1
|
Wang X, Stefanello ST, Shahin V, Qian Y. From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417564. [PMID: 40434211 DOI: 10.1002/adma.202417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Piezoelectric materials, capable of converting mechanical stimuli into electrical signals, have emerged as promising tools in regenerative medicine due to their potential to stimulate tissue repair. Despite a surge in research on piezoelectric biomaterials, systematic insights to direct their translational optimization remain limited. This review addresses the current landscape by bridging fundamental principles with clinical potential. The biomimetic basis of piezoelectricity, key molecular pathways involved in the synergy between mechanical and electrical stimulation for enhanced tissue regeneration, and critical considerations for material optimization, structural design, and biosafety is discussed. More importantly, the current status and translational quagmire of mechanisms and applications in recent years are explored. A mechanism-driven strategy is proposed for the therapeutic application of piezoelectric biomaterials for tissue repair and identify future directions for accelerated clinical applications.
Collapse
Affiliation(s)
- Xinyu Wang
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Yun Qian
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| |
Collapse
|
2
|
Okura K, Tatsumi H. Pulling Forces Dampen Torsional Fluctuations of Actin Filaments and Reduce Cooperative Cofilin Binding. J Mol Biol 2025; 437:168942. [PMID: 39814170 DOI: 10.1016/j.jmb.2025.168942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor. An increase in the tension within actin filaments causes changes in their conformation and affinity to their regulatory proteins. However, our current understanding of the molecular mechanisms of the tension sensing and the affinity change of regulatory proteins is still incomplete. In this study, we employed fluorescence polarization microscopy and magnetic tweezers to directly quantify the torsional fluctuations of single actin filaments and cofilin binding to the filament under several distinct mechanical conditions. When an actin filament was severed by scratching the filament with a pipette tip, the amplitude of twisting/torsional fluctuations and the rate of cooperative cofilin binding increased. On the other hand, when a piconewton force was applied to single actin filaments by magnetic tweezers, the amplitude of twisting fluctuations and the rate of cooperative cofilin binding decreased. This may be involved in the molecular mechanism behind the mechanical force-dependent severing of actin filaments in cells.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Japan.
| |
Collapse
|
3
|
Liu L, Zheng W, Wei Y, Li Q, Chen N, Xia Q, Wang L, Hu J, Zhou X, Sun Y, Li B. Mechanical stress-induced autophagy is cytoskeleton dependent. Cell Prolif 2024; 57:e13728. [PMID: 39155403 PMCID: PMC11628738 DOI: 10.1111/cpr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The cytoskeleton is essential for mechanical signal transduction and autophagy. However, few studies have directly demonstrated the contribution of the cytoskeleton to mechanical stress-induced autophagy. We explored the role of the cytoskeleton in response to compressive force-induced autophagy in human cell lines. Inhibition and activation of cytoskeletal polymerization using small chemical molecules revealed that cytoskeletal microfilaments are required for changes in the number of autophagosomes, whereas microtubules play an auxiliary role in mechanical stress-induced autophagy. The intrinsic mechanical properties and special intracellular distribution of microfilaments may account for a large proportion of compression-induced autophagy. Our experimental data support that microfilaments are core components of mechanotransduction signals.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Wei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Qian Li
- Frontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Nan Chen
- School of Chemistry and Materials SciencesShanghai Normal UniversityShanghaiChina
| | - Qinglin Xia
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Lihua Wang
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Jun Hu
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and TechnologyNingbo UniversityZhejiangChina
| | - Yanhong Sun
- Institute of Materiobiology, College of ScienceShanghai UniversityShanghaiChina
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
4
|
Carl AG, Reynolds MJ, Gurel PS, Phua DY, Sun X, Mei L, Hamilton K, Takagi Y, Noble AJ, Sellers JR, Alushin GM. Myosin forces elicit an F-actin structural landscape that mediates mechanosensitive protein recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608188. [PMID: 39185238 PMCID: PMC11343212 DOI: 10.1101/2024.08.15.608188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cells mechanically interface with their surroundings through cytoskeleton-linked adhesions, allowing them to sense physical cues that instruct development and drive diseases such as cancer. Contractile forces generated by myosin motor proteins mediate these mechanical signal transduction processes through unclear protein structural mechanisms. Here, we show that myosin forces elicit structural changes in actin filaments (F-actin) that modulate binding by the mechanosensitive adhesion protein α-catenin. Using correlative cryo-fluorescence microscopy and cryo-electron tomography, we identify F-actin featuring domains of nanoscale oscillating curvature at cytoskeleton-adhesion interfaces enriched in zyxin, a marker of actin-myosin generated traction forces. We next introduce a reconstitution system for visualizing F-actin in the presence of myosin forces with cryo-electron microscopy, which reveals morphologically similar superhelical F-actin spirals. In simulations, transient forces mimicking tugging and release of filaments by motors produce spirals, supporting a mechanistic link to myosin's ATPase mechanochemical cycle. Three-dimensional reconstruction of spirals uncovers extensive asymmetric remodeling of F-actin's helical lattice. This is recognized by α-catenin, which cooperatively binds along individual strands, preferentially engaging interfaces featuring extended inter-subunit distances while simultaneously suppressing rotational deviations to regularize the lattice. Collectively, we find that myosin forces can deform F-actin, generating a conformational landscape that is detected and reciprocally modulated by a mechanosensitive protein, providing a direct structural glimpse at active force transduction through the cytoskeleton.
Collapse
Affiliation(s)
- Ayala G. Carl
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Pinar S. Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Alex J. Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - James R. Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Kunitomi A, Chiba S, Higashitani N, Higashitani A, Sato S, Mizuno K, Ohashi K. Solo regulates the localization and activity of PDZ-RhoGEF for actin cytoskeletal remodeling in response to substrate stiffness. Mol Biol Cell 2024; 35:ar87. [PMID: 38656797 PMCID: PMC11238083 DOI: 10.1091/mbc.e23-11-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Recent findings indicate that Solo, a RhoGEF, is involved in cellular mechanical stress responses. However, the mechanism of actin cytoskeletal remodeling via Solo remains unclear. Therefore, this study aimed to identify Solo-interacting proteins using the BioID, a proximal-dependent labeling method, and elucidate the molecular mechanisms of function of Solo. We identified PDZ-RhoGEF (PRG) as a Solo-interacting protein. PRG colocalized with Solo in the basal area of cells, depending on Solo localization, and enhanced actin polymerization at the Solo accumulation sites. Additionally, Solo and PRG interaction was necessary for actin cytoskeletal remodeling. Furthermore, the purified Solo itself had little or negligible GEF activity, even its GEF-inactive mutant directly activated the GEF activity of PRG through interaction. Moreover, overexpression of the Solo and PRG binding domains, respectively, had a dominant-negative effect on actin polymerization and actin stress fiber formation in response to substrate stiffness. Therefore, Solo restricts the localization of PRG and regulates actin cytoskeletal remodeling in synergy with PRG in response to the surrounding mechanical environment.
Collapse
Affiliation(s)
- Aoi Kunitomi
- Laboratory of Molecular and Cellular Biology, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Nahoko Higashitani
- Laboratory of Molecular Genetics and Physiology, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Higashitani
- Laboratory of Molecular Genetics and Physiology, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shinichi Sato
- Laboratory of Bioactive Molecules, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Laboratory of Molecular and Cellular Biology, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Laboratory of Molecular and Cellular Biology, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
7
|
Okura K, Matsumoto T, Narita A, Tatsumi H. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments. J Mol Biol 2023; 435:168295. [PMID: 37783285 DOI: 10.1016/j.jmb.2023.168295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
A variety of biological roles of mechanical forces have been proposed in cell biology, such as cell signaling pathways for survival, development, growth, and differentiation. Mechanical forces alter the mechanical conditions within cells and their environment, which strongly influences the reorganization of the actin cytoskeleton. Single-molecule imaging studies of actin filaments have led to the hypothesis that the actin filament acts as a mechanosensor; e.g., increases in actin filament tension alter their conformation and affinity for regulatory proteins. However, our understanding of the molecular mechanisms underlying how tension modulates the mechanical behavior of a single actin filament is still incomplete. In this study, a direct measurement of the twisting and bending of a fluorescently labeled single actin filament under different tension levels by force application (0.8-3.4 pN) was performed using single-molecule fluorescence polarization (SMFP) microscopy. The results showed that the amplitude of twisting and bending fluctuations of a single actin filament decreased with increasing tension. Electron micrograph analysis of tensed filaments also revealed that the fluctuations in the crossover length of actin filaments decreased with increasing filament tension. Possible molecular mechanisms underlying these results involving the binding of actin-binding proteins, such as cofilin, to the filament are discussed.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Tomoharu Matsumoto
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Akihiro Narita
- Department of Biological Science, Graduate School of Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Ishikawa, Japan.
| |
Collapse
|
8
|
Onishi K, Ishihara S, Takahashi M, Sakai A, Enomoto A, Suzuki K, Haga H. Substrate stiffness induces nuclear localization of myosin regulatory light chain to suppress apoptosis. FEBS Lett 2023; 597:643-656. [PMID: 36723402 DOI: 10.1002/1873-3468.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
Stiffness of the extracellular matrix regulates various biological responses, but the response mechanisms are poorly understood. Here, we found that the nuclear diphosphorylated myosin regulatory light chain (2P-MRLC) is a critical mechanomediator that suppresses apoptosis in response to substrate stiffness. Stiff substrates promoted the nuclear localization of 2P-MRLC. Zipper-interacting protein kinase [ZIPK; also known as death-associated protein kinase 3 (DAPK3)], a kinase for MRLC, was localized in the nucleus in response to stiff substrates and promoted the nuclear localization of 2P-MRLC. Moreover, actin fiber formation induced by substrate stiffness promoted the nuclear localization of 2P-MRLC via ZIPK. 2P-MRLC in response to substrate stiffness suppressed the expression of MAF bZIP transcription factor B (MafB) and repressed apoptosis. These findings reveal a newly identified role of MRLC in mechanotransduction.
Collapse
Affiliation(s)
- Katsuya Onishi
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masayuki Takahashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Plasmonic Biosensing for Label-Free Detection of Two Hallmarks of Cancer Cells: Cell-Matrix Interaction and Cell Division. BIOSENSORS 2022; 12:bios12090674. [PMID: 36140059 PMCID: PMC9496138 DOI: 10.3390/bios12090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Two key features of cancer cells are sustained proliferation and invasion, which is preceded by a modification of the adhesion properties to the extracellular matrix. Currently, fluorescence-based techniques are mainly used to detect these processes, including flow cytometry and fluorescence resonance energy transfer (FRET) microscopy. We have previously described a simple, fast and label-free method based on a gold nanohole array biosensor to detect the spectral response of single cells, which is highly dependent on the actin cortex. Here we used this biosensor to study two cellular processes where configuration of the actin cortex plays an essential role: cell cycle and cell–matrix adhesion. Colorectal cancer cells were maintained in culture under different conditions to obtain cells stopped either in G0/G1 (resting cells/cells at the initial steps of cell growth) or G2 (cells undergoing division) phases of the cell cycle. Data from the nanohole array biosensor showed an ability to discriminate between both cell populations. Additionally, cancer cells were monitored with the biosensor during the first 60 min after cells were deposited onto a biosensor coated with fibronectin, an extracellular matrix protein. Spectral changes were detected in the first 20 min and increased over time as the cell–biosensor contact surface increased. Our data show that the nanohole array biosensor provides a label-free and real-time procedure to detect cells undergoing division or changes in cell–matrix interaction in both clinical and research settings.
Collapse
|
10
|
Platzl C, Kaser-Eichberger A, Benavente-Perez A, Schroedl F. The choroid-sclera interface: An ultrastructural study. Heliyon 2022; 8:e09408. [PMID: 35586330 PMCID: PMC9108890 DOI: 10.1016/j.heliyon.2022.e09408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/29/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Emmetropization is an active and visually guided process that involves the retina, choroid and sclera, and results in compensatory changes in eye growth. This guided growth is the result of visual cues and possibly mechanical interactions being translated into growth signals via molecular events from the retina into the choroid and sclera, through the choroidal scleral transition zone. If mechanical interactions were a part of the choroid-sclera signaling transduction cascade, specific morphological arrangements should be detectable in this region at the ultrastructural level. The goal of this study was to investigate the ultrastructural features of the choroidal scleral transition zone by comparing avian, non-human primate and human eyes, with the goal to confirm whether specific mechanical structures are present. Choroidal and scleral tissue from chicken, marmoset, and human eyes were imaged using transmission electron microscopy to document the choroid-sclera transition zone. In chicken eyes, fibroblast lamellae bordered the scleral matrix and formed thin end elongated processes that were undercut by scleral collagen fibrils. These processes back-looped into the scleral matrix, and displayed small club-like membrane protrusions. Differences in these arrangements in mature vs young chickens were not detected. The club-like membrane protrusions identified in chickens were rare in marmoset eyes, which instead exhibited two types of collagen fibrils discriminated by size, and were absent in the human eyes investigated. In marmoset and human eyes, elastic components were detected in the transition zone that were absent in chickens. In summary, cellular/membrane specializations indicating a mechanical interaction at the choroid-sclera transition zone were not detected in chicken, non-human primate or human eyes. If mechanotransduction is necessary for scleral growth, matrix integrity or development, alternative structural arrangements might be required.
Collapse
Affiliation(s)
- C. Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - A. Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - F. Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
- Corresponding author.
| |
Collapse
|
11
|
Kluge C, Pöhnl M, Böckmann RA. Spontaneous local membrane curvature induced by transmembrane proteins. Biophys J 2022; 121:671-683. [PMID: 35122737 PMCID: PMC8943716 DOI: 10.1016/j.bpj.2022.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The (local) curvature of cellular membranes acts as a driving force for the targeting of membrane-associated proteins to specific membrane domains, as well as a sorting mechanism for transmembrane proteins, e.g., by accumulation in regions of matching spontaneous curvature. The latter measure was previously experimentally employed to study the curvature induced by the potassium channel KvAP and by aquaporin AQP0. However, the direction of the reported spontaneous curvature levels as well as the molecular driving forces governing the membrane curvature induced by these integral transmembrane proteins could not be addressed experimentally. Here, using both coarse-grained and atomistic molecular dynamics (MD) simulations, we report induced spontaneous curvature values for the homologous potassium channel Kv 1.2/2.1 Chimera (KvChim) and AQP0 embedded in unrestrained lipid bicelles that are in very good agreement with experiment. Importantly, the direction of curvature could be directly assessed from our simulations: KvChim induces a strong positive membrane curvature (≈0.036 nm-1) whereas AQP0 causes a comparably small negative curvature (≈-0.019 nm-1). Analyses of protein-lipid interactions within the bicelle revealed that the potassium channel shapes the surrounding membrane via structural determinants. Differences in shape of the protein-lipid interface of the voltage-gating domains between the extracellular and cytosolic membrane leaflets induce membrane stress and thereby promote a protein-proximal membrane curvature. In contrast, the water pore AQP0 displayed a high structural stability and an only faint effect on the surrounding membrane environment that is connected to its wedge-like shape.
Collapse
Affiliation(s)
- Christoph Kluge
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany,National Center for High-Performance Computing Erlangen (NHR@FAU), Erlangen, Germany,Corresponding author
| |
Collapse
|
12
|
Franco A, Vidal V, Gómez M, Gutiérrez O, Martino M, González F, Moreno F, Fernández-Luna JL. A label-free optical system with a nanohole array biosensor for discriminating live single cancer cells from normal cells. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:315-328. [PMID: 39633886 PMCID: PMC11501809 DOI: 10.1515/nanoph-2021-0499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/07/2024]
Abstract
Developing a simple, fast, and label-free method for discrimination between live cancer cells and normal cells in biological samples still remains a challenge. Here, a system is described that fulfills these features to analyze individual living cells. The system consists of a gold nanohole array biosensor plus a microscope optical design to isolate the spectral response of a single cell. It is demonstrated that differences in the spectral behavior between tumor (colorectal cancer cell lines and primary cells from colorectal cancer tissue) and non-tumor cells (peripheral blood mononuclear cells, skin fibroblasts and colon epithelial cells) are influenced by the actin cortex, which lies within the short penetration depth of the surface plasmon electromagnetic field. The efficacy of this system was assessed by the analysis of about one thousand single cells showing the highest discrimination capacity between normal colon epithelial cells and colorectal cancer cells from surgical specimens, with values of sensitivity and specificity ranging 80-100% and 87-100%, respectively. It is also demonstrated that cell discrimination capacity of the system is highly reduced by disrupting the formation of actin cortex. This plasmonic system may find wide applications in biomedicine and to study key cellular processes that involve the actin cortex, including proliferation, differentiation, and migration.
Collapse
Affiliation(s)
- Alfredo Franco
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | - Verónica Vidal
- Genetics Unit, Valdecilla University Hospital, Santander39008, Spain
| | - Marcos Gómez
- Department of Surgery, Valdecilla University Hospital, Santander39008, Spain
| | - Olga Gutiérrez
- Genetics Unit, Valdecilla University Hospital, Santander39008, Spain
| | - María Martino
- Department of Pathology, Valdecilla University Hospital, Santander39008, Spain
| | - Francisco González
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | - Fernando Moreno
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | | |
Collapse
|
13
|
Shi X, Tang D, Xing Y, Zhao S, Fan C, Zhong J, Cui Y, Shi K, Jiu Y. Actin nucleator formins regulate the tension-buffering function of caveolin-1. J Mol Cell Biol 2021; 13:876-888. [PMID: 34718633 PMCID: PMC8800513 DOI: 10.1093/jmcb/mjab070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Both the mechanosensitive actin cytoskeleton and caveolae contribute to active processes such as cell migration, morphogenesis, and vesicular trafficking. Although distinct actin components are well studied, how they contribute to cytoplasmic caveolae, especially in the context of mechano-stress, has remained elusive. Here, we identify two actin-associated mobility stereotypes of caveolin-1 (CAV-1)-marked intracellular vesicles, which are characterized as ‘dwelling’ and ‘go and dwelling’. In order to exploit the reason for their distinct dynamics, elongated actin-associated formin functions are perturbed. We find drastically decreased density, increased clustering, and compromised motility of cytoplasmic CAV-1 vesicles resulting from lacking actin nucleator formins by both chemical treatment and RNA silencing of formin genes. Furthermore, hypo-osmosis-stimulated diminishing of CAV-1 is dramatically intensified upon blocking formins. The clustering of CAV-1 vesicles when cells are cultured on soft substrate is also aggravated under formin inhibition condition. Together, we reveal that actin-associated formins are essential for maintaining the dynamic organization of cytoplasmic CAV-1 and importantly its sensitivity upon mechanical challenge. We conclude that tension-controlled actin formins act as a safety valve dampening excessive tension on CAV-1 and safeguarding CAV-1 against mechanical damage.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Daijiao Tang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yifan Xing
- University of Chinese Academy of Sciences, Beijing, 100049 China.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Changyuan Fan
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing, 100049 China.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Kun Shi
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
14
|
Nishimura Y, Shi S, Li Q, Bershadsky AD, Viasnoff V. Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers. Cells Dev 2021; 168:203736. [PMID: 34455135 DOI: 10.1016/j.cdev.2021.203736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
REF52 fibroblasts have a well-developed contractile machinery, the most prominent elements of which are actomyosin stress fibers with highly ordered organization of actin and myosin IIA filaments. The relationship between contractile activity and turnover dynamics of stress fibers is not sufficiently understood. Here, we simultaneously measured the forces exerted by stress fibers (using traction force microscopy or micropillar array sensors) and the dynamics of actin and myosin (using photoconversion-based monitoring of actin incorporation and high-resolution fluorescence microscopy of myosin II light chain). Our data revealed new features of the crosstalk between myosin II-driven contractility and stress fiber dynamics. During normal stress fiber turnover, actin incorporated all along the stress fibers and not only at focal adhesions. Incorporation of actin into stress fibers/focal adhesions, as well as actin and myosin II filaments flow along stress fibers, strongly depends on myosin II activity. Myosin II-dependent generation of traction forces does not depend on incorporation of actin into stress fibers per se, but still requires formin activity. This previously overlooked function of formins in maintenance of the actin cytoskeleton connectivity could be the main mechanism of formin involvement in traction force generation.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Shidong Shi
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 7610001, Israel.
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; CNRS UMI 3639, Singapore; Department of Biological Sciences, National university of Singapore, S3 #05-01, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
15
|
Semaphorin3F Drives Dendritic Spine Pruning Through Rho-GTPase Signaling. Mol Neurobiol 2021; 58:3817-3834. [PMID: 33856648 DOI: 10.1007/s12035-021-02373-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spines of cortical pyramidal neurons are initially overproduced then remodeled substantially in the adolescent brain to achieve appropriate excitatory balance in mature circuits. Here we investigated the molecular mechanism of developmental spine pruning by Semaphorin 3F (Sema3F) and its holoreceptor complex, which consists of immunoglobulin-class adhesion molecule NrCAM, Neuropilin-2 (Npn2), and PlexinA3 (PlexA3) signaling subunits. Structure-function studies of the NrCAM-Npn2 interface showed that NrCAM stabilizes binding between Npn2 and PlexA3 necessary for Sema3F-induced spine pruning. Using a mouse neuronal culture system, we identified a dual signaling pathway for Sema3F-induced pruning, which involves activation of Tiam1-Rac1-PAK1-3 -LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II in dendritic spines. Inhibitors of actin remodeling impaired spine collapse in the cortical neurons. Elucidation of these pathways expands our understanding of critical events that sculpt neuronal networks and may provide insight into how interruptions to these pathways could lead to spine dysgenesis in diseases such as autism, bipolar disorder, and schizophrenia.
Collapse
|
16
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
17
|
Mei L, Espinosa de Los Reyes S, Reynolds MJ, Leicher R, Liu S, Alushin GM. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020; 9:62514. [PMID: 32969337 PMCID: PMC7588232 DOI: 10.7554/elife.62514] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton mediates mechanical coupling between cells and their tissue microenvironments. The architecture and composition of actin networks are modulated by force; however, it is unclear how interactions between actin filaments (F-actin) and associated proteins are mechanically regulated. Here we employ both optical trapping and biochemical reconstitution with myosin motor proteins to show single piconewton forces applied solely to F-actin enhance binding by the human version of the essential cell-cell adhesion protein αE-catenin but not its homolog vinculin. Cryo-electron microscopy structures of both proteins bound to F-actin reveal unique rearrangements that facilitate their flexible C-termini refolding to engage distinct interfaces. Truncating α-catenin’s C-terminus eliminates force-activated F-actin binding, and addition of this motif to vinculin confers force-activated binding, demonstrating that α-catenin’s C-terminus is a modular detector of F-actin tension. Our studies establish that piconewton force on F-actin can enhance partner binding, which we propose mechanically regulates cellular adhesion through α-catenin. All of the cells in our bodies rely on cues from their surrounding environment to alter their behavior. As well sending each other chemical signals, such as hormones, cells can also detect pressure and physical forces applied by the cells around them. These physical interactions are coordinated by a network of proteins called the cytoskeleton, which provide the internal scaffold that maintains a cell’s shape. However, it is not well understood how forces transmitted through the cytoskeleton are converted into mechanical signals that control cell behavior. The cytoskeleton is primarily made up protein filaments called actin, which are frequently under tension from external and internal forces that push and pull on the cell. Many proteins bind directly to actin, including adhesion proteins that allow the cell to ‘stick’ to its surroundings. One possibility is that when actin filaments feel tension, they convert this into a mechanical signal by altering how they bind to other proteins. To test this theory, Mei et al. isolated and studied an adhesion protein called α-catenin which is known to interact with actin. This revealed that when tiny forces – similar to the amount cells experience in the body – were applied to actin filaments, this caused α-catenin and actin to bind together more strongly. However, applying the same level of physical force did not alter how well actin bound to a similar adhesion protein called vinculin. Further experiments showed that this was due to differences in a small, flexible region found on both proteins. Manipulating this region revealed that it helps α-catenin attach to actin when a force is present, and was thus named a ‘force detector’. Proteins that bind to actin are essential in all animals, making it likely that force detectors are a common mechanism. Scientists can now use this discovery to identify and manipulate force detectors in other proteins across different cells and animals. This may help to develop drugs that target the mechanical signaling process, although this will require further understanding of how force detectors work at the molecular level.
Collapse
Affiliation(s)
- Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States
| | | | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| | - Rachel Leicher
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States.,Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| |
Collapse
|
18
|
Zhang Z, Rosakis P, Hou TY, Ravichandran G. A minimal mechanosensing model predicts keratocyte evolution on flexible substrates. J R Soc Interface 2020; 17:20200175. [PMID: 32370690 DOI: 10.1098/rsif.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Phoebus Rosakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013 Crete, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Voutes 70013 Crete, Greece
| | - Thomas Y Hou
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
20
|
Lee M, Kang EH. Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segment-1. Proteins 2019; 88:385-392. [PMID: 31498927 DOI: 10.1002/prot.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022]
Abstract
The assembly of protein actin into double-helical filaments promotes many eukaryotic cellular processes that are regulated by actin-binding proteins (ABPs). Actin filaments can adopt multiple conformations, known as structural polymorphism, which possibly influences the interaction between filaments and ABPs. Gelsolin is a Ca2+ -regulated ABP that severs and caps actin filaments. Gelsolin binding modulates filament structure; however, it is not known how polymorphic actin filament structures influence an interaction of gelsolin S1 with the barbed-end of filament. Herein, we investigated how polymorphic structures of actin filaments affect the interactions near interfaces between the gelsolin segment 1 (S1) domain and the filament barbed-end. Using all-atom molecular dynamics simulations, we demonstrate that different tilted states of subunits modulate gelsolin S1 interactions with the barbed-end of polymorphic filaments. Hydrogen bonding and interaction energy at the filament-gelsolin S1 interface indicate distinct conformations of filament barbed ends, resulting in different interactions of gelsolin S1. This study demonstrates that filament's structural multiplicity plays important roles in the interactions of actin with ABPs.
Collapse
Affiliation(s)
- Myeongsang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Ellen H Kang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Department of Physics, University of Central Florida, Orlando, Florida.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida
| |
Collapse
|
21
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Christensen JR, Homa KE, Morganthaler AN, Brown RR, Suarez C, Harker AJ, O'Connell ME, Kovar DR. Cooperation between tropomyosin and α-actinin inhibits fimbrin association with actin filament networks in fission yeast. eLife 2019; 8:47279. [PMID: 31180322 PMCID: PMC6557641 DOI: 10.7554/elife.47279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
We previously discovered that competition between fission yeast actin binding proteins (ABPs) for binding F-actin facilitates their sorting to different cellular networks. Specifically, competition between endocytic actin patch ABPs fimbrin Fim1 and cofilin Adf1 enhances their activities, and prevents tropomyosin Cdc8's association with actin patches. However, these interactions do not explain how Fim1 is prevented from associating strongly with other F-actin networks such as the contractile ring. Here, we identified α-actinin Ain1, a contractile ring ABP, as another Fim1 competitor. Fim1 competes with Ain1 for association with F-actin, which is dependent upon their F-actin residence time. While Fim1 outcompetes both Ain1 and Cdc8 individually, Cdc8 enhances the F-actin bundling activity of Ain1, allowing Ain1 to generate F-actin bundles that Cdc8 can bind in the presence of Fim1. Therefore, the combination of contractile ring ABPs Ain1 and Cdc8 is capable of inhibiting Fim1's association with F-actin networks.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Rachel R Brown
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alyssa J Harker
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Meghan E O'Connell
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
23
|
Zimmermann D, Kovar DR. Feeling the force: formin's role in mechanotransduction. Curr Opin Cell Biol 2019; 56:130-140. [PMID: 30639952 DOI: 10.1016/j.ceb.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Abstract
Fundamental cellular processes such as division, polarization, and motility require the tightly regulated spatial and temporal assembly and disassembly of the underlying actin cytoskeleton. The actin cytoskeleton has been long viewed as a central player facilitating diverse mechanotransduction pathways due to the notion that it is capable of receiving, processing, transmitting, and generating mechanical stresses. Recent work has begun to uncover the roles of mechanical stresses in modulating the activity of key regulatory actin-binding proteins and their interactions with actin filaments, thereby controlling the assembly (formin and Arp2/3 complex) and disassembly (ADF/Cofilin) of actin filament networks. In this review, we will focus on discussing the current molecular understanding of how members of the formin protein family sense and respond to forces and the potential implications for formin-mediated mechanotransduction in cells.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Massachusetts Institute of Technology, David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Ave, 76-361F, Cambridge, MA 02139-4307, United States.
| | - David R Kovar
- The University of Chicago, Department of Molecular Genetics and Cell Biology, 90 E. 58th Street, CSLC 212, Chicago, IL 60637, United States.
| |
Collapse
|
24
|
Childers RC, Sunyecz I, West TA, Cismowski MJ, Lucchesi PA, Gooch KJ. Role of the cytoskeleton in the development of a hypofibrotic cardiac fibroblast phenotype in volume overload heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H596-H608. [PMID: 30575422 DOI: 10.1152/ajpheart.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
Collapse
Affiliation(s)
- Rachel C Childers
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Ian Sunyecz
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - T Aaron West
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mary J Cismowski
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Pamela A Lucchesi
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| |
Collapse
|
25
|
Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng 2018; 3:126-136. [PMID: 30944431 PMCID: PMC6450418 DOI: 10.1038/s41551-018-0318-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
The potential of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9)-based therapeutic genome editing is hampered by difficulties in the control of the in vivo activity of CRISPR-Cas9. To minimize any genotoxicity, precise activation of CRISPR-Cas9 in the target tissue is desirable. Here, we show that, by complexing magnetic nanoparticles with recombinant baculoviral vectors (MNP-BVs), CRISPR-Cas9-mediated genome editing can be activated locally in vivo via a magnetic field. The baculoviral vector was chosen for in vivo gene delivery because of its large loading capacity and ability to locally overcome systemic inactivation by the complement system. We demonstrate that a locally applied magnetic field can enhance the cellular entry of MNP-BVs, thereby avoiding baculoviral vector inactivation and causing a transient transgene expression in the target tissue. Because baculoviral vectors are inactivated elsewhere, gene delivery and in vivo genome editing via MNP-BVs are tissue specific.
Collapse
|
26
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
27
|
Yamashiro S, Tanaka S, McMillen LM, Taniguchi D, Vavylonis D, Watanabe N. Myosin-dependent actin stabilization as revealed by single-molecule imaging of actin turnover. Mol Biol Cell 2018; 29:1941-1947. [PMID: 29847209 PMCID: PMC6232968 DOI: 10.1091/mbc.e18-01-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How mechanical stress applied to the actin network modifies actin turnover has attracted considerable attention. Actomyosin exerts the major force on the actin network, which has been implicated in actin stability regulation. However, direct monitoring of immediate changes in F-actin stability on alteration of actomyosin contraction has not been achieved. Here we reexamine myosin regulation of actin stability by using single-molecule speckle analysis of actin. To avoid possible errors attributable to actin-binding probes, we employed DyLight-labeled actin that distributes identical to F-actin in lamellipodia. We performed time-resolved analysis of the effect of blebbistatin on actin turnover. Blebbistatin enhanced actin disassembly in lamellipodia of fish keratocytes and lamellar of Xenopus XTC cells at an early stage of the inhibition, indicating that actomyosin contraction stabilizes cellular F-actin. In addition, our data show a previously unrecognized relationship between the actin network-driving force and the actin turnover rates in lamellipodia. These findings point to the power of direct viewing of molecular behavior in elucidating force regulation of actin filament turnover.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Soichiro Tanaka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi 980-8578, Japan
| | | | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
29
|
Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the Actin Cytoskeleton: Converting Mechanical Stimuli into Biochemical Signals. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070816-033547] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Force transmission through the actin cytoskeleton plays a central role in cell movements, shape change, and internal organization. Dynamic reorganization of actin filaments by an array of specialized binding proteins creates biochemically and architecturally distinct structures, many of which are finely tuned to exert or resist mechanical loads. The molecular complexity of the actin cytoskeleton continues to be revealed by detailed biochemical assays, and the architectural diversity and dynamics of actin structures are being uncovered by advances in super-resolution fluorescence microscopy and electron microscopy. However, our understanding of how mechanical forces feed back on cytoskeletal architecture and actin-binding protein organization is comparatively limited. In this review, we discuss recent work investigating how mechanical forces applied to cytoskeletal proteins are transduced into biochemical signals. We explore multiple mechanisms for mechanical signal transduction, including the mechanosensitive behavior of actin-binding proteins, the effect of mechanical force on actin filament dynamics, and the influence of mechanical forces on the structure of single actin filaments. The emerging picture is one in which the actin cytoskeleton is defined not only by the set of proteins that constitute a network but also by the constant interplay of mechanical forces and biochemistry.
Collapse
Affiliation(s)
- Andrew R. Harris
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Pamela Jreij
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Daniel A. Fletcher
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017; 28:3134-3155. [PMID: 28954860 PMCID: PMC5687017 DOI: 10.1091/mbc.e17-04-0228] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanosensing depicts the ability of a cell to sense mechanical cues, which under some circumstances is mediated by the surface receptors. In this review, a four-step model is described for receptor-mediated mechanosensing. Platelet GPIb, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Lining Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Muaz Rushdi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chenghao Ge
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
31
|
Zimmermann D, Homa KE, Hocky GM, Pollard LW, De La Cruz EM, Voth GA, Trybus KM, Kovar DR. Mechanoregulated inhibition of formin facilitates contractile actomyosin ring assembly. Nat Commun 2017; 8:703. [PMID: 28951543 PMCID: PMC5614989 DOI: 10.1038/s41467-017-00445-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis physically separates dividing cells by forming a contractile actomyosin ring. The fission yeast contractile ring has been proposed to assemble by Search-Capture-Pull-Release from cytokinesis precursor nodes that include the molecular motor type-II myosin Myo2 and the actin assembly factor formin Cdc12. By successfully reconstituting Search-Capture-Pull in vitro, we discovered that formin Cdc12 is a mechanosensor, whereby myosin pulling on formin-bound actin filaments inhibits Cdc12-mediated actin assembly. We mapped Cdc12 mechanoregulation to its formin homology 1 domain, which facilitates delivery of new actin subunits to the elongating actin filament. Quantitative modeling suggests that the pulling force of the myosin propagates through the actin filament, which behaves as an entropic spring, and thereby may stretch the disordered formin homology 1 domain and impede formin-mediated actin filament elongation. Finally, live cell imaging of mechano-insensitive formin mutant cells established that mechanoregulation of formin Cdc12 is required for efficient contractile ring assembly in vivo. The fission yeast cytokinetic ring assembles by Search-Capture-Pull-Release from precursor nodes that include formin Cdc12 and myosin Myo2. The authors reconstitute Search-Capture-Pull in vitro and find that Myo2 pulling on Cdc12-associated actin filaments mechano-inhibits Cdc12-mediated assembly, which enables proper ring assembly in vivo.
Collapse
Affiliation(s)
- Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA
| | - Glen M Hocky
- Department of Chemistry, The James Franck Institute and Institute for Biophysical Dynamics and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Searle Chemistry Laboratory 231, Chicago, IL, 60637, USA
| | - Luther W Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Ave., HSRF 130, Burlington, VT, 05405, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, 266 Whitney Ave., New Haven, CT, 06520-8114, USA
| | - Gregory A Voth
- Department of Chemistry, The James Franck Institute and Institute for Biophysical Dynamics and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Searle Chemistry Laboratory 231, Chicago, IL, 60637, USA.
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Ave., HSRF 130, Burlington, VT, 05405, USA.
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA. .,Department of Biochemistry and Molecular Biology, The University of Chicago, 920 E. 58th St., CSLC 212, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
33
|
Jégou A, Romet-Lemonne G. Single Filaments to Reveal the Multiple Flavors of Actin. Biophys J 2017; 110:2138-46. [PMID: 27224479 DOI: 10.1016/j.bpj.2016.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022] Open
Abstract
A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences.
Collapse
Affiliation(s)
- Antoine Jégou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
34
|
Nishida T, Kubota S, Aoyama E, Yamanaka N, Lyons KM, Takigawa M. Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation. Osteoarthritis Cartilage 2017; 25:759-769. [PMID: 27729291 DOI: 10.1016/j.joca.2016.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE CCN family protein 2/connective tissue growth factor (CCN2/CTGF) promotes cartilage regeneration in experimental osteoarthritis (OA) models. However, CCN2 production is very low in articular cartilage. The aim of this study was to investigate whether or not CCN2 was promoted by cultured chondrocytes treated with low-intensity pulsed ultrasound (LIPUS) and to clarify its mechanism. METHODS Human chondrocytic cell line (HCS)-2/8, rat primary epiphyseal and articular cartilage cells, and Ccn2-deficient chondrocytes that impaired chondrocyte differentiation, were treated with LIPUS for 20 min at 3.0 MHz frequency and 60 mW/cm2 power. Expressions of chondrocyte differentiation marker mRNAs were examined by real-time PCR (RT-PCR) analysis from HCS-2/8 cells and Ccn2-deficient chondrocytes at 30 min and 1 h after LIPUS treatment, respectively. CCN2 production was examined by Western blotting after 5 h of LIPUS treatment. Moreover, Ca2+ influx was measured by using a Fluo-4 probe. RESULTS The gene expression of chondrocyte differentiation markers and CCN2 production were increased in cultured chondrocytes treated with LIPUS. In addition, Ca2+ influx and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2 were increased by LIPUS treatment, and the stability of TRPV4 and BKca channel mRNAs was decreased by siRNA against CCN2. Consistent with those findings, the LIPUS-induced the gene expressions of type II collagen (COL2a1) and Aggrecan (ACAN) observed in wild-type cells were not observed in the Ccn2-deficient chondrocytes. CONCLUSION These data indicate that chondrocyte differentiation represented by CCN2 production was mediated via MAPK pathways activated by LIPUS-stimulated Ca2+ influx, which in turn was supported by the induced CCN2 molecules in articular chondrocytes.
Collapse
Affiliation(s)
- T Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | - E Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | | | - K M Lyons
- Department of Orthopedic Surgery, UCLA, CA, USA.
| | - M Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| |
Collapse
|
35
|
Bryant D, Clemens L, Allard J. Computational simulation of formin-mediated actin polymerization predicts homologue-dependent mechanosensitivity. Cytoskeleton (Hoboken) 2016; 74:29-39. [PMID: 27792274 DOI: 10.1002/cm.21344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Many actin structures are nucleated and assembled by the barbed-end tracking polymerase formin family, including filopodia, focal adhesions, the cytokinetic ring and cell cortex. These structures respond to forces in distinct ways. Formins typically have profilin-actin binding sites embedded in highly flexible disordered FH1 domains, hypothesized to diffusively explore space to rapidly capture actin monomers for delivery to the barbed end. Recent experiments demonstrate that formin-mediated polymerization accelerates when under tension. The acceleration has been attributed to modifying the state of the FH2 domain of formin. Intriguingly, the same acceleration is reported when tension is applied to the FH1 domains, ostensibly pulling monomers away from the barbed end. Here we develop a mesoscale coarse-grain model of formin-mediated actin polymerization, including monomer capture and delivery by FH1, which sterically interacts with actin along its entire length. The binding of actin monomers to their specific sites on FH1 is entropically disfavored by the high disorder. We find that this penalty is attenuated when force is applied to the FH1 domain by revealing the binding site, increasing monomer capture efficiency. Overall polymerization rates can decrease or increase with increasing force, depending on the length of FH1 domain and location of binding site. Our results suggest that the widely varying FH1 lengths and binding site locations found in known formins could be used to differentially respond to force, depending on the actin structure being assembled. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Derek Bryant
- Department of Physics and Astronomy, University of California, Irvine, California
| | - Lara Clemens
- Center for Complex Biological Systems, University of California, Irvine, California
| | - Jun Allard
- Department of Physics and Astronomy, University of California, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, California.,Department of Mathematics, University of California, Irvine, California
| |
Collapse
|
36
|
Ali M, Raghunathan V, Li JY, Murphy CJ, Thomasy SM. Biomechanical relationships between the corneal endothelium and Descemet's membrane. Exp Eye Res 2016; 152:57-70. [PMID: 27639516 DOI: 10.1016/j.exer.2016.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
The posterior face of the cornea consists of the corneal endothelium, a monolayer of cuboidal cells that secrete and attach to Descemet's membrane, an exaggerated basement membrane. Dysfunction of the endothelium compromises the barrier and pump functions of this layer that maintain corneal deturgesence. A large number of corneal endothelial dystrophies feature irregularities in Descemet's membrane, suggesting that cells create and respond to the biophysical signals offered by their underlying matrix. This review provides an overview of the bidirectional relationship between Descemet's membrane and the corneal endothelium. Several experimental methods have characterized a richly topographic and compliant biophysical microenvironment presented by the posterior surface of Descemet's membrane, as well as the ultrastructure and composition of the membrane as it builds during a lifetime. We highlight the signaling pathways involved in the mechanotransduction of biophysical cues that influence cell behavior. We present the specific example of Fuchs' corneal endothelial dystrophy as a condition in which a dysregulated Descemet's membrane may influence the progression of disease. Finally, we discuss some disease models and regenerative strategies that may facilitate improved treatments for corneal dystrophies.
Collapse
Affiliation(s)
- Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - VijayKrishna Raghunathan
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, 77204, USA.
| | - Jennifer Y Li
- Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2255-66. [DOI: 10.1016/j.bbamcr.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
|
38
|
Boyle ST, Samuel MS. Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases 2016; 7:139-46. [PMID: 27168253 DOI: 10.1080/21541248.2016.1173771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanical properties of the ECM strongly influence the behavior of all cell types within a given tissue. Increased matrix tension promotes epithelial cell proliferation by engaging mitogenic mechanotransduction signaling including the Salvador/Warts/Hippo, PI 3-kinase, Rho, Wnt and MAP kinase pathways. The Rho signaling pathways in particular are capable of increasing intra-cellular tension by elevating the production and contractility of the actomyosin cytoskeleton, which counteracts tension changes within the matrix in a process termed mechano-reciprocity. We have discovered that Rho-ROCK signaling increases the production of ECM through paracrine signaling between the epithelium and fibroblasts and also the remodeling of the ECM by regulating focal adhesion dynamics in fibroblasts. These two phenomena together cause increased ECM tension. Enhanced mechano-reciprocity results in ever-increasing intra- and extra-cellular tension in a vicious cycle that promotes cell proliferation and tumor progression. These insights reveal that inhibiting mechano-reciprocity, reducing ECM tension and targeting cancer-associated fibroblasts in a coordinated fashion has potential as cancer therapy.
Collapse
Affiliation(s)
- Sarah T Boyle
- a Centre for Cancer Biology, SA Pathology and the University of South Australia , Adelaide SA , Australia
| | - Michael S Samuel
- a Centre for Cancer Biology, SA Pathology and the University of South Australia , Adelaide SA , Australia.,b Faculty of Health Sciences, School of Medicine , University of Adelaide , Adelaide SA , Australia
| |
Collapse
|
39
|
Wyatt T, Baum B, Charras G. A question of time: tissue adaptation to mechanical forces. Curr Opin Cell Biol 2016; 38:68-73. [PMID: 26945098 DOI: 10.1016/j.ceb.2016.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
While much attention has been focused on the force-generating mechanisms responsible for shaping developing embryos, less is known about the ways in which cells in animal tissues respond to mechanical stimuli. Forces will arise within a tissue as the result of processes such as local cell death, growth and division, but they can also be an indirect consequence of morphogenetic movements in neighbouring tissues or be imposed from the outside, for example, by gravity. If not dealt with, the accumulation of stress and the resulting tissue deformation can pose a threat to tissue integrity and structure. Here we follow the time-course of events by which cells and tissues return to their preferred state following a mechanical perturbation. In doing so, we discuss the spectrum of biological and physical mechanisms known to underlie mechanical homeostasis in animal tissues.
Collapse
Affiliation(s)
- Tom Wyatt
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
40
|
|
41
|
A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cell Mol Bioeng 2015; 9:127-138. [PMID: 28989541 DOI: 10.1007/s12195-015-0424-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow.
Collapse
|
42
|
Lopez BJ, Valentine MT. Molecular control of stress transmission in the microtubule cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26225932 DOI: 10.1016/j.bbamcr.2015.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA
| | - Megan T Valentine
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA.
| |
Collapse
|
43
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
44
|
Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife 2015; 4. [PMID: 25642645 PMCID: PMC4337605 DOI: 10.7554/elife.04806] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/02/2015] [Indexed: 01/12/2023] Open
Abstract
High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ∼25% shorter, compared to control filaments. Interestingly, the shortened helical pitch was propagated to the neighboring bare zone on the pointed-end side of the cluster, while the pitch on the barbed-end side was similar to the control. Thus, cofilin clusters induce distinctively asymmetric conformational changes in filaments. Consistent with the idea that cofilin favors actin structures with a shorter helical pitch, cofilin clusters grew unidirectionally toward the pointed-end of the filament. Severing was often observed near the boundaries between bare zones and clusters, but not necessarily at the boundaries. DOI:http://dx.doi.org/10.7554/eLife.04806.001 Actin is one of the most abundant proteins found inside all eukaryotic cells including plant, animal, and fungal cells. This protein is involved in a wide range of biological processes that are essential for an organism's survival. Actin proteins form long filaments that help cells to maintain their shape and also provide the force required for cells to divide and/or move. Actin filaments are helical in shape and are made up of many actin subunits joined together. Actin filaments are changeable structures that continuously grow and shrink as new actin subunits are added to or removed from the ends of the filaments. One end of an actin filament grows faster than the other; the fast-growing end is known as the barbed-end, while the slow-growing end is referred to as the pointed-end. Over 100 other proteins are known to bind to and work with actin to regulate its roles in cells and how it forms into filaments. Cofilin is one such protein that binds to and forms clusters on actin filaments and it can also sever actin filaments. Severing an actin filament can encourage the filament to disassemble, or it can help produce new barbed ends that can then grow into new filaments. Previous work had suggested that cofilin severs actin filaments at the junction between regions on the filament that are coated with cofilin and those that are not. It was also known that cofilin binding to a filament causes the filament to change shape, and that the shape change is propagated to neighboring sections of the filaments not coated with cofilin. However, the details of where cofilin binds and how changes in shape are propagated along an actin filament were not known. Furthermore, the findings of these previous studies were largely based on examining still images of actin filaments, which are unlike the constantly changing filaments of living cells. Ngo, Kodera et al. have now analyzed what happens when cofilin binds to and forms clusters along actin filaments using a recently developed imaging technique called high-speed atomic force microscopy. This technique can be used to directly visualize individual proteins in action. Consistent with previous findings, Ngo, Kodera et al. observed that filaments coated with cofilin are thicker than those filaments without cofilin; and that cofilin binding also substantially reduces the helical twist of the filament. Ngo, Kodera et al. also found that these changes in shape are propagated along the filament but in only one direction—towards the pointed-end. Moreover, cofilin clusters also only grew towards the pointed-end of the actin filament—and the filaments were often severed near, but not exactly at, the junctions between cofilin-coated and uncoated regions. Such one-directional changes in shape of the actin filaments presumably help to regulate how other actin binding proteins can interact with the filament and consequently regulate the roles of the filaments themselves. DOI:http://dx.doi.org/10.7554/eLife.04806.002
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Noriyuki Kodera
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Eisaku Katayama
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
45
|
Zhang L, Yang X, Yue Y, Ye J, Yao Y, Fu Y, Li G, Yao Q, Lin Y, Gong P. Cyclic mechanical stress modulates neurotrophic and myelinating gene expression of Schwann cells. Cell Prolif 2014; 48:59-66. [PMID: 25418681 DOI: 10.1111/cpr.12151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the response of Schwann cells to cyclic compressive and tensile stresses of different durations of stimulation. MATERIALS AND METHODS RSC96 cells were subjected to cyclic tensile stress or compressive stress; for either, cells in five groups were treated for 0, 1, 2, 24 and 48 h respectively. Enzyme-linked immunosorbent assay was conducted to detect secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and neurotrophin-4 in the culture medium. Real-time PCR was conducted to quantify mRNA expression of neurotrophins including NGF, BDNF, neurotrophin-3 and neurotrophin-4, and myelin-related genes including Sox10, Krox20, neuregulin 1, NCAM, N-cadherin, P0, MAG and MBP. Immunofluorescent staining was performed to visualize Krox20 and F-actin in the tensile groups. RESULTS Within 24 h, cells treated with cyclic tensile stress expressed and secreted significantly more BDNF, while cyclic compression down-regulated BDNF expression. Cells treated with both tensile and compressive stress down-regulated expression of NRG1, NCAM, Krox20 and Sox10 at all time points. Expression of N-cadherin was not affected by either stretch or compression. F-actin was down-regulated by tensile stress. CONCLUSIONS Both tensile and compressive loading down-regulated expression of several important myelin-related Schwann cells genes and thus facilitated demyelination. Tensile stress meanwhile promoted secretion of BDNF by Schwann cells within 24 h, which may contribute to maintenance and repair of damaged axons. These effects of mechanical stress might have been mediated by the actin cytoskeleton.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sharma P, Kim A, Gill A, Wang J, Sheets K, Behkam B, Nain AS. Aligned and suspended fiber force probes for drug testing at single cell resolution. Biofabrication 2014; 6:045006. [PMID: 25264874 DOI: 10.1088/1758-5082/6/4/045006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of physical forces in disease onset and progression is widely accepted and this knowledge presents an alternative route to investigating disease models. Recently, numerous force measurement techniques have been developed to probe single and multi-cell behavior. While these methods have yielded fundamental insights, they are yet unable to capture the fibrous extra-cellular matrix biophysical interactions, involving parameters of curvature, structural stiffness (N m(-1)), alignment and hierarchy, which have been shown to play key roles in disease and developmental biology. Using a highly aggressive glioma model (DBTRG-05MG), we present a platform technology to quantify single cell force modulation (both inside-out and outside-in) with and without the presence of a cytoskeleton altering drug (cytochalasin D) using suspended and aligned fiber networks (nanonets) beginning to represent the aligned glioma environment. The nanonets fused in crisscross patterns were manufactured using the non-electrospinning spinneret based tunable engineering parameters technique. We demonstrate the ability to measure contractile single cell forces exerted by glioma cells attached to and migrating along the fiber axis (inside-out). This is followed by a study of force response of glioma cells attached to two parallel fibers using a probe deflecting the leading fiber (outside-in). The forces are calculated using beam deflection within the elastic limit. Our data shows that cytochalasin D compromises the spreading area of single glioma cells, eventually decreasing their 'inside-out' contractile forces, and 'outside-in' force response to external strain. Most notably, for the first time, we demonstrate the feasibility of using physiologically relevant aligned fiber networks as ultra-sensitive force (∼nanoNewtons) probes for investigating drug response and efficacy in disease models at the single cell resolution.
Collapse
Affiliation(s)
- Puja Sharma
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.
Collapse
|