1
|
Gow NAR. Fungal cell wall biogenesis: structural complexity, regulation and inhibition. Fungal Genet Biol 2025; 179:103991. [PMID: 40334812 DOI: 10.1016/j.fgb.2025.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The cell wall is the defining organelle of filamentous and yeast-like fungi. It is responsible for morphology, biotic and abiotic interactions and its components confer its unique and variable signature, making it a natural target for antifungal drugs, but a moving target for immune recognition. The wall is however more than the sum of its many parts. The polysaccharides and proteins of the cell wall must be made at the right time and the right place, but also linked together and remodelled throughout the cell cycle and in response to environmental challenges, nutrient availability, damage after predation and to be complaint to the need to establish mutualistic and parasitic associations. This review summarises recent advances in our understanding of the complex and vital process of fungal cell wall biogenesis using the human pathogens Candida albicans and Aspergillus fumigatus as the principal model fungi.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Reis FCG, Rodrigues ML. Things you wanted to know about fungal extracellular vesicles (but were afraid to ask). PLoS Negl Trop Dis 2025; 19:e0013038. [PMID: 40403031 PMCID: PMC12097630 DOI: 10.1371/journal.pntd.0013038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Affiliation(s)
- Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rodrigues ML, Janbon G, O'Connell RJ, Chu TTH, May RC, Jin H, Reis FCG, Alves LR, Puccia R, Fill TP, Rizzo J, Zamith-Miranda D, Miranda K, Gonçalves T, Ene IV, Kabani M, Anderson M, Gow NAR, Andes DR, Casadevall A, Nosanchuk JD, Nimrichter L. Characterizing extracellular vesicles of human fungal pathogens. Nat Microbiol 2025; 10:825-835. [PMID: 40148564 PMCID: PMC12035713 DOI: 10.1038/s41564-025-01962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Since their discovery in 2007, there has been growing awareness of the importance of fungal extracellular vesicles (EVs) for fungal physiology, host-pathogen interactions and virulence. Fungal EVs are nanostructures comprising bilayered membranes and molecules of various types that participate in several pathophysiological processes in fungal biology, including secretion, cellular communication, immunopathogenesis and drug resistance. However, many questions remain regarding the classification of EVs, their cellular origin, passage across the cell wall, experimental models for functional and compositional analyses, production in vitro and in vivo and biomarkers for EVs. Here, we discuss gaps in the literature of fungal EVs and identify key questions for the field. We present the history of fungal EV discovery, discuss five major unanswered questions in fungal EV biology and provide future perspectives for fungal EV research. We primarily focus our discussion on human fungal pathogens, but also extend it to include knowledge of other fungi, such as plant pathogens. With this Perspective we hope to stimulate new approaches and expand studies to understand the biology of fungal EVs.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Guilhem Janbon
- RNA Biology of Fungal Pathogens Unit, Department of Mycology, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Thi-Thu-Huyen Chu
- BIOGER Research Unit, INRAE, Université Paris-Saclay, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24 and CNRS UMS3633, Paris, France
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Taicia P Fill
- Institute of Chemistry, State University of Campinas, São Paulo, Brazil
| | - Juliana Rizzo
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Kildare Miranda
- Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Gonçalves
- Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, University Coimbra, Coimbra, Portugal
| | - Iuliana V Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mehdi Kabani
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CNRS and CEA, Paris, France
| | - Marilyn Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Joshua D Nosanchuk
- Departments of Medicine (Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Martínez-López R, Molero G, Parra-Giraldo CM, Cabeza MS, Castejón G, García-Durán C, Clemente LF, Hernáez ML, Gil C, Monteoliva L. From High Protection to Lethal Effect: Diverse Outcomes of Immunization Against Invasive Candidiasis with Different Candida albicans Extracellular Vesicles. Int J Mol Sci 2024; 26:244. [PMID: 39796100 PMCID: PMC11720215 DOI: 10.3390/ijms26010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) from Candida albicans can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent C. albicans cell wall mutant (ecm33Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and ecm33 YEV immunization (64%). Surprisingly, HEV immunization showed a dual effect, resulting in 36% protection but also causing premature death in some mice. Proteomic analyses revealed distinct profiles among the top 100 proteins in the different EVs, which may explain these effects: a shared core of 50 immunogenic proteins such as Pgk1, Cdc19, and Fba1; unique, relevant immunogenic proteins in SC5314 YEVs; and proteins linked to pathogenesis, like Ece1 in SC5314 HEVs. Sera from SC5314 YEV-immunized mice showed the highest IgG2a titers and moderate IL-17, IFN-γ, and TNF-α levels, indicating the importance of both humoral and cellular responses for protection. These findings highlight the distinct immunogenic properties of C. albicans EVs, suggesting their potential in acellular vaccine development while emphasizing the need to carefully evaluate pathogenic risks associated with certain EVs.
Collapse
Affiliation(s)
- Raquel Martínez-López
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| | - Gloria Molero
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| | - Claudia Marcela Parra-Giraldo
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| | - Matías Sebastián Cabeza
- Mycology and Molecular Diagnostics Laboratory, Biochemistry and Biological Science Faculty, Nacional del Litoral University, Santa Fe 3000, Argentina;
| | - Guillermo Castejón
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| | - Carmen García-Durán
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| | - Luis Felipe Clemente
- Proteomics Facility, Complutense University of Madrid, 28040 Madrid, Spain; (L.F.C.); (M.L.H.)
| | - María Luisa Hernáez
- Proteomics Facility, Complutense University of Madrid, 28040 Madrid, Spain; (L.F.C.); (M.L.H.)
| | - Concha Gil
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
- Proteomics Facility, Complutense University of Madrid, 28040 Madrid, Spain; (L.F.C.); (M.L.H.)
| | - Lucía Monteoliva
- Department of Microbiology and Parasitology, Pharmacy Faculty at Complutense University of Madrid, 28040 Madrid, Spain; (R.M.-L.); (G.M.); (C.M.P.-G.); (G.C.); (C.G.-D.); (C.G.)
| |
Collapse
|
5
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Camillo-Andrade AC, Santos MDM, Carvalho PC, Zaragoza O, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Corrected and republished from: "Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence". Infect Immun 2024; 92:e0003724. [PMID: 38470135 PMCID: PMC11003230 DOI: 10.1128/iai.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants expected to lack NOP16 expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing potentially altered sugar transport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in G. mellonella. These results connect EV biogenesis, cargo, and cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marlon D. M. Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Analytical Biochemistry and Proteomics Unit. IIBCE/Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C. Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Oscar Zaragoza
- Mycology Reference Laboratory. National Centre for Microbiology. Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Reis FCG, Castelli RF, Kuczera D, Oliveira HC, Rodrigues ML. Analysis of Cryptococcus Extracellular Vesicles. Methods Mol Biol 2024; 2775:359-365. [PMID: 38758329 DOI: 10.1007/978-1-0716-3722-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In fungal pathogens, they participate in virulence mechanisms and/or induce protective immunity, depending on the pathogenic species. EVs produced by pathogenic members of the Cryptococcus genus mediate virulence, antifungal resistance, as well as humoral and cell-mediated immunity. The isolation of cryptococcal EVs has been laborious and time-consuming for years. In this chapter, we detail a fast protocol for the isolation and analysis of EVs produced by members of the Cryptococcus genus.
Collapse
Affiliation(s)
- Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Rafael F Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Diogo Kuczera
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Haroldo C Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Karkowska-Kuleta J, Kulig K, Bras G, Stelmaszczyk K, Surowiec M, Kozik A, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M. Candida albicans Biofilm-Derived Extracellular Vesicles Are Involved in the Tolerance to Caspofungin, Biofilm Detachment, and Fungal Proteolytic Activity. J Fungi (Basel) 2023; 9:1078. [PMID: 37998883 PMCID: PMC10672323 DOI: 10.3390/jof9111078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
It has been repeatedly reported that the cells of organisms in all kingdoms of life produce nanometer-sized lipid membrane-enveloped extracellular vesicles (EVs), transporting and protecting various substances of cellular origin. While the composition of EVs produced by human pathogenic fungi has been studied in recent decades, another important challenge is the analysis of their functionality. Thus far, fungal EVs have been shown to play significant roles in intercellular communication, biofilm production, and modulation of host immune cell responses. In this study, we verified the involvement of biofilm-derived EVs produced by two different strains of Candida albicans-C. albicans SC5314 and 3147 (ATCC 10231)-in various aspects of biofilm function by examining its thickness, stability, metabolic activity, and cell viability in the presence of EVs and the antifungal drug caspofungin. Furthermore, the proteolytic activity against the kininogen-derived antimicrobial peptide NAT26 was confirmed by HPLC analysis for C. albicans EVs that are known to carry, among others, particular members of the secreted aspartic proteinases (Saps) family. In conclusion, EVs derived from C. albicans biofilms were shown to be involved in biofilm tolerance to caspofungin, biofilm detachment, and fungal proteolytic activity.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Stelmaszczyk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
9
|
Yáñez-Mó M, Siljander PR. Editorial- Insights of extracellular vesicles in cell biology. Eur J Cell Biol 2023; 102:151327. [PMID: 37330395 DOI: 10.1016/j.ejcb.2023.151327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023] Open
Affiliation(s)
- María Yáñez-Mó
- Dept Biología Molecular, Universidad Autónoma de Madrid, IUBM, Centro de Biología Molecular Severo Ochoa, IIS-IP, Madrid, Spain
| | - Pia Rm Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Maximo MF, Fill TP, Rodrigues ML. A Close Look into the Composition and Functions of Fungal Extracellular Vesicles Produced by Phytopathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:228-234. [PMID: 36847651 DOI: 10.1094/mpmi-09-22-0184-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fungal extracellular vesicles (EVs) were first described in human pathogens. In a few years, the field of fungal EVs evolved to include several studies with plant pathogens, in which extracellularly released vesicles play fundamental biological roles. In recent years, solid progress has been made in the determination of the composition of EVs produced by phytopathogens. In addition, EV biomarkers are now known in fungal plant pathogens, and the production of EVs during plant infection has been demonstrated. In this manuscript, we review the recent progress in the field of fungal EVs, with a focus on plant pathogens. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Marina F Maximo
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Taícia P Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Castelli RF, Pereira A, Honorato L, Valdez A, de Oliveira HC, Bazioli JM, Garcia AWA, Klimeck TDF, Reis FCG, Staats CC, Nimrichter L, Fill TP, Rodrigues ML. Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the NOP16 Gene. Infect Immun 2022; 90:e0023222. [PMID: 35862719 PMCID: PMC9387281 DOI: 10.1128/iai.00232-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/14/2023] Open
Abstract
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants lacking NOP16 expression, we observed that this gene was required for EV production. Analysis of the small molecule composition of EVs produced by wild-type cells and two independent nop16Δ mutants revealed that the deletion of NOP16 resulted not only in a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the nop16Δ mutants were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were coinjected with the nop16Δ cells in G. mellonella. These results reveal a role for NOP16 in EV biogenesis and cargo, and also indicate that the composition of EVs is determinant for cryptococcal virulence.
Collapse
Affiliation(s)
- Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alana Pereira
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Valdez
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaqueline M. Bazioli
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ane W. A. Garcia
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Charley C. Staats
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taícia P. Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Martínez-López R, Hernáez ML, Redondo E, Calvo G, Radau S, Pardo M, Gil C, Monteoliva L. Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response. Microbiol Spectr 2022; 10:e0069822. [PMID: 35604172 PMCID: PMC9241596 DOI: 10.1128/spectrum.00698-22] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the principal causative agent of lethal fungal infections, predominantly in immunocompromised hosts. Extracellular vesicles (EVs) have been described as crucial in the interaction of microorganisms with their host. Since the yeast-to-hypha transition is an important virulence trait with great impact in invasive candidiasis (IC), we have addressed the characterization of EVs secreted by hyphal cells (HEVs) from C. albicans, comparing them to yeast EVs (YEVs). YEVs comprised a larger population of bigger EVs with mainly cell wall proteins, while HEVs were smaller, in general, and had a much higher protein diversity. YEVs were able to rescue the sensitivity of a cell wall mutant against calcofluor white, presumably due to the larger amount of cell wall proteins they contained. On the other hand, HEVs also contained many cytoplasmic proteins related to protein metabolism and intracellular protein transport and the endosomal sorting complexes required for transport (ESCRT) pathway related to exosome biogenesis, pointing to an intracellular origin of HEVs. Interestingly, an active 20S proteasome complex was secreted exclusively in HEVs. Moreover, HEVs contained a greater number of virulence-related proteins. As for their immunogenic role, both types of EV presented immune reactivity with human sera from patients suffering invasive candidiasis; however, under our conditions, only HEVs showed a cytotoxic effect on human macrophages and could elicit the release of tumor necrosis factor alpha (TNF-α) by these macrophages. IMPORTANCE This first analysis of HEVs of C. albicans has shown clear differences between them and the YEVs of C. albicans, showing their relevance and possible use in the discovery of new diagnostic markers and treatment targets against C. albicans infections. The data obtained point to different mechanisms of biogenesis of YEVs and HEVs, as well as different involvements in cell biology and host interaction. YEVs played a more relevant role in cell wall maintenance, while HEVs were more closely related to virulence, as they had greater effects on human immune cells. Importantly, an active 20S proteosome complex was described as a fungal-EV cargo. A deeper study of its role and those of many other proteins exclusively detected in HEVs and involved in different relevant biological processes of this fungus could open up interesting new areas of research in the battle against C. albicans.
Collapse
Affiliation(s)
- Raquel Martínez-López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | | | - Esther Redondo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Guillermo Calvo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Sonja Radau
- Thermo Fisher Scientific GmbH, Dreieich, Germany
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London, United Kingdom
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Proteomics Unit, Complutense University of Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| |
Collapse
|
13
|
Las-Casas LDO, Marina CLF, de Castro RJA, Coelho LC, Báo SN, de Hoog GS, Vicente VA, Fernandes L, Bocca AL. Pathogenicity and Growth Conditions Modulate Fonsecaea Extracellular Vesicles' Ability to Interact With Macrophages. Front Cell Infect Microbiol 2022; 12:879018. [PMID: 35755848 PMCID: PMC9218254 DOI: 10.3389/fcimb.2022.879018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chromoblastomycosis (CBM) is a chronic cutaneous and subcutaneous mycosis caused by black, dimorphic, and filamentous fungi of the Herpothrichiellaceae family, such as species of the genus Fonsecaea. These fungi can switch between the saprophytic forms (conidia and hyphae) and the pathogenic form, the muriform cells (MCs), which is considered an essential mechanism for fungal virulence. Nearly all types of cells can produce membranous structures formed by a lipid bilayer that communicate extracellularly with other cells, known as "extracellular vesicles" (EVs), which may act as virulence factors, as observed for several species of pathogenic fungi. Our findings demonstrated for the first time that F. pedrosoi, F. nubica, and F. erecta produce EVs in response to nutritional conditions. The EVs varied in sterol and protein contents, size, and morphology. Moreover, the EVs induced different cytokine and nitric oxide release patterns by bone marrow-derived macrophages (BMDMs). The EVs activated IL-1β production, possibly acting as the first signal in inflammasome activation. Unlike the pathogenic species, the EVs isolated from F. erecta did not significantly stimulate TNF and IL-10 production in general. Overall, these results demonstrated that different species of Fonsecaea produce EVs capable of modulating pro- and anti-inflammatory cytokine and nitric oxide production by BMDMs and that growth conditions affected the immunomodulatory capacities of the EVs as well as their size, content, and morphology.
Collapse
Affiliation(s)
| | | | | | | | - Sônia Nair Báo
- Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - G. Sybren de Hoog
- Department of Pathology, Federal University of Paraná, Curitiba, Brazil
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | | | | | | |
Collapse
|