1
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Hassoun R, Erdmann C, Schmitt S, Fujita-Becker S, Mügge A, Schröder RR, Geyer M, Borbor M, Jaquet K, Hamdani N, Mannherz HG. Functional Characterization of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G). Int J Mol Sci 2022; 23:ijms23084465. [PMID: 35457283 PMCID: PMC9024677 DOI: 10.3390/ijms23084465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Rasmus R. Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, D-45147 Essen, Germany;
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| |
Collapse
|
4
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
5
|
Sanematsu F, Kanai A, Ushijima T, Shiraishi A, Abe T, Kage Y, Sumimoto H, Takeya R. Fhod1, an actin-organizing formin family protein, is dispensable for cardiac development and function in mice. Cytoskeleton (Hoboken) 2019; 76:219-229. [PMID: 31008549 DOI: 10.1002/cm.21523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023]
Abstract
The formin family proteins have the ability to regulate actin filament assembly, thereby functioning in diverse cytoskeletal processes. Fhod3, a cardiac member of the family, plays a crucial role in development and functional maintenance of the heart. Although Fhod1, a protein closely-related to Fhod3, has been reported to be expressed in cardiomyocytes, the role of Fhod1 in the heart has still remained elusive. To know the physiological role of Fhod1 in the heart, we disrupted the Fhod1 gene in mice by replacement of exon 1 with a lacZ reporter gene. Histological lacZ staining unexpectedly revealed no detectable expression of Fhod1 in the heart, in contrast to intensive staining in the lung, a Fhod1-containing organ. Consistent with this, expression level of the Fhod1 protein in the heart was below the lower limit of detection of the present immunoblot analysis with three independent anti-Fhod1 antibodies. Homozygous Fhod1-null mice did not show any defects in gross and histological appearance of the heart or upregulate fetal cardiac genes that are induced under stress conditions. Furthermore, Fhod1 ablation did not elicit compensatory increase in expression of other formins. Thus, Fhod1 appears to be dispensable for normal development and function of the mouse heart, even if a marginal amount of Fhod1 is expressed in the heart.
Collapse
Affiliation(s)
- Fumiyuki Sanematsu
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ami Kanai
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomoki Ushijima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
6
|
Grimes KM, Prasad V, McNamara JW. Supporting the heart: Functions of the cardiomyocyte's non-sarcomeric cytoskeleton. J Mol Cell Cardiol 2019; 131:187-196. [PMID: 30978342 DOI: 10.1016/j.yjmcc.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The non-contractile cytoskeleton in cardiomyocytes is comprised of cytoplasmic actin, microtubules, and intermediate filaments. In addition to providing mechanical support to these cells, these structures are important effectors of tension-sensing and signal transduction and also provide networks for the transport of proteins and organelles. The majority of our knowledge on the function and structure of these cytoskeletal networks comes from research on proliferative cell types. However, in recent years, researchers have begun to show that there are important cardiomyocyte-specific functions of the cytoskeleton. Here we will discuss the current state of cytoskeletal biology in cardiomyocytes, as well as research from other cell types, that together suggest there is a wealth of knowledge on cardiac health and disease waiting to be uncovered through exploration of the complex signaling networks of cardiomyocyte non-sarcomeric cytoskeletal proteins.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Higashi T, Stephenson RE, Miller AL. Comprehensive analysis of formin localization in Xenopus epithelial cells. Mol Biol Cell 2018; 30:82-95. [PMID: 30379611 PMCID: PMC6337911 DOI: 10.1091/mbc.e18-02-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reorganization of the actin cytoskeleton is crucial for cellular processes, including cytokinesis and cell–cell junction remodeling. Formins are conserved processive actin-polymerizing machines that regulate actin dynamics by nucleating, elongating, and bundling linear actin filaments. Because the formin family is large, with at least 15 members in vertebrates, there have not been any comprehensive studies examining formin localization and function within a common cell type. Here, we characterized the localization of all 15 formins in epithelial cells of Xenopus laevis gastrula-stage embryos. Dia1 and Dia2 localized to tight junctions, while Fhod1 and Fhod3 localized to adherens junctions. Only Dia3 strongly localized at the cytokinetic contractile ring. The Diaphanous inhibitory domain–dimerization domain (DID-DD) region of Dia1 was sufficient for Dia1 localization, and overexpression of a Dia1 DID-DD fragment competitively removed Dia1 and Dia2 from cell–cell junctions. In Dia1 DID-DD–overexpressing cells, Dia1 and Dia2 were mislocalized to the contractile ring, and cells exhibited increased cytokinesis failure. This work provides a comprehensive analysis of the localization of all 15 vertebrate formins in epithelial cells and suggests that misregulated formin localization results in epithelial cytokinesis failure.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
8
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
9
|
Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Dev Cell 2018; 44:326-336.e3. [PMID: 29396114 PMCID: PMC5807060 DOI: 10.1016/j.devcel.2017.12.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure. Talin in cardiomyocytes is unstretched, cyclically stretched, or continuously stretched Talin stretching depends on stiffness, myofibrillar tension, and non-myofibrillar tension Non-myofibrillar contractility requires PKC, Src, FHOD1, and non-muscle myosin PKC and non-muscle myosin activity are enhanced in cardiac disease
Collapse
|
10
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
11
|
Patel AA, Oztug Durer ZA, van Loon AP, Bremer KV, Quinlan ME. Drosophila and human FHOD family formin proteins nucleate actin filaments. J Biol Chem 2017; 293:532-540. [PMID: 29127202 DOI: 10.1074/jbc.m117.800888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain-containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly in vitro; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Drosophila Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Drosophila Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Drosophila Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins.
Collapse
Affiliation(s)
- Aanand A Patel
- From the Molecular Biology Interdepartmental Doctoral Program
| | | | | | | | - Margot E Quinlan
- the Department of Chemistry and Biochemistry, and .,the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
12
|
Sanger JW, Wang J, Fan Y, White J, Mi-Mi L, Dube DK, Sanger JM, Pruyne D. Assembly and Maintenance of Myofibrils in Striated Muscle. Handb Exp Pharmacol 2017; 235:39-75. [PMID: 27832381 DOI: 10.1007/164_2016_53] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils. This process is specified by the addition of new structural proteins, the arrangement of myofibrillar components like actin and myosin filaments with their companions into so-called sarcomeres, and in their precise alignment. Accompanying the formation of mature myofibrils is a decrease in the dynamic behavior of the assembling proteins. Proteins are most dynamic in the premyofibrils during the early phase and least dynamic in mature myofibrils in the final stage of myofibrillogenesis. This is probably due to increased interactions between proteins during the maturation process. The dynamic properties of myofibrillar proteins provide a mechanism for the exchange of older proteins or a change in isoforms to take place without disassembling the structural integrity needed for myofibril function. An important aspect of myofibril assembly is the role of actin-nucleating proteins in the formation, maintenance, and sarcomeric arrangement of the myofibrillar actin filaments. This is a very active field of research. We also report on several actin mutations that result in human muscle diseases.
Collapse
Affiliation(s)
- Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jennifer White
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Dipak K Dube
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| |
Collapse
|
13
|
Antoku S, Zhu R, Kutscheidt S, Fackler OT, Gundersen GG. Reinforcing the LINC complex connection to actin filaments: the role of FHOD1 in TAN line formation and nuclear movement. Cell Cycle 2015; 14:2200-5. [PMID: 26083340 DOI: 10.1080/15384101.2015.1053665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Positioning the nucleus is critical for many cellular processes including cell division, migration and differentiation. The linker of nucleoskeleton and cytoskeleton (LINC) complex spans the inner and outer nuclear membranes and has emerged as a major factor in connecting the nucleus to the cytoskeleton for movement and positioning. Recently, we discovered that the diaphanous formin family member FHOD1 interacts with the LINC complex component nesprin-2 giant (nesprin-2G) and that this interaction plays essential roles in the formation of transmembrane actin-dependent nuclear (TAN) lines and nuclear movement during cell polarization in fibroblasts. We found that FHOD1 strengthens the connection between nesprin-2G and rearward moving dorsal actin cables by providing a second site of interaction between nesprin-2G and the actin cable. These results indicate that the LINC complex connection to the actin cytoskeleton can be enhanced by cytoplasmic factors and suggest a new model for TAN line formation. We discuss how the nesprin-2G-FHOD1 interaction may be regulated and its possible functional significance for development and disease.
Collapse
Key Words
- ABS, actin binding site
- ANC-1, Syne homology
- CH, calponin homology
- DAD, diaphanous autoregulatory domain
- DID, diaphanous inhibitory domain
- DRF, diaphanous related formin
- EDMD, Emery-Dreifuss muscular dystrophy
- Emery-Dreifuss muscular dystrophy
- FH, formin homology
- FHOD1
- GBD, GTPase binding domain
- GFP-mN2G, GFP-mini-nesprin-2G
- KASH, Klarsicht
- LINC Complex
- LINC, linker of nucleoskeleton and cytoskeleton
- LPA, lysophosphatidic acid
- SR, spectrin repeat
- TAN lines
- TAN lines, transmembrane actin-dependent nuclear lines
- actin filaments
- formin
- nesprin
- nesprin-2G, nesprin-2 giant
- nuclear movement
Collapse
Affiliation(s)
- Susumu Antoku
- a Department of Pathology & Cell Biology ; Columbia University ; New York , NY USA
| | | | | | | | | |
Collapse
|