1
|
Yang J, Zhu J, Lu S, Qin H, Zhou W. Transdermal psoriasis treatment inspired by tumor microenvironment-mediated immunomodulation and advanced by exosomal engineering. J Control Release 2025; 382:113664. [PMID: 40147535 DOI: 10.1016/j.jconrel.2025.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Psoriasis, characterized by aberrant T cell activation and epidermal hyperplasia, lacks safe and effective localized transdermal treatments. Drawing on the divergent pathologies of psoriasis and malignancies, we explored whether immunosuppressive mechanisms from the tumor microenvironment could be repurposed for psoriasis therapy. Utilizing B16-F10 melanoma cells as a model, we found that topical application of inactivated melanoma tissue homogenate alleviated psoriatic lesions in mice, primarily mediated by melanoma-derived exosomes. These exosomes exert therapeutic effects by modulating IL-17 signaling through miRNAs, effectively reducing T cell activation and proliferation. We discovered key miRNAs, mmu-miR-320-3p and mmu-miR-126-5p, that target IL-17a. Additionally, we demonstrated that these exosomes, enriched with RhoA protein, enhance transcytosis across epidermal barriers. Based on these insights, we developed 'ExoLipo,' a biomimetic exosomal formulation incorporating RhoA and loaded with mmu-miR-320-3p, inheriting the native exosomes' transdermal and immunomodulatory capacities. This formulation exhibited significant preventive and therapeutic effects on psoriasis mice models with an excellent safety profile. Our findings highlight the potential of repurposing tumor-derived immunosuppressive strategies for inflammatory diseases and offer a groundbreaking approach for managing psoriasis.
Collapse
Affiliation(s)
- Jieru Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shan Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong Qin
- Hunan BeautySci Biotech Co., Ltd., Hunan Province, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha City 410008, Hunan Province, China; Hunan BeautySci Biotech Co., Ltd., Hunan Province, China; Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
2
|
Liu R, Dai L, Jia S, Geng S, Niu Y, Chen J, Dong C, Li C, Shi Y, Wang X, Zhang J, Zhao N, Gao Z, Yang X, Gao S. Fut8 regulated Unc5b hyperfucosylation reduces macrophage emigration and accelerates atherosclerosis development via the ferroptosis pathway. Free Radic Biol Med 2025; 235:1-14. [PMID: 40262667 DOI: 10.1016/j.freeradbiomed.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
The accumulation of foam cells in the arterial walls is a defining characteristic of atherosclerosis. Enhancing their migration from plaques may represent a key strategy for slowing disease progression. Recent studies suggest that fucosyltransferase 8 (Fut8) impairs macrophage migration from the intima by modifying the Unc5b membrane receptor, thereby influencing the development of atherosclerosis. This study investigated the roles of Fut8 and Unc5b in foam cell migration using ApoE-/- mouse and foam cell models, employing techniques such as western blotting, mitochondrial function assays, wound healing experiments, and immunofluorescence staining. The findings indicate that Fut8 upregulation increases P53 expression and reduces SLC7A11 and GPX4 levels, leading to altered intracellular concentrations of GSH and Fe2+, impaired mitochondrial function, and reduced migration capacity, all of which promote atherosclerosis. These mechanisms are closely associated with ferroptosis. Intervention with N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) demonstrated that NAC mitigates oxidative stress and migration inhibition, induced by oxidized low-density lipoprotein (ox-LDL). Additionally, inhibiting ferroptosis slowed the progression of atherosclerosis in ApoE-/- mice. Together, these results highlight that Fut8 exacerbates atherosclerosis through a P53/SLC7A11-mediated enhancement of ferroptosis in foam cells, offering a novel perspective on the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Rujin Liu
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Lina Dai
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Sihui Jia
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China; Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, PR China.
| | - Shijia Geng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Yan Niu
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Jie Chen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Chongyang Dong
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Chenlei Li
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Yuanjia Shi
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Xiaomeng Wang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Jing Zhang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Ningxia Zhao
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Zhanfeng Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Xi Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Shang Gao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
3
|
Karakaş Sarıkaya E, Pehlivanoğlu S, Türkmen MÖ, Ekincioğlu Y, Kostak F, Çelik S, Dereli Ö. Anticancer (cytotoxic, anticlonogenic, antimetastatic, immunomodulatory actions) properties of 3,5-dibromosalicylaldehyde against glioblastoma cells and DFT analyses (FT-IR, Raman, NMR, UV) as well as a molecular docking study. Biol Cell 2025; 117:e2400138. [PMID: 39924847 DOI: 10.1111/boc.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND INFORMATION The primary objectives of this study were to characterize 3,5-dibromosalicylaldehyde (3,5-DBSA) and, investigate its antiproliferative, antimetastatic, cytotoxic, and immunoregulatory properties. NMR, Raman, UV, and FT-IR spectroscopies were used to characterize 3,5-DBSA. Potential conformations of 3,5-DBSA were evaluated using Spartan's MMFF method. Geometry optimization calculations using Gaussian software calculated conformation energy values. RESULTS Subsequently, Raman, FT-IR, UV (ethanol) and NMR (DMSO) parameters were calculated. The experimental spectrum was compared to theoretical spectroscopic data. The present investigation investigated 3,5-DBSA's anticancer properties; therefore, docking was done once the stable structure had been identified. CONCLUSION Identifying stable structure is crucial to molecular docking studies. In order to identify the mechanism by which 3,5-DBSA binds to PI3K as a therapeutic target, molecular docking was utilized. This work is the first to show that 3,5-DBSA is cytotoxic, anticlonogenic, antimetastatic, and immunomodulatory in glioblastoma cell line U87MG compared to healthy fibroblast L929 cells. Cytotoxicity and anti-clonogenicity studies investigated 3,5-DBSA's antiproliferative activities, whereas wound healing assays assessed cell migration. The immunomodulatory effects of 3,5-DBSA in glioblastoma were assessed by measuring Netrin-1 and IL-6 protein levels. According to our findings, 3,5-DBSA may treat glioblastoma. SIGNIFICANCE This work analyzes 3,5-DBSA's conformational search, characterization, molecular docking, and structural and anticancer properties.
Collapse
Affiliation(s)
| | - Suray Pehlivanoğlu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Türkiye
| | - Merve Özcan Türkmen
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Türkiye
| | | | - Feyza Kostak
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Türkiye
| | - Sultan Çelik
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Türkiye
| | - Ömer Dereli
- Department of Physics, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
4
|
Liu H, Wang L. MicroRNA-34a negatively regulates Netrin1 and mediates MEK/ERK pathway to regulate chemosensitivity of gastric cancer cells. Discov Oncol 2024; 15:563. [PMID: 39404782 PMCID: PMC11480279 DOI: 10.1007/s12672-024-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE To explore the mechanism of action of MicroRNAs-34a (miR-34a) and Eurite growth guiding factor 1 (Netrin1) in cisplatin resistance in gastric cancer (GC), providing new clues for overcoming tumor resistance and optimizing anti-tumor therapy for GC. METHODS The Cancer Genome Atlas (TCGA), Differentially Expressed MicroRNAs (miRNAs) in human cancers (dbDEMC), and Starbase online databases were used to analyze the correlation between miR-34a and Netrin-1 and prognosis in GC, and to predict and verify the targeted binding of miR-34a to Netrin-1. The experimental methods including Cell transfection, real-time polymerase chain reaction (RT-PCR), Cell-Counting-Kit-8 (CCK8) assay, flow cytometry, wound scratch assay, transwell assay, and western blotting were used to investigate the effects of miR-34a and Netrin1 on chemotherapy resistance and biological characteristics in cisplatin-resistant GC cells (HGC27/DDP), and to analyze the molecular mechanism of cisplatin resistance. RESULTS miR-34a expression was downregulated in gastric cancer clinical samples and cisplatin-resistant cells, while Netrin1 was upregulated, and was related to overall survival (OS). Upregulation of miR-34a can significantly reduce the IC50 value of cisplatin(0.65 vs 1.6 ng/mL) and Multidrug Resistance 1 (MDR-1) protein level, inhibit the proliferation activity, reduce the expression levels of proliferating cell nuclear antigen (PCNA) and ki-67 protein, and induce the increase of apoptosis rate and the enhancement of cycle arrest. Upregulation of miR-34a can also significantly reduce the expression level of Matrix metalloproteinase 9 (MMP9) protein, promote the expression of E-cadherin protein, reduce the wound healing rate and invasion number to inhibit migration and invasion ability in drug-resistant gastric cancer cells. Moreover, overexpression of Netrin1 on the basis of upregulation of miR-34a can weaken the above changes caused by upregulation of miR-34a. In addition, upregulation of miR-34a can significantly inhibit the Mitogen-activated protein kinase kinase (MEK) / Extracellular regulated protein kinases (ERK) pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway, and inhibition of MEK/ERK pathway can effectively counteract the protein expression of Netrin1, and reverse changes in the expression of cisplatin IC50 and MDR-1 proteins caused by co-upregulation of miR-34a/Netrin1 in HGC27/DDP, as well as changes in proliferation, apoptosis, migration and invasion. In addition, upregulation of miR-34a can significantly inhibit the MEK/ERK pathway, while overexpression of Netrin1 can activate the MEK/ERK pathway. If the MEK/ERK pathway was inhibited, it can effectively counteract the protein overexpression of Netrin1, and reverse the changes in the expression of cisplatin IC50 and MDR-1 proteins in HGC27/DDP induced by co-upregulation of miR-34a / Netrin1, as well as changes in proliferation, apoptosis, migration and invasion. CONCLUSION miR-34a targets and negatively regulates Netrin1 to mediate the proliferation, apoptosis, apoptosis, migration, and invasion of drug-resistant gastric cancer cells via the MEK/ERK pathway, and change the chemosensitivity in GC cells. miR-34a/Netrin1/MEK/ERK axis may serve as a novel therapeutic target for chemoresistance in GC, it is of great significance for overcoming drug resistance and developing new therapeutic strategies for GC.
Collapse
Affiliation(s)
- Haiping Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China
| | - Limin Wang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 348 Dexiang Street, Xiangyang District, Jiamusi City, 154000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
5
|
Pearson JD, Huang K, Dela Pena LG, Ducarouge B, Mehlen P, Bremner R. Netrin-1 and UNC5B Cooperate with Integrins to Mediate YAP-Driven Cytostasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2374-2383. [PMID: 39172021 PMCID: PMC11384508 DOI: 10.1158/2767-9764.crc-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Opposite expression and pro- or anti-cancer function of YAP and its paralog TAZ/WWTR1 stratify cancers into binary YAPon and YAPoff classes. These transcriptional coactivators are oncogenic in YAPon cancers. In contrast, YAP/TAZ are silenced epigenetically along with their integrin and extracellular matrix adhesion target genes in neural and neuroendocrine YAPoff cancers (e.g., small cell lung cancer, retinoblastoma). Forced YAP/TAZ expression induces these targets, causing cytostasis in part through Integrin-αV/β5, independent of the integrin-binding RGD ligand. Other effectors of this anticancer YAP function are unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) screens, we link the Netrin receptor UNC5B to YAP-induced cytostasis in YAPoff cancers. Forced YAP expression induces UNC5B through TEAD DNA-binding partners, as either TEAD1/4-loss or a YAP mutation that disrupts TEAD-binding (S94A) blocks, whereas a TEAD-activator fusion (TEAD(DBD)-VP64) promotes UNC5B induction. Ectopic YAP expression also upregulates UNC5B relatives and their netrin ligands in YAPoff cancers. Netrins are considered protumorigenic, but knockout and peptide/decoy receptor blocking assays reveal that in YAPoff cancers, UNC5B and Netrin-1 can cooperate with integrin-αV/β5 to mediate YAP-induced cytostasis. These data pinpoint an unsuspected Netrin-1/UNC5B/integrin-αV/β5 axis as a critical effector of YAP tumor suppressor activity. SIGNIFICANCE Netrins are widely perceived as procancer proteins; however, we uncover an anticancer function for Netrin-1 and its receptor UNC5B.
Collapse
Affiliation(s)
- Joel D. Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba & Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
| | - Louis G. Dela Pena
- Paul Albrechtsen Research Institute CancerCare Manitoba & Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | | | - Patrick Mehlen
- Netris Pharma, Centre Léon Bérard 28 Rue Laennec, Lyon, France.
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée ‘La Ligue’, LabEX DEVweCAN, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Mentxaka A, Gómez-Ambrosi J, Neira G, Ramírez B, Becerril S, Rodríguez A, Valentí V, Moncada R, Baixauli J, Burrell MA, Silva C, Claro V, Ferro A, Catalán V, Frühbeck G. Increased Expression Levels of Netrin-1 in Visceral Adipose Tissue during Obesity Favour Colon Cancer Cell Migration. Cancers (Basel) 2023; 15:cancers15041038. [PMID: 36831381 PMCID: PMC9953821 DOI: 10.3390/cancers15041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Netrin (NTN)-1, an extracellular matrix protein with a crucial role in inflammation, is dysregulated during obesity (OB) and influences colon cancer (CC) progression. To decipher the mechanisms underlying CC development during obesity, we examined the expression of NTN1 and its receptors in the visceral adipose tissue (VAT) of 74 (25 normal weight (NW)) (16 with CC) and 49 patients with OB (12 with CC). We also evaluated the effect of caloric restriction (CR) on the gene expression levels of Ntn1 and its receptors in the colon from a rat model fed a normal diet. The impact of adipocyte-conditioned media (ACM) from patients with OB and NTN-1 was assessed on the expression levels of neogenin 1(NEO1), deleted in colorectal carcinomas (DCC) and uncoordinated-5 homolog B (UNC5B) in Caco-2 and HT-29 human colorectal cell lines, as well as on Caco-2 cell migration. Increased NTN1 and NEO1 mRNA levels in VAT were due to OB (p < 0.05) and CC (p < 0.001). In addition, an upregulation in the expression levels of DCC and UNC5B in patients with CC (p < 0.01 and p < 0.05, respectively) was observed. Decreased (p < 0.01) Ntn1 levels in the colon from rats submitted to CR were found. In vitro experiments showed that ACM increased DCC (p < 0.05) and NEO1 (p < 0.01) mRNA levels in HT-29 and Caco-2 cell lines, respectively, while UNC5B decreased (p < 0.01) in HT-29. The treatment with NTN-1 increased (p < 0.05) NEO1 mRNA levels in HT-29 cells and DCC (p < 0.05) in both cell lines. Finally, we revealed a potent migratory effect of ACM and NTN-1 on Caco-2 cells. Collectively, these findings point to increased NTN-1 during OB and CC fuelling cancer progression and exerting a strong migratory effect on colon cancer cells.
Collapse
Affiliation(s)
- Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - María A. Burrell
- Department of Histology and Pathology, Universidad de Navarra, 31008 Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Vasco Claro
- School of Cardiovascular & Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9NH, UK
| | - Albert Ferro
- School of Cardiovascular & Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9NH, UK
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (V.C.); (G.F.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (V.C.); (G.F.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| |
Collapse
|
8
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
9
|
Luo Y, Liao S, Yu J. Netrin-1 in Post-stroke Neuroprotection: Beyond Axon Guidance Cue. Curr Neuropharmacol 2022; 20:1879-1887. [PMID: 35236266 PMCID: PMC9886807 DOI: 10.2174/1570159x20666220302150723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke, especially ischemic stroke, is a leading disease associated with death and long-term disability with limited therapeutic options. Neuronal death caused by vascular impairment, programmed cell death and neuroinflammation has been proven to be associated with increased stroke severity and poor stroke recovery. In light of this, a development of neuroprotective drugs targeting injured neurons is urgently needed for stroke treatment. Netrin-1, known as a bifunctional molecule, was originally described to mediate the repulsion or attraction of axonal growth by interacting with its different receptors. Importantly, accumulating evidence has shown that netrin-1 can manifest its beneficial functions to brain tissue repair and neural regeneration in different neurological disease models. OBJECTIVE In this review, we focus on the implications of netrin-1 and its possibly involved pathways on neuroprotection after ischemic stroke, through which a better understanding of the underlying mechanisms of netrin-1 may pave the way to novel treatments. METHODS Peer-reviewed literature was recruited by searching databases of PubMed, Scopus, Embase, and Web of Science till the year 2021. CONCLUSION There has been certain evidence to support the neuroprotective function of netrin-1 by regulating angiogenesis, autophagy, apoptosis and neuroinflammation after stroke. Netrin-1 may be a promising drug candidate in reducing stroke severity and improving outcomes.
Collapse
Affiliation(s)
- Ying Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080 China
| | - Songjie Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080 China,Address correspondence to these authors at the Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China. Tel: +862087755766-8291; E-mails: ;
| | - Jian Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080 China,Address correspondence to these authors at the Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China. Tel: +862087755766-8291; E-mails: ;
| |
Collapse
|
10
|
Cai Y, Huang Q, Wang P, Ye K, Zhao Z, Chen H, Liu Z, Liu H, Wong H, Tamtaji M, Zhang K, Xu F, Jin G, Zeng L, Xie J, Du Y, Hu Z, Sun D, Qin J, Lu X, Luo Z. Conductive Hydrogel Conduits with Growth Factor Gradients for Peripheral Nerve Repair in Diabetics with Non-Suture Tape. Adv Healthc Mater 2022; 11:e2200755. [PMID: 35670309 DOI: 10.1002/adhm.202200755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Diabetic patients suffer from peripheral nerve injury with slow and incomplete regeneration owing to hyperglycemia and microvascular complications. This study develops a graphene-based nerve guidance conduit by incorporating natural double network hydrogel and a neurotrophic concentration gradient with non-invasive treatment for diabetics. GelMA/silk fibroin double network hydrogel plays quadruple roles for rapid setting/curing, suitable mechanical supporting, good biocompatibility, and sustainable growth factor delivery. Meanwhile, graphene mesh can improve the toughness of conduit and enhance conductivity of conduit for regeneration. Here, novel silk tapes show quick and tough adhesion of wet tissue by dual mechanism to replace suture step. The in vivo results demonstrate that gradient concentration of netrin-1 in conduit have better performance than uniform concentration caused by chemotaxis phenomenon for axon extension, remyelination, and angiogenesis. Altogether, GelMA/silk graphene conduit with gradient netrin-1 and dry double-sided adhesive tape can significantly promote repairing of peripheral nerve injury and inhibit the atrophy of muscles for diabetics.
Collapse
Affiliation(s)
- Yuting Cai
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Penghui Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Haomin Chen
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mohsen Tamtaji
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lun Zeng
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Jianbo Xie
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Yucong Du
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Zhigang Hu
- Silver Age Engineering Plastics (Dongguan) Co. Ltd, Dongguan, Guangdong, 523187, P. R. China
| | - Dazhi Sun
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
11
|
Yang X, Sun H, Tang T, Zhang W, Li Y. Netrin-1 promotes retinoblastoma-associated angiogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1683. [PMID: 34988192 PMCID: PMC8667090 DOI: 10.21037/atm-21-5560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Retinoblastoma (Rb) is the most common intraocular cancer of infancy and childhood, with an incidence of nearly 0.006% in all live births. Although a functional loss or inactivation of both alleles of the retinoblastoma 1 (RB1) gene during retinal development appears to be the predominant etiology for Rb, genes associated with tumor angiogenesis are also likely to be involved in the development of this condition. Netrin-1 is a factor that regulates pathological angiogenesis, while its role in Rb is largely unknown. The present study examined the role of netrin-1 in Rb. METHODS The expression of netrin-1 in Rb was assessed using public databases and using clinical specimens by RT-qPCR for mRNA and by ELISA for protein. The expression of netrin-1 was suppressed in Rb by siRNA and the effects on cell growth were determined by a CCK-8 assay, while the effects on angiogenesis were examined in vitro using human umbilical vein endothelial cell (HUVEC) assays and in vivo by quantification of tumor vessel density. RESULTS Analysis of published databases revealed that the netrin-1 gene is significantly upregulated in Rb, which was confirmed by immunohistochemistry on clinical specimens. Inhibition of netrin-1 in Rb cell lines significantly reduced their effects on angiogenesis in vitro using a HUVEC co-culture assay without affecting cell growth. Inhibition of netrin-1 expression in vivo suppressed the growth of grafted Rb, and this effect could be abolished by co-expression of vascular endothelial growth factor A (VEGF-A). CONCLUSIONS This data demonstrated a novel role for netrin-1 in the regulation of Rb-associated cancer vascularization and may represent a novel therapeutic target for patients with Rb.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Tucker SJ, Zorn AJ. The role of Popeye domain-containing protein 1 (POPDC1) in the progression of the malignant phenotype. Br J Pharmacol 2021; 179:2829-2843. [PMID: 33533478 DOI: 10.1111/bph.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Popeye domain-containing protein 1 (POPDC1), a tight junction-associated transmembrane protein with a unique binding site for cAMP, has been shown to act as a tumour suppressor in cancer cells. Through interaction with many downstream effectors and signalling pathways, POPDC1 promotes cell adhesion and inhibits uncontrolled cell proliferation, epithelial-to-mesenchymal transition and metastasis. However, POPDC1 expression is down-regulated in many types of cancer, thereby reducing its tumour-suppressive actions. This review discusses the role of POPDC1 in the progression of the malignant phenotype and highlights the broad range of benefits POPDC1 stabilisation may achieve therapeutically. Cancer stem cells (CSCs) are a key hallmark of malignancies and commonly promote treatment resistance. This article provides a comprehensive overview of CSC signalling mechanisms, many of which have been shown to be regulated by POPDC1 in other cell types, thus suggesting an additional therapeutic benefit for POPDC1-stabilising anti-cancer drugs.
Collapse
Affiliation(s)
- Steven J Tucker
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Alina J Zorn
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
13
|
Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, Russo I, Cozza R, Romanzo A, Valente P, De Vito R, Pascucci L, Peinado H, Carcaboso AM, Petretto A, Locatelli F, Di Giannatale A. Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers (Basel) 2020; 12:cancers12061555. [PMID: 32545553 PMCID: PMC7352325 DOI: 10.3390/cancers12061555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma (RB) is the most common tumor of the eye in early childhood. Although recent advances in conservative treatment have greatly improved the visual outcome, local tumor control remains difficult in the presence of massive vitreous seeding. Traditional biopsy has long been considered unsafe in RB, due to the risk of extraocular spread. Thus, the identification of new biomarkers is crucial to design safer diagnostic and more effective therapeutic approaches. Exosomes, membrane-derived nanovesicles that are secreted abundantly by aggressive tumor cells and that can be isolated from several biological fluids, represent an interesting alternative for the detection of tumor-associated biomarkers. In this study, we defined the protein signature of exosomes released by RB tumors (RBT) and vitreous seeding (RBVS) primary cell lines by high resolution mass spectrometry. A total of 5666 proteins were identified. Among these, 5223 and 3637 were expressed in exosomes RBT and one RBVS group, respectively. Gene enrichment analysis of exclusively and differentially expressed proteins and network analysis identified in RBVS exosomes upregulated proteins specifically related to invasion and metastasis, such as proteins involved in extracellular matrix (ECM) remodeling and interaction, resistance to anoikis and the metabolism/catabolism of glucose and amino acids.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Correspondence: ; Tel.: +39-066859-3516
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Paolo Mascio
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Paola Valente
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Rita De Vito
- Department of Pathology, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy;
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat, Spain;
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Department of Ginecology/Obstetrics & Pediatrics, Sapienza University of Rome, 00185 Roma, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| |
Collapse
|
14
|
Li B, Shen K, Zhang J, Jiang Y, Yang T, Sun X, Ma X, Zhu J. Serum netrin-1 as a biomarker for colorectal cancer detection. Cancer Biomark 2020; 28:391-396. [PMID: 32474463 DOI: 10.3233/cbm-190340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent evidence support that netrin-1 involves in colorectal carcinogenesis. OBJECTIVE This study was to evaluate the performance of serum netrin-1 for detection of colorectal cancer (CRC) in both clinical/screening sets. METHODS A total of 115 consecutive patients with CRC and matched healthy controls were included in Clinical Set. Fifty subjects with CRC, 50 subjects with advanced adenoma (AA), and 150 matched control participants free of neoplasia were included in Screening Set. RESULTS In Clinical set, subjects with CRC presented higher levels of serum netrin-1 (513.9 ± 22.6 pg/mL) than controls (347.8 ± 20.3 pg/mL, p< 0.0001). Similar in Screening set, serum netrin-1 was higher in CRC (644.5 ± 37.0 pg/mL, both p< 0.0001), compared with controls (407.7 ± 14.8 pg/mL) and AA (416.5 ± 18.5 pg/mL). However, there was no difference between controls and AA (p= 0.752). Compared with the low netrin-1 group, the high group presented increased risk of CRC (Clinical set: OR = 4.300, p< 0.001; Screening set: OR = 7.731, p< 0.001). ROC curve of netrin-1 was developed to detect CRC (Clinical set: AUC 0.703; Screening set: AUC 0.759). CONCLUSIONS It suggests netrin-1 as a potential biomarker for CRC detection.
Collapse
Affiliation(s)
- Bo Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Kexin Shen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiayu Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Jiang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ting Yang
- Beihua University Attached Hospital, Jilin, Jilin, China
| | - Xiaoxu Sun
- The People's Hospital of Jilin Province, Changchun, Jilin, China
| | - Xiaoming Ma
- Suqian Affiliated Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Jinzhou Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
The pan-cancer landscape of netrin family reveals potential oncogenic biomarkers. Sci Rep 2020; 10:5224. [PMID: 32251318 PMCID: PMC7090012 DOI: 10.1038/s41598-020-62117-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/09/2020] [Indexed: 02/02/2023] Open
Abstract
Recent cancer studies have found that the netrin family of proteins plays vital roles in the development of some cancers. However, the functions of the many variants of these proteins in cancer remain incompletely understood. In this work, we used the most comprehensive database available, including more than 10000 samples across more than 30 tumor types, to analyze the six members of the netrin family. We performed comprehensive analysis of genetic change and expression of the netrin genes and analyzed epigenetic and pathway relationships, as well as the correlation of expression of these proteins with drug sensitivity. Although the mutation rate of the netrin family is low in pan-cancer, among the tumor patients with netrin mutations, the highest number are Uterine Corpus Endometrial Carcinoma patients, accounting for 13.6% of cases (54 of 397). Interestingly, the highest mutation rate of a netrin family member is 38% for NTNG1 (152 of 397). Netrin proteins may participate in the development of endocrine-related tumors and sex hormone-targeting organ tumors. Additionally, the participation of NTNG1 and NTNG2 in various cancers shows their potential for use as new tumor markers and therapeutic targets. This analysis provides a broad molecular perspective of this protein family and suggests some new directions for the treatment of cancer.
Collapse
|
16
|
Karamzadeh T, Alipour H, Shahriari-Namadi M, Raz A, Azizi K, Bagheri M, Moemenbellah-Fard MD. Molecular characterization of the netrin-1 UNC-5 receptor in Lucilia sericata larvae. AIMS GENETICS 2019; 6:46-54. [PMID: 31663032 PMCID: PMC6803787 DOI: 10.3934/genet.2019.3.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022]
Abstract
Larval therapy with Lucilia sericata is a promising strategy in wound healing. Axon guidance molecules play vital roles during the development of the nervous system and also regulate the capacity of neuronal restoration in wound healing. Netrin-1, one of the proteins that larvae secrete, plays a useful role in cell migration and nerve tissue regeneration. The UNC-5 receptor combines with a netrin-1 signal and transmits the signal from one side of the membrane to the other side, initiating a change in cell activity. In the current study, we identified the full length of the UNC-5 receptor mRNA in L. sericata using different sets of primers, including exon junction and specific region primers. The coding sequence (CDS) of the UNC-5 receptor was sequenced and identified to include 633 base-pair nucleic acids, and BLAST analysis on its nucleotide sequence revealed 96% identity with the Lucilia cuprina netrin-1 UNC-5 receptor. The protein residue included 210 amino acids (aa) and coded for a protein with 24 kD weight. This gene lacked the signal peptide. Furthermore, the UPA domain is conserved in UNC-5. It lied at the interval of 26–131 aa. We identified the CDS of netrin-1UNC-5 receptor in L. sericata. It could be applied to research activities implementing a new essential component design in wound healing.
Collapse
Affiliation(s)
- Tahereh Karamzadeh
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziae Shahriari-Namadi
- Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad D Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Entomology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Yang L, Bie L, Sun L, Yue Y. Neural activities are unfavorable for the prognosis of ovarian cancer through mRNA expression analysis. Biomark Med 2019; 13:663-673. [PMID: 30982327 DOI: 10.2217/bmm-2019-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Ovarian cancer (OC) is the leading lethal gynecological cancer in women worldwide. Understanding the molecular mechanism of OC is very important for the identification of highly sensitive biomarkers for its prognosis. Methodology: We detected prognostic-related mRNA of OC in OncoLnc database. The main features between the unfavorable and favorable prognostic OC mRNAs were analyzed and Kyoto Encyclopedia of Genes and Genomes pathway enrichment as well as correlation analysis was conducted in our study. Conclusion: Our findings suggest that neural activities can promote OC progression, indicating poor prognosis, among which axon guidance functions most significantly govern the main neural activities, followed by neurogenesis and angiogenesis. Four neural genes (NTN1, UNC5B, EFNB2 and EFNA5) could serve as promising biomarkers and therapeutic targets for precision medicine to treat OC patients.
Collapse
Affiliation(s)
- Lili Yang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Netrin Family: Role for Protein Isoforms in Cancer. J Nucleic Acids 2019; 2019:3947123. [PMID: 30923634 PMCID: PMC6408995 DOI: 10.1155/2019/3947123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins. Netrins are involved in processes for axonal guidance, morphogenesis, and angiogenesis by regulating cell migration and survival. These processes are of special interest in tumor biology. From the netrin genes various isoforms are translated and regulated by alternative splicing. We review here the diversity of isoforms of the netrin family members and their known and potential roles in cancer.
Collapse
|
19
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
20
|
The role of netrin-1 in metastatic renal cell carcinoma treated with sunitinib. Oncotarget 2018; 9:22631-22641. [PMID: 29854303 PMCID: PMC5978253 DOI: 10.18632/oncotarget.25201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/17/2018] [Indexed: 01/20/2023] Open
Abstract
Introduction Clear-cell renal cell carcinoma (ccRCC) is the sixth most common malignancy in men in North America. Since ccRCC is a malignancy dependent on neovascularization, current first line systemic therapies like sunitinib, target the formation of new vessels allowing nutrient deprivation and cell death. However, recent studies have shown that patients develop resistance after approximately 1 year of treatment and show disease progression while on therapy. Therefore, we propose to identify the protein(s) responsible for increased migration with the aim of developing a new therapy that will target the identified protein and potentially slow down the progression of the disease. Material and Methods Human renal cancer cell lines (Caki-1, Caki-2, ACHN) were treated with increasing doses of sunitinib to develop a sunitinib-conditioned renal cell carcinoma cell line. mRNA microarray and qPCR were performed to compare the differences in gene expression between Caki-1 sunitinib-conditioned and non-conditioned cells. NTN1 was assessed in our in vivo sunitinib-conditioned mouse model using immunostaining. xCELLigence and scratch assays were used to evaluate migration and MTS was used to evaluate cell viability. Results Human renal cell carcinoma sunitinib-conditioned cell lines showed upregulation of netrin-1 in microarray and q-PCR. Increased migration was demonstrated in Caki-1 sunitinib-conditioned cells when compared to the non-treated ones as well as, increased endothelial cell migration. Silencing of netrin-1 in sunitinib-conditioned Caki-1 cells did not demonstrate a significant reduction in cell migration. Conclusion Netrin-1 is highly upregulated in renal cell carcinoma treated with sunitinib, but has no influence on cell viability or cell migration in metastatic RCC.
Collapse
|
21
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
22
|
Naegeli KM, Hastie E, Garde A, Wang Z, Keeley DP, Gordon KL, Pani AM, Kelley LC, Morrissey MA, Chi Q, Goldstein B, Sherwood DR. Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Dev Cell 2017; 43:403-417.e10. [PMID: 29161591 DOI: 10.1016/j.devcel.2017.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.
Collapse
Affiliation(s)
- Kaleb M Naegeli
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Kacy L Gordon
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Ariel M Pani
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Meghan A Morrissey
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Bob Goldstein
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Maruyama K, Takemura N, Martino MM, Kondo T, Akira S. Netrins as prophylactic targets in skeletal diseases: A double-edged sword? Pharmacol Res 2017; 122:46-52. [PMID: 28576474 DOI: 10.1016/j.phrs.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
The netrin family of proteins are involved in axon guidance during central nervous system development. In vertebrates, two membrane bound forms and five secreted forms of netrin have been reported. In addition to their critical role in neural morphogenesis, a growing number of reports suggest that netrin family proteins also play a role in inflammatory conditions, angiogenesis, and tumorigenesis. In these processes, Unc5 and DCC family proteins serve as receptors of netrin proteins. Recently, it was reported that some netrin family proteins may be involved in the pathogenesis of skeletal diseases including osteoporosis and arthritis. For example, administration of secreted netrin family proteins such as netrin 1 and netrin 4 has prophylactic potential in pathogenic bone degradation in mice. However, netrin 1 blocking antibody also protects mice from inflammatory bone destruction. Therefore, netrin family proteins are involved in the regulation of bone homeostasis, but their bona fide roles in the skeletal system remain controversial. In this review, we discuss the osteo-innate-immune functions of the netrin family of proteins, and summarize their therapeutic potential.
Collapse
Affiliation(s)
- Kenta Maruyama
- Laboratory of Host Defense Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, Japan; WPI Immunology Frontier Research Center (IFReC), 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Naoki Takemura
- Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Takeshi Kondo
- Laboratory of Host Defense Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, Japan; WPI Immunology Frontier Research Center (IFReC), 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, Japan; WPI Immunology Frontier Research Center (IFReC), 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|