneration. The involvement of pro-inflammatory mediators, such as interleukin-1, tumor necrosis factor-α, interleukin-4, interleukin-6, and interleukin-10, in the pathological processes associated with intervertebral disc degeneration offers potential therapeutic targets. The review also introduces kinase inhibitors as potential treatments for cervical spondylosis. Protein kinase inhibitors, including mitogen-activated protein kinase (MAPK), Janus kinase (JAK), and spleen tyrosine kinase (SYK), are explored for their anti-inflammatory properties. The article discusses their potential in modulating inflammatory signaling cascades and presents them as attractive candidates for treating immune-mediated disorders. Inhibitors of Nuclear Factor-κB, p38 MAPK, Jun-N terminal kinase (JNK), and Extracellular signal-regulated kinase (ERK) have shown efficacy in suppressing inflammatory responses, offering potential avenues for intervention in this prevalent condition. Organogels are semi-solid materials formed by trapping an organic solvent within a three-dimensional cross-linked network. They hold considerable potential in drug delivery, especially in enhancing drug solubility, facilitating controlled release, and improving skin penetration. These properties of organogels can help treat or alleviate the symptoms of cervical spondylosis.
Collapse
Affiliation(s)
- Yeshna
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Singh
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Ashok Kumar
- Faculty of Pharmacy, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vandana Garg
- Department of Pharmaceutical Science, MD University, Rohtak, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| |
Collapse
|
2
|
Tseranidou S, Segarra-Queralt M, Chemorion FK, Le Maitre CL, Piñero J, Noailly J. Nucleus pulposus cell network modelling in the intervertebral disc. NPJ Syst Biol Appl 2025; 11:13. [PMID: 39890859 PMCID: PMC11785752 DOI: 10.1038/s41540-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025] Open
Abstract
Intervertebral disc degeneration (IDD) results from an imbalance between anabolic and catabolic processes in the extracellular matrix (ECM). Due to complex biochemical interactions, a comprehensive understanding is needed. This study presents a regulatory network model (RNM) for nucleus pulposus cells (NPC), representing normal intervertebral disc (IVD) conditions. The RNM includes 33 proteins, and 153 interactions based on literature, incorporating key NPC regulatory mechanisms. A semi-quantitative approach calculates the basal steady state, accurately reflecting normal NPC activity. Model validation through published studies replicated pro-catabolic and pro-anabolic shifts, emphasizing the roles of transforming growth factor beta (TGF-β) and interleukin-1 receptor antagonist (IL-1Ra) in ECM regulation. This IVD RNM is a valuable tool for predicting IDD progression, offering insights into ECM degradation mechanisms and guiding experimental research on IVD health and degeneration.
Collapse
Affiliation(s)
- Sofia Tseranidou
- Department of Engineering, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | - Christine Lyn Le Maitre
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Janet Piñero
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jérôme Noailly
- Department of Engineering, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
4
|
Nwabueze OP, Sharma M, Balachandran A, Gaurav A, Abdul Rani AN, Małgorzata J, Beata MM, Lavilla CA, Billacura MP. Comparative Studies of Palmatine with Metformin and Glimepiride on the Modulation of Insulin Dependent Signaling Pathway In Vitro, In Vivo & Ex Vivo. Pharmaceuticals (Basel) 2022; 15:1317. [PMID: 36355489 PMCID: PMC9695187 DOI: 10.3390/ph15111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
(1) Insulin resistance, a symptom of type 2 diabetes mellitus (T2DM), is caused by the inactivation of the insulin signaling pathway, which includes IRS-PI3K-IRS-1-PKC-AKT2 and GLUT4. Metformin (biguanide) and glimepiride (sulfonylurea) are both drugs that are derivatives of urea, and they are widely used as first-line drugs for the treatment of type 2 diabetes mellitus. Palmatine has been previously reported to possess antidiabetic and antioxidant properties. (2) The current study compared palmatine to metformin and glimepiride in a type 2 diabetes model for ADME and insulin resistance via the PI3K/Akt/GLUT4 signaling pathway: in vitro, in vivo, ex vivo, and in silico molecular docking. (3) Methods: Differentiated L6 skeletal muscle cells and soleus muscle tissue were incubated in standard tissue culture media supplemented with high insulin and high glucose as a cellular model of insulin resistance, whilst streptozotocin (STZ)-induced Sprague Dawley rats were used as the diabetic model. The cells/tissue/animals were treated with palmatine, while glimepiride and metformin were used as standard drugs. The differential gene expression of PI3K, IRS-1, PKC-α, AKT2, and GLUT4 was evaluated using qPCR. (4) Results: The results revealed that the genes IRS-PI3K-IRS-1-PKC-AKT2 were significantly down-regulated, whilst PKC-α was upregulated significantly in both insulin-resistant cells and tissue animals. Interestingly, palmatine-treated cells/tissue/animals were able to reverse these effects. (5) Conclusions: Palmatine appears to have rejuvenated the impaired insulin signaling pathway through upregulation of the gene expression of IRS-1, PI3K, AKT2, and GLUT4 and downregulation of PKC-expression, according to in vitro, in vivo, and ex vivo studies.
Collapse
Affiliation(s)
- Okechukwu Patrick Nwabueze
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Mridula Sharma
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Anis Najwa Abdul Rani
- Faculty of Pharmaceutical Sciences, UCSI University, Federal Territory of Kuala Lumpur 56000, Malaysia
| | - Jeleń Małgorzata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Morak-Młodawska Beata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Silesia, Jagiellonska Str. 4, 41-200 Sosnowiec, Poland
| | - Charlie A. Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Merell P. Billacura
- Department of Chemistry, College of Natural Sciences and Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Philippines
| |
Collapse
|
5
|
Yi L, Weng T, Nie P, Zhu L, Gao M, Jia H, Yang S, Li X, Zhang L, Xu Y, Ma P, Hu M. Overexpression of interleukin-10 in engineered macrophages protects endothelial cells against LPS-induced injury in vitro. FEBS Open Bio 2022; 12:605-615. [PMID: 35015384 PMCID: PMC8886523 DOI: 10.1002/2211-5463.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/04/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Endothelial dysfunction is a primary pathophysiological change in sepsis. Macrophages are known to interact with vascular endothelial cells during the development of sepsis. Recently, drug delivery based on engineered macrophages was reported as an alternative approach for the management of diseases. Interleukin‐10 (IL10) is a well‐known anti‐inflammatory cytokine, which reduces inflammation and inhibits dysfunction of endothelial cells caused by sepsis. It is currently poorly understood whether genetically modified macrophages with overexpression of IL10 are able to restore endothelial integrity and function at the cellular level. In this study, we used lentiviral vectors to construct RAW264.7 macrophages engineered to overexpress IL10 (IL10‐eM) and investigated the effects of the IL10‐eM supernatant on LPS‐induced endothelial dysfunction using a noncontact coculture system. We found that cotreatment with IL10‐eM supernatant significantly attenuates the effects of LPS‐induced dysfunction of endothelial cells, including endothelial inflammatory response, endothelial permeability, and apoptosis. In addition, we discovered that LPS‐induced downregulation of VE‐cadherin and high production of reactive oxygen species were significantly attenuated upon IL10‐eM exposure. Furthermore, upregulation of IL6, TNFα, and Bax was decreased after treatment of cells with IL10‐eM supernatant. These results demonstrated that supernatant from engineered macrophages genetically modified with IL10 can effectively protect endothelial cells against LPS‐induced dysfunction in vitro, suggesting that exosomes from such engineered macrophages may have therapeutic effects against sepsis.
Collapse
Affiliation(s)
- Lingxian Yi
- Department of Critical Care Medicine, Strategic Support Force Medical Center, Beijing, 100101, P.R. China.,Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, P.R. China
| | - Tujun Weng
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, P.R. China
| | - Penghui Nie
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, P.R. China
| | - Lin Zhu
- Department of Critical Care Medicine, Strategic Support Force Medical Center, Beijing, 100101, P.R. China
| | - Mingming Gao
- Department of Critical Care Medicine, Strategic Support Force Medical Center, Beijing, 100101, P.R. China
| | - Hongxing Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P.R. China
| | - Shaohua Yang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P.R. China
| | - Xiubin Li
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulatory, The 8th Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Luo Zhang
- Department of Biomedical Engineering, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, P.R. China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P.R. China
| | - Penglin Ma
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, P.R. China.,Critical Care Medicine Department, Guiqian International General Hospital, Guiyang Guizhou, 550024, P.R.China
| | - Mei Hu
- Department of Critical Care Medicine, Strategic Support Force Medical Center, Beijing, 100101, P.R. China
| |
Collapse
|
6
|
Ahmadi A, Panahi Y, Johnston TP, Sahebkar A. Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacol Res 2021; 172:105819. [PMID: 34400317 DOI: 10.1016/j.phrs.2021.105819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is one of the leading causes of mortality globally. Atherosclerosis is an important step towards different types of cardiovascular disease. The role of oxidized low-density lipoprotein (oxLDL) in the initiation and progression of atherosclerosis has been thoroughly investigated in recent years. Moreover, clinical trials have established that diabetic patients are at a greater risk of developing atherosclerotic plaques. Hence, we aimed to review the clinical and experimental impacts of various classes of antidiabetic drugs on the circulating levels of oxLDL. Metformin, pioglitazone, and dipeptidyl peptidase-4 inhibitors were clinically associated with a suppressive effect on oxLDL in patients with impaired glucose tolerance. However, there is an insufficient number of studies that have clinically evaluated the relationship between oxLDL and newer agents such as agonists of glucagon-like peptide 1 receptor or inhibitors of sodium-glucose transport protein 2. Next, we attempted to explore the multitude of mechanisms that antidiabetic agents exert to counter the undesirable effects of oxLDL in macrophages, endothelial cells, and vascular smooth muscle cells. In general, antidiabetic drugs decrease the uptake of oxLDL by vascular cells and reduce subsequent inflammatory signaling, which prevents macrophage adhesion and infiltration. Moreover, these agents suppress the oxLDL-induced transformation of macrophages into foam cells by either inhibiting oxLDL entrance, or by facilitating its efflux. Thus, the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of antidiabetic agents abrogate changes induced by oxLDL, which can be extremely beneficial in controlling atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- Ali Ahmadi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Asutralia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
7
|
Chen Y, Zhang H, Fan W, Mats L, Liu R, Deng Z, Tsao R. Anti-Inflammatory Effect and Cellular Transport Mechanism of Phenolics from Common Bean ( Phaseolus vulga L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-Culture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1513-1523. [PMID: 33497227 DOI: 10.1021/acs.jafc.0c06934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The bioavailability and anti-inflammatory activity of the phenolic compounds derived from gastrointestinal digestates of navy bean and light red kidney bean milks and yogurts were investigated in both Caco-2 mono- and Caco-2/EA.hy926 co-culture cell models. Instead of being transported directly, the ferulic acid ester derivatives in common bean milks and yogurts were found to be metabolized into ferulic acid and then be transported through the Caco-2 cell monolayer with an average basolateral ferulic acid concentration of 56 ± 3 ng/mL after 2 h. Strong anti-inflammatory effects were observed in the basolateral EA.hy926 cells of the co-culture model, and modulations of oxLDL-induced inflammatory mediators by the transported phenolics were verified to be through the p38 MAPK pathway. The present results suggest that the common bean-derived phenolics can be metabolized and absorbed by the intestinal epithelial cells and have antioxidant and anti-inflammatory effects against oxidative stress injury in vascular endothelial cells, hence contributing to the amelioration of vascular diseases.
Collapse
Affiliation(s)
- Yuhuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, Jiangxi, China
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Zhang
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Wenyi Fan
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lili Mats
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Ronghua Liu
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Agriculture and Agri-Food Canada, Guelph Research & Development Centre, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
8
|
Zhang X, Lv X, Li X, Wang Y, Lin H, Zhang J, Peng C. Dysregulated circulating SOCS3 and haptoglobin expression associated with stable coronary artery disease and acute coronary syndrome: An integrated study based on bioinformatics analysis and case-control validation. Anatol J Cardiol 2020; 24:160-174. [PMID: 32870172 PMCID: PMC7585973 DOI: 10.14744/anatoljcardiol.2020.56346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To extensively use blood transcriptome analysis to identify potential diagnostic and therapeutic targets for cardiovascular diseases. METHODS Two gene expression datasets (GSE59867 and GSE62646) were downloaded from GEO DataSets to identify altered blood transcriptomes in patients with ST-segment elevation myocardial infarction (STEMI) compared to stable coronary artery disease (CAD). Thereafter, several computational approaches were taken to determine functional roles and regulatory networks of differentially expressed genes (DEGs). Finally, the expression of dysregulated two hub genes-suppressor of cytokine signaling 3 (SOCS3) and haptoglobin (HP)-were validated in a case-control study. RESULTS A total of 119 DEGs were identified in the discovery phase, consisting of 71 downregulated genes and 48 upregulated genes; two hub modules consisting of two hub genes-SOCS3 and HP-were identified. In the validation phase, both SOCS3 and HP were significantly downregulated in the stable CAD and acute coronary syndrome (ACS) patients when compared with healthy controls. Meanwhile, HP was significantly upregulated in STEMI patients when compared with stable CAD patients (p=0.041). Logistic regression analysis indicated that: downregulated expression of HP correlated with increased risk of CAD [odds ratio (OR)=0.52, 95% confidence interval (CI)=0.31~0.87, p=0.013]; and downregulated expression of SOCS3 correlated with increased risk of ACS (OR=0.66, 95% CI=0.46~0.94, p=0.023) when age, gender, history of hyperlipidemia, diabetes and hypertension were included as covariates. CONCLUSION Future clarification of how SOCS3 and HP influence the pathogenesis of disease may pave the way for the development of novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Xunnan Zhang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Xi Lv
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Xiandong Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Yaping Wang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Haoyu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College; Guangdong-P.R. China
| | - Jicai Zhang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Chunyan Peng
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine; Hubei-P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Hubei-P.R. China
- Address for correspondence: Chunyan Peng, MD, Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Renming road 32# Shiyan, 442000, Hubei-P.R. China Phone: +86 13636 254788 E-mail:
| |
Collapse
|
9
|
Ge J, Yan Q, Wang Y, Cheng X, Song D, Wu C, Yu H, Yang H, Zou J. IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway. Free Radic Biol Med 2020; 147:262-270. [PMID: 31883468 DOI: 10.1016/j.freeradbiomed.2019.12.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The degeneration of intervertebral discs (IVD) is a risk factor for chronic low back pain. Anti-inflammation therapy could alleviate IVD degeneration. IL-10 is an important anti-inflammatory cytokine. However, the effect of IL-10 on IVD has not been fully revealed. The current study is to reveal the effect of IL-10 on IVD and its underlying mechanism. METHODS IL-1β was used to induce the degeneration of nucleus pulposus cells (NPCs). mRNA expression level was determined by qPCR. Protein expression level was determined by western blotting. Methylene blue was used to determined the expression of aggrecan. Immunocytochemical staining was used to determined the expression of collagen II. A rat caudal IVD degeneration model was established and used to evaluate the effect of IL-10 on IVD in vivo. RESULTS IL10 could alleviated NPC degeneration in both morphology and extracellular matrix. IL-10 could increase the mRNA expression of Collagen II, Sox-9, but decrease the mRNA expression of IL-1β, TNFα and Collagen X. IL-10 could also increase the protein level of Collagen II and aggrecan, but decrease that of Collagen X. Western blotting futher revealed the mechanism of the positive effect of IL-10 on IVD. IL-10 reduces phosphorylation level of p38 MAPK effectively. Rat caudal IVD degeneration model futher confirmed the positive effect of IL-10 on IVD degeneration and its mechanism in vivo. CONCLUSION The current study demonstrates that exogenous IL-10 treatment can induce an anti-inflammatory response and inhibit p38 MAPK activation to delay IVD degeneration.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yingjie Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Dawei Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hao Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
10
|
Li Y, Li Y, Yang T, Wang M. Dioscin attenuates oxLDL uptake and the inflammatory reaction of dendritic cells under high glucose conditions by blocking p38 MAPK. Mol Med Rep 2019; 21:304-310. [PMID: 31746382 PMCID: PMC6896274 DOI: 10.3892/mmr.2019.10806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Dioscin has been shown to affect the regulation of metabolic diseases, including diabetes; however, the mechanism of action is still unclear. Under high glucose (HG) conditions, the expression of scavenger receptors and the uptake of oxidized low‑density lipoprotein (oxLDL) are upregulated in dendritic cells (DCs), which are critical steps in atherogenesis and inflammation. In this study, the focus was on the impact of dioscin on the function of DCs. Immature DCs were cultured with: 5.5 mM glucose medium (control group); 30 mM glucose medium (HG group); HG + 10 mM dioscin; HG + 20 mM dioscin; HG + 30 mM dioscin; and HG + 40 mM dioscin. For subsequent experiments, 30 mM dioscin was used as the experimental concentration. Dichlorodihydrofluorescein fluorescence was used to measure the intracellular production of reactive oxygen species (ROS) in DCs. The expression levels of the scavenger receptors, including class A scavenger receptors (SR‑A), CD36 and lectin‑like oxidized low‑density lipoprotein receptor‑1 (LOX‑1) were determined via quantitative PCR. The protein expression of p38 mitogen‑activated protein kinase (MAPK) was determined by western blotting. Furthermore, ELISA was used to detect the levels of interleukin (IL)‑6, IL‑10 and IL‑12. Finally, DCs were incubated with diOlistic (Dil)‑labeled oxLDL, and flow cytometry analysis was used to investigate the Dil‑oxLDL‑incorporated fraction. The incubation of DCs with dioscin inhibited the induction of ROS production, in a dose‑dependent manner, under HG conditions. The upregulation of SR‑A, CD36 and LOX‑1 genes was partially abolished by dioscin, which also partially reversed p38 MAPK protein upregulation. Furthermore, increased secretion of IL‑6 and IL‑12, and decreased secretion of IL‑10 in DCs, induced by HG, was also reversed by dioscin. To conclude, dioscin could attenuate the production of ROS, inflammatory cytokine secretion and oxLDL uptake by DCs in HG conditions by preventing the expression of scavenger receptors and p38 MAPK, thus playing a positive role in preventing atherogenesis.
Collapse
Affiliation(s)
- Ying Li
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Yong Li
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Te Yang
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Ming Wang
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| |
Collapse
|
11
|
Thrombomodulin Regulation of Mitogen-Activated Protein Kinases. Int J Mol Sci 2019; 20:ijms20081851. [PMID: 30991642 PMCID: PMC6514922 DOI: 10.3390/ijms20081851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
The multifaceted role of mitogen-activated protein kinases (MAPKs) in modulating signal transduction pathways in inflammatory conditions such as infection, cardiovascular disease, and cancer has been well established. Recently, coagulation factors have also emerged as key players in regulating intracellular signaling pathways during inflammation. Among coagulation factors, thrombomodulin, as a high affinity receptor for thrombin on vascular endothelial cells, has been discovered to be a potent anti-inflammatory and anti-tumorigenic signaling molecule. The protective signaling function of thrombomodulin is separate from its well-recognized role in the clotting cascade, which is to function as an anti-coagulant receptor in order to switch the specificity of thrombin from a procoagulant to an anti-coagulant protease. The underlying protective signaling mechanism of thrombomodulin remains largely unknown, though a few published reports link the receptor to the regulation of MAPKs under different (patho)physiological conditions. The goal of this review is to summarize what is known about the regulatory relationship between thrombomodulin and MAPKs.
Collapse
|
12
|
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, Ivanisenko VA. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics 2019; 12:47. [PMID: 30871556 PMCID: PMC6417156 DOI: 10.1186/s12920-019-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. METHODS In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. RESULTS An assessment of the quality of prioritization was performed using criteria, which involved an analysis of the enrichment of the top-most priority genes by genes, which are known to have simultaneous interactions with lymphedema and endothelial cell apoptosis, as well as by genes differentially expressed in murine model of lymphedema. In particular, among genes involved in endothelial apoptosis, KDR, TNF, TEK, BMPR2, SERPINE1, IL10, CD40LG, CCL2, FASLG and ABL1 had the highest priority. The identified priority genes can be considered as candidates for genotyping in the studies involving the search for associations with lymphedema. CONCLUSIONS Analysis of interactions of these genes in the associative gene network of lymphedema can improve understanding of mechanisms of interaction between endothelial apoptosis and lymphangiogenesis, and shed light on the role of disturbance of these processes in the development of edema, chronic inflammation and connective tissue transformation during the progression of the disease.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Vadim V. Nimaev
- Laboratory of Surgical Lymphology and Lymphodetoxication, Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, st. Timakova 2, Novosibirsk, 630117 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Dilovarkhuja B. Usmonov
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
- Department of Neurosurgery, Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, st. Frunze 17, Novosibirsk, 630091 Russia
| | - Pavel S. Demenkov
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Timofey V. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Inna N. Lavrik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Medical Faculty, Pfalzer Platz 28, 39106 Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| |
Collapse
|
13
|
Lu S, Luo Y, Zhou P, Yang K, Sun G, Sun X. Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways. J Ginseng Res 2019; 43:95-104. [PMID: 30662298 PMCID: PMC6323235 DOI: 10.1016/j.jgr.2017.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. METHODS In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (ΔΨm) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. RESULTS Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, NF-κB nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. CONCLUSION These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the NF-κB, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ke Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Li Q, Xia S, Yin Y, Guo Y, Chen F, Jin P. miR-5591-5p regulates the effect of ADSCs in repairing diabetic wound via targeting AGEs/AGER/JNK signaling axis. Cell Death Dis 2018; 9:566. [PMID: 29752466 PMCID: PMC5948214 DOI: 10.1038/s41419-018-0615-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
Abstract
Advanced glycation end products/advanced glycation end products receptor (AGEs/AGER) interaction triggers reactive oxygen species (ROS) generation and activates downstream signal pathways and induces apoptosis in endothelial progenitor cells. A number of studies have revealed the involvement of microRNAs (miRNAs) in regulating intracellular ROS production and apoptosis. However, few studies explore the role of miRNAs in regulating the effect of adipose tissue-derived stem cells (ADSCs) in repairing diabetic wound and the associated cellular mechanisms remain unclear. In this study, ADSCs were exposed to AGEs, then siRNA for AGER was transfected into ADSCs. We found that AGEs/AGER axis induced ROS generation and apoptosis in ADSCs. AGEs treatment downregulated miR-5591-5p in ADSCs, which directly targeted AGER. miR-5591-5p suppressed AGEs/AGER axis-mediated ROS generation and apoptosis in ADSCs in vitro. In addition, miR-5591-5p promoted cell survival and enhanced the ability of ADSCs for repairing cutaneous wound in vivo. Furthermore, we confirmed that c-jun kinase (JNK) signal was involved in the inhibitory effect of miR-5591-5p on AGEs/AGER axis-induced ROS generation and apoptosis in ADSCs. Thus, these results indicated that miR-5591-5p targeting AGEs/AGER/JNK signaling axis possibly regulates the effect of ADSCs in repairing diabetic wound.
Collapse
Affiliation(s)
- Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Sizhan Xia
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Yating Yin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Yanping Guo
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Feifei Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Jiangsu, Xuzhou, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Jiangsu, Xuzhou, China.
| |
Collapse
|
15
|
Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway. Apoptosis 2018; 22:1013-1024. [PMID: 28612103 DOI: 10.1007/s10495-017-1381-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerosis-related cardiovascular disease is the predominant cause of death worldwide. Ox-LDL-induced vascular endothelial cell injury is a major factor in the pathogenesis of atherosclerosis. Dihydromyricetin (DMY) is a flavonoid extracted from vine tea that exerts multiple pharmacological activities, including cardio-protective, anti-tumor, and anti-oxidative effects. However, it is unreported that DMY shows protective effects on ox-LDL-induced endothelial cell injury. In this study, we used an ox-LDL injured human umbilical vein endothelial cell (HUVEC) in vitro model to explore the protective effects and mechanism of DMY. HUVECs were pretreatment with DMY and then exposed to ox-LDL, the cell viability was measured. Then, the anti-oxidative enzymes were tested by commercial kits and intracellular reactive oxygen species (ROS) was measured by flow cytometry, cell apoptosis was determined by Annexin-V/PI assay and apoptosis-related proteins were detected by western blot. Our results showed that DMY pretreatment provided cytoprotective effects by suppressing ox-LDL-induced endothelial cell apoptosis, mitochondrial membrane depolarization, caspase-3 activation, and modulation of oxidative enzymes, thereby inhibiting ROS generation. The anti-oxidative and anti-apoptotic effects of DMY were abrogated by the transfection of Nrf2 siRNAs and HO-1 inhibitor ZnPP. Furthermore, DMY might activate the Nrf2/HO-1 pathway through activation of the Akt and ERK1/2 pathways, as shown by the inhibition of Nrf2/HO-1 signaling by the inhibitors PD98059 or LY294002 and the transfection of ERK, Akt siRNAs. In this study, DMY protects HUVECs from ox-LDL-induced oxidative injury by activating Akt and ERK1/2, which subsequently activates Nrf2/HO-1 signaling, thereby up-regulating antioxidant enzymes and anti-apoptotic proteins.
Collapse
|
16
|
Liu X, Li Q, Zhu R, He Z. Association of IL-10-1082A/G Polymorphism with Ischemic Stroke: Evidence from a Case-Control Study to an Updated Meta-Analysis. Genet Test Mol Biomarkers 2017; 21:341-350. [PMID: 28459600 DOI: 10.1089/gtmb.2016.0409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND AIMS Interleukin-10 (IL-10) plays a vital part in the pathophysiology of vascular inflammation. Several studies have investigated the potential association between the IL-10-1082A/G polymorphism and the risk of ischemic stroke where the inflammatory process is involved, but the conclusions have been inconsistent. METHODS Three hundred eighty-six ischemic stroke patients and 386 healthy controls were recruited in the study. Genotyping was conducted by using the polymerase chain reaction-ligation detection reaction method. A meta-analysis was then performed by pooling our data with previous published studies. RESULTS In our case-control study, a lack of association was revealed between IL-10-1082A/G and ischemic stroke (p > 0.05). When combined with previous studies, however, a significant relationship between IL-10-1082A/G and ischemic stroke risk was found (G vs. A: OR = 0.73, 95% CI = 0.60-0.88, p < 0.01; GG vs. AA: OR = 0.61, 95% CI = 0.49-0.76, p < 0.01; GG+AG vs. AA: OR = 0.70, 95% CI = 0.54-0.91, p < 0.01; GG vs. AG+AA: OR = 0.68, 95% CI = 0.52-0.89, p < 0.01), as well as in subgroup analyses. Sensitivity analysis and publication bias assessment supported the reliability of the results from the meta-analysis. CONCLUSIONS Evidence from a case-control study to an updated meta-analysis suggests that the IL-10-1082A/G polymorphism is associated with ischemic stroke susceptibility.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University , Shenyang, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University , Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University , Shenyang, China
| | - Zhiyi He
- Department of Neurology, First Affiliated Hospital of China Medical University , Shenyang, China
| |
Collapse
|
17
|
Hussain T, Shah SZA, Zhao D, Sreevatsan S, Zhou X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell Commun Signal 2016; 14:29. [PMID: 27905994 PMCID: PMC5131435 DOI: 10.1186/s12964-016-0152-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and is the causative agent of Johne's disease of domestic and wild ruminants. Johne's disease is characterized by chronic granulomatous enteritis leading to substantial economic losses to the livestock sector across the world. MAP persistently survives in phagocytic cells, most commonly in macrophages by disrupting its early antibacterial activity. MAP triggers several signaling pathways after attachment to pathogen recognition receptors (PRRs) of phagocytic cells. MAP adopts a survival strategy to escape the host defence mechanisms via the activation of mitogen-activated protein kinase (MAPK) pathway. The signaling mechanism initiated through toll like receptor 2 (TLR2) activates MAPK-p38 results in up-regulation of interleukin-10 (IL-10), and subsequent repression of inflammatory cytokines. The anti-inflammatory response of IL-10 is mediated through membrane-bound IL-10 receptors, leading to trans-phosphorylation and activation of Janus Kinase (JAK) family receptor-associated tyrosine kinases (TyKs), that promotes the activation of latent transcription factors, signal transducer and activators of transcription 3 (STAT3). IL-10 is an important inhibitory cytokine playing its role in blocking phagosome maturation and apoptosis. In the current review, we describe the importance of IL-10 in early phases of the MAP infection and regulatory mechanisms of the IL-10 dependent pathways in paratuberculosis. We also highlight the strategies to target IL-10, MAPK and STAT3 in other infections caused by intracellular pathogens.
Collapse
Affiliation(s)
- Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN USA
| | - Xiangmei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
18
|
Traoré K, Arama C, Médebielle M, Doumbo O, Picot S. Do advanced glycation end-products play a role in malaria susceptibility? ACTA ACUST UNITED AC 2016; 23:15. [PMID: 27012162 PMCID: PMC4807375 DOI: 10.1051/parasite/2016015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/10/2016] [Indexed: 12/30/2022]
Abstract
There are growing data supporting the differences in susceptibility to malaria described between sympatric populations with different lifestyles. Evidence has also been growing for some time that nutritional status and the host's metabolism are part of the complex mechanisms underlying these differences. The role of dietary advanced glycation end-products (AGEs) in the modulation of immune responses (innate and adaptive responses) and chronic oxidative stress has been established. But less is known about AGE implication in naturally acquired immunity and susceptibility to malaria. Since inflammatory immune responses and oxidative events have been demonstrated as the hallmark of malaria infection, it seems crucial to investigate the role of AGE in susceptibility or resistance to malaria. This review provides new insight into the relationship between nutrition, metabolic disorders, and infections, and how this may influence the mechanisms of susceptibility or resistance to malaria in endemic areas.
Collapse
Affiliation(s)
- Karim Traoré
- Malaria Research and Training Center MRTC-DEAP-FMPOS-UMI 3189, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805, Bamako, Mali - Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie, de Biologie Moléculaire et Supramoléculaire ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, - 43 boulevard du 11 novembre 1918, 69622 Lyon, France
| | - Charles Arama
- Malaria Research and Training Center MRTC-DEAP-FMPOS-UMI 3189, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805, Bamako, Mali
| | - Maurice Médebielle
- Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie, de Biologie Moléculaire et Supramoléculaire ICBMS-UMR5246, CNRS-INSA-CPE, - 43 boulevard du 11 novembre 1918, 69622 Lyon, France
| | - Ogobara Doumbo
- Malaria Research and Training Center MRTC-DEAP-FMPOS-UMI 3189, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805, Bamako, Mali
| | - Stéphane Picot
- Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie, de Biologie Moléculaire et Supramoléculaire ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, - 43 boulevard du 11 novembre 1918, 69622 Lyon, France
| |
Collapse
|
19
|
Guo S, Lok J, Zhao S, Leung W, Som AT, Hayakawa K, Wang Q, Xing C, Wang X, Ji X, Zhou Y, Lo EH. Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. J Neurotrauma 2016; 33:1303-16. [PMID: 26528928 DOI: 10.1089/neu.2015.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. The core of the traumatic lesion was removed and then cortical microvesels were isolated from nondirectly damaged ipsilateral cortex. Compared to contralateral cortex and normal cortex from sham-operated mice, we identified a wide spectrum of responses in the vasculome after trauma. Up-regulated pathways included those involved in regulation of inflammation and extracellular matrix processes. Decreased pathways included those involved in regulation of metabolism, mitochondrial function, and transport systems. These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury.
Collapse
Affiliation(s)
- Shuzhen Guo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Josephine Lok
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts.,2 Department of Pediatrics, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Song Zhao
- 3 The Department of Spine Surgery, the First Hospital of Jilin University , Changchun, China
| | - Wendy Leung
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Angel T Som
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Kazuhide Hayakawa
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Qingzhi Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Changhong Xing
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xiaoying Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xunming Ji
- 4 Cerebrovascular Research Center, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yiming Zhou
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Eng H Lo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
20
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
21
|
Yin Y, Liu W, Dai Y. SOCS3 and its role in associated diseases. Hum Immunol 2015; 76:775-80. [DOI: 10.1016/j.humimm.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/03/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
|
22
|
Ox-Lp(a) transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway. Atherosclerosis 2015; 243:223-35. [PMID: 26407666 DOI: 10.1016/j.atherosclerosis.2015.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/02/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Oxidised lipoprotein(a) [oxLp(a)] is considered as a more potent arteriosclerotic factor than native Lp(a). However, the molecular mechanisms underlying this potency remain unclear. Reactive oxygen species (ROS) possibly act as intracellular second messengers that participate in autophagy stimulation. In this study, the effect of oxLp(a) on endothelial cell autophagy was determined. The mechanism and effect of autophagy on endothelial cells were also investigated. Results showed that oxLp(a) could induce autophagy depending on the generation of cellular ROS. Superoxide dismutase, an antioxidant, could inhibit oxLp(a)-induced autophagy in human umbilical vascular endothelial cells. Furthermore, poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1)-liver kinase B1 (LKB1)-adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) and LKB1-AMPK-mTOR pathways are involved in oxLp(a)-induced autophagy. These pathways are also dependent on ROS. Thus, oxLp(a) induced autophagy via LKB1-AMPK-mTOR and PAPR-1-LKB1-AMPK-mTOR pathways, which are dependent on ROS generation.
Collapse
|
23
|
Liu W, Peng Y, Yin Y, Zhou Z, Zhou W, Dai Y. The involvement of NADPH oxidase-mediated ROS in cytokine secretion from macrophages induced by Mycobacterium tuberculosis ESAT-6. Inflammation 2015; 37:880-92. [PMID: 24408010 DOI: 10.1007/s10753-013-9808-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. To understand the role of ESAT-6 in macrophage response against M. tuberculosis, the effects of ESAT-6 on macrophage generation of reactive oxygen species (ROS) and production of cytokines were studied. ESAT-6-induced macrophage secretion of monocyte chemoattractant protein-1 and TNF-α was found in a time- and dose-dependent manner. Signaling inhibition experiments indicate that NF-κB activation mediated by p38/JNK mitogen-activated protein kinase (MAPK) was involved in ESAT-6-triggered cytokine production. Moreover, TLR2 was engaged in ESAT-6-stimulated macrophage activation via rapidly induced ROS production and regulated activation of JNK/p38 MAPKs and NF-κB. More importantly, NADPH oxidase-mediated ROS generation is required during this process. Our study has identified a novel signal transduction pathway involving NADPH-ROS-JNK/p38-NF-κB in ESAT-6-induced cytokine production from macrophages. These findings provide an important evidence to understand the pathogenesis of M. tuberculosis infection in the modulation of the immune response.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Immunology, Tongji University School of Medicine, Medical Research Building, Rm F509, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | | | | | |
Collapse
|
24
|
Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci 2015; 131:37-43. [PMID: 25896660 DOI: 10.1016/j.lfs.2015.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/18/2015] [Accepted: 03/20/2015] [Indexed: 11/21/2022]
Abstract
AIMS Hyperphosphatemia is an independent risk factor of cardiovascular events in the patients with chronic kidney disease. High phosphate can induce endothelial cell apoptosis, but the exact mechanism is not clear. This study fills this knowledge gap. MATERIALS AND METHODS Microarray analysis was used to identify differentially expressed gene profiles in human umbilical vein endothelial cells (HUVECs) in high phosphate (3.0mM) and normal phosphate (1.0mM) medium. Microarray informatics analysis was used to explore key pathways and genes. High phosphate-induced apoptosis is marked by annexin V-FITC/PI staining and cleavage of caspase-3. Immunoblotting and quantitative real-time PCR were performed to identify the microarray analysis. KEY FINDINGS Our microarray informatics analysis reveals that the mitogen-activated protein kinase (MAPK) plays a key role. As suggested by gene coexpression network analysis, bone morphogenetic protein 4 (BMP4) gene is a potential key regulatory gene in high phosphate environment. Both the expressions of BMP4 protein and mRNA are decreased. Extracellular regulated protein kinases (ERKs) are activated, while the inhibition of ERK by U0126 increases the expression of BMP4. Both recombinant BMP4 protein pretreatment and U0126 pretreatment reduce the apoptosis of endothelial cells in simulated hyperphosphatemia. However, BMP4 protein pretreatment had no effect on the activation of ERK MAPK pathway. SIGNIFICANCE Our results indicate that the inhibition of ERK MAPK pathway protects endothelial cells from apoptosis by upregulating bone morphogenetic protein 4 in endothelial cells exposed to hyperphosphatemia. Our study provides potential molecular targets for developing new strategies to reduce the endothelial cell apoptosis induced by high phosphate.
Collapse
|
25
|
Xu CY, Li DJ, Wu CL, Lou HJ, Jiang HW, Ding GQ. Serum sLOX-1 Levels Are Correlated with the Presence and Severity of Obstructive Sleep Apnea. Genet Test Mol Biomarkers 2015; 19:272-6. [PMID: 25825846 DOI: 10.1089/gtmb.2015.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Inflammation plays a critical role in the development and progression of obstructive sleep apnea (OSA). Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) activation is involved in the pathophysiology of inflammatory process-related disorders. OBJECTIVE This study aims to investigate whether serum soluble LOX-1 (sLOX-1) levels are associated with the presence and severity of OSA. MATERIALS AND METHODS A total of 137 OSA patients and 78 controls were recruited in this study. Serum sLOX-1 levels were measured by enzyme-linked immunosorbent assay. The severity of OSA was assessed by the apnea-hypopnea index (AHI). RESULTS OSA patients had significantly higher serum sLOX-1 levels compared with controls. Serum sLOX-1 levels elevated with the increment of OSA severity. sLOX-1 was the independent predictor of OSA. Serum sLOX-1 levels were significantly correlated with AHI and high-sensitivity C-reactive protein levels. CONCLUSIONS Serum sLOX-1 levels were independently correlated with the presence and severity of OSA. These findings revealed that sLOX-1 might function as a potential biomarker for monitoring the development and progression of OSA.
Collapse
Affiliation(s)
- Chun-Yan Xu
- 1 Department of Stomatology, Yiwu Central Hospital , Yiwu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Borghi SM, Pinho-Ribeiro FA, Zarpelon AC, Cunha TM, Alves-Filho JC, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. Interleukin-10 limits intense acute swimming-induced muscle mechanical hyperalgesia in mice. Exp Physiol 2015; 100:531-44. [PMID: 25711612 DOI: 10.1113/ep085026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? This study investigated the role of the endogenous anti-inflammatory cytokine interleukin-10 in intense acute swimming-induced muscle mechanical hyperalgesia in mice. What is the main finding and its importance? Endogenous interleukin-10 has a key role in limiting exercise-induced muscle pain in a model presenting similarities to delayed-onset muscle soreness in mice. Interleukin-10 reduced muscle pain by diminishing leucocyte recruitment, hyperalgesic cytokine production, oxidative stress and myocyte damage. Interleukin-10 (IL-10) is an antihyperalgesic cytokine. In this study, IL-10-deficient (IL-10(-/-) ) mice were used to investigate the role of endogenous IL-10 in intense acute swimming-induced muscle mechanical hyperalgesia, which presents similarities with delayed-onset muscle soreness. An intense acute swimming session of 1 or 2 h induced significant muscle mechanical hyperalgesia in a time-dependent manner in wild-type mice compared with the sham group 24 h after the session, which was further increased in IL-10(-/-) mice (P ˂ 0.05). Intraperitoneal treatment of wild-type mice with IL-10 (1-10 ng) reduced muscle mechanical hyperalgesia in a dose-dependent manner and reversed the enhanced muscle hyperalgesia in IL-10(-/-) mice (P ˂ 0.05). The 2 h swimming session induced increases in tumour necrosis factor-α, interleukin-1β and IL-10 production in the soleus muscle. However, tumour necrosis factor-α and interleukin-1β production in the soleus muscle were even higher in IL-10(-/-) mice between 2 and 6 h after the stimulus (P ˂ 0.05). There was no statistical difference in the levels of the antihyperalgesic cytokines interleukin-4, interleukin-5, interleukin-13 and transforming growth factor-β between wild-type and IL-10(-/-) mice (P ˃ 0.05). Interleukin-10 deficiency also resulted in increased myeloperoxidase activity, greater depletion of reduced glutathione levels, increased superoxide anion production and the maintenance of high plasma concentrations of creatine kinase (until 24 h after the swimming session) in soleus muscle (P ˂ 0.05). These results demonstrate that endogenous IL-10 controls intense acute swimming-induced muscle mechanical hyperalgesia by limiting oxidative stress and cytokine production.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effect of advanced glycosylation end products on apoptosis in human adipose tissue-derived stem cells in vitro. Cell Biosci 2015; 5:3. [PMID: 25973170 PMCID: PMC4429817 DOI: 10.1186/2045-3701-5-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background Both apoptosis and caspase-3 activity in adipose tissue-derived stem cells play an important role in the therapeutic process of diabetes patients. The purpose of this study was to investigate the effect of advanced glycation end products-human serum albumin (AGE-HSA) on apoptosis in human adipose tissue-derived stem cells (ADSCs) and to characterize the signal transduction pathways activated by AGEs that are involved in apoptosis regulation. Results AGE-HSA promoted apoptosis and caspase-3 activity in ADSCs. However, the effects of AGE-HSA were significantly attenuated by an inhibitor of p38 MAPK, but not by inhibitors of JNK MAPK or ERK MAPK. AGE-HSA also upregulated the expression of RAGE. Silencing of the RAGE gene inhibited AGE-HSA-induced apoptosis, and activation and expression of phosphorylated p38 MAPK. Conclusions These results suggest that AGE-HSA promote the apoptosis of ADSCs in vitro via a RAGE-dependent p38 MAPK pathway.
Collapse
|
28
|
|
29
|
Xiao L, Liu W, Li J, Xie Y, He M, Fu J, Jin W, Shao C. Irradiated U937 cells trigger inflammatory bystander responses in human umbilical vein endothelial cells through the p38 pathway. Radiat Res 2014; 182:111-21. [PMID: 24960416 DOI: 10.1667/rr13736.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effects are a well-known phenomenon that are observed when treating cancer and other diseases after radiotherapy, and even after occupational exposure to radiation. However, little is known about the crosstalk between irradiated macrophages and endothelial cells that line the circulatory system, which may play a role in the development of atherosclerosis. In the current study, we found that the expression of inducible nitric oxide synthase (iNOS) and the intracellular level of nitric oxide (NO) in gamma-irradiated U937 macrophage cells were significantly increased. When human umbilical vein endothelial cells (HUVECs) were co-cultured with gamma-irradiated U937 cells, additional micronuclei (MN) and apoptosis were induced so that the plating efficiency of the bystander HUVECs decreased and P38 was overexpressed in the bystander HUVECs cells. In addition, the contents of vascular cell adhesion molecule 1 (VCAM-1) and the activities of matrix metalloproteinase-9 (MMP-9) in the culture medium of bystander HUVECs were increased. Furthermore, during cell co-culture the adhesive ability of irradiated U937 cells to the bystander HUVECs increased. When U937 cells were treated with 500 μM S-methylisothiourea sulfate (SMT) (iNOS inhibitor) before irradiation, and HUVECs were treated with 10 μM SB203580 (p38 inhibitor) before cell co-culture or treated with 20 μM c-PTIO (NO scavenger) in the co-culture medium, the bystander micronuclei and the amounts of VCAM-1 and MMP-9 in the medium of bystander HUVECs were diminished, and the ability of irradiated U937 cells adhering to HUVECs was also reduced, while the plating efficiency of bystander HUVECs partially recovered. These results demonstrated that irradiated U937 cells appear to release nitric oxide and thereby further trigger apoptosis and inflammatory responses in the bystander HUVECs through a p38-dependent pathway.
Collapse
Affiliation(s)
- Linlin Xiao
- a Institute of Radiation Medicine, Fudan University, Shanghai 200032, China; and
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu X, Gao Y, Yao H, Zhou L, Pei J, Sun L, Wang J, Sun D. p38 and Extracellular Signal-Regulated Kinases Activations have Opposite Effects on Primary-Cultured Rat Cerebellar Granule Neurons Exposed to Sodium Arsenite. J Biochem Mol Toxicol 2013; 28:143-8. [DOI: 10.1002/jbt.21546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/06/2013] [Accepted: 11/24/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Yanhui Gao
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Hongju Yao
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Lingwang Zhou
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Junrui Pei
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Liyan Sun
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Jing Wang
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| | - Dianjun Sun
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin Medical University; Key Lab of Etiology and Epidemiology; Education Bureau of Heilongjiang Province and Ministry of Health; Harbin 150081 People's Republic of China
| |
Collapse
|
31
|
Immunological aspects of atherosclerosis. Semin Immunopathol 2013; 36:73-91. [PMID: 24212253 DOI: 10.1007/s00281-013-0402-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
|
32
|
Lu H, Yao K, Huang D, Sun A, Zou Y, Qian J, Ge J. High glucose induces upregulation of scavenger receptors and promotes maturation of dendritic cells. Cardiovasc Diabetol 2013; 12:80. [PMID: 23718574 PMCID: PMC3685538 DOI: 10.1186/1475-2840-12-80] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Both hyperglycaemia and dendritic cells (DCs) play causative roles in atherosclerosis. However, whether they interact in atherosclerosis remains uncertain. Therefore, we examined whether high glucose could regulate the expression of scavenger receptors responsible for oxidised low-density lipoprotein (oxLDL) uptake in DCs, a critical step in atherogenesis. In addition, we investigated the impact of glucose on DC maturation regarding changes in phenotype and cytokine secretion. METHODS Immature DCs were cultured with different concentrations of glucose (5.5 mmol/L, 15 mmol/L, 30 mmol/L) in the absence or presence of N-acetylcysteine (NAC), SB203580 or Bay11-7082 for 24 hours. We used 30 mmol/L mannitol as a high-osmolarity control treatment. The expression of the scavenger receptors SR-A, CD36 and LOX-1 was determined by real-time PCR and western blot analysis. Furthermore, DCs were incubated with DiI-labelled oxLDL. The DiI-oxLDL-incorporated fraction was investigated by flow cytometry analysis. The intracellular production of ROS in DCs was measured by dichlorodihydrofluorescein (DCF) fluorescence using confocal microscopy. Finally, flow cytometry analysis was used to investigate immunophenotypic protein expression (CD83 and CD86). Supernatant cytokine measurements were used for immune function assays. RESULTS The incubation of DCs with glucose enhanced, in a dose-dependent manner, the gene and protein expression of SR-A, CD36 and LOX-1. This effect was partially abolished by NAC, SB203580 and Bay11-7082. Incubation of DCs with mannitol (30 mmol/L) did not enhance these scavenger receptors' expression. High glucose upregulated the production of ROS and expression of p38 MAPK in DCs. NAC partially reversed p38 MAPK upregulation. High glucose increased the oxLDL-uptake capacity of DCs. Blockage of the scavenger receptors SR-A and CD36 reduced oxLDL uptake, but blockage of LOX-1 did not. Furthermore, high-glucose (15 mmol/L or 30 mmol/L) treatment increased CD86 and CD83 in DCs. High glucose also increased IL-6 and IL-12 secretion and decreased IL-10 secretion. CONCLUSION High glucose can increase the expression of the scavenger receptors SR-A, CD36 and LOX-1, which can increase the oxLDL-uptake capacity of DCs. High glucose induces a proinflammatory cytokine profile in human DCs, leading to DC maturation. These results support the hypothesis that atherosclerosis is aggravated by hyperglycaemia-induced DC activation and oxLDL uptake.
Collapse
Affiliation(s)
- Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai China 200032
| |
Collapse
|