1
|
Asatryan B, Rieder M, Murray B, Muller SA, Tichnell C, Gasperetti A, Carrick RT, Joseph E, Leung DG, te Riele AS, Zimmerman SL, Calkins H, James CA, Barth AS. Natural History, Phenotype Spectrum, and Clinical Outcomes of Desmin ( DES)-Associated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e004878. [PMID: 39968648 PMCID: PMC11999772 DOI: 10.1161/circgen.124.004878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Pathogenic/likely pathogenic (LP) desmin (DES) variants cause heterogeneous cardiomyopathy and skeletal myopathy phenotypes. Limited data suggest a high incidence of major adverse cardiac events (MACEs), including cardiac conduction disease, sustained ventricular arrhythmias (VA), and heart failure (HF) events (HF hospitalization, left ventricular assist device/cardiac transplant, HF-related death) in patients with pathogenic/LP DES variants. However, pleiotropic presentation and small cohort sizes have limited clinical phenotype and outcome characterization. We aimed to describe the natural history, phenotype spectrum, familial penetrance and outcomes in patients with pathogenic/LP DES variants through a systematic review and individual patient data meta-analysis using published reports. METHODS We searched Medline (PubMed) and Embase for studies that evaluated cardiac phenotypes in patients with pathogenic/LP DES variants. Cardiomyopathy diagnosis or occurrence of MACE was considered evidence of cardiac involvement/penetrance. Lifetime event-free survival from cardiac conduction disease, sustained VA, HF events, and composite MACE was assessed. RESULTS Of the 4212 screened publications, 71 met the inclusion criteria. A total of 230 patients were included (52.6% men, 52.2% probands, median age: 31 years [22.0-42.8] at first evaluation, median follow-up: 3 years [0-11.0]). Overall, 124 (53.9%) patients were diagnosed with cardiomyopathy, predominantly dilated cardiomyopathy (14.8%), followed by restrictive cardiomyopathy (13.5%), whereas other forms were less common: arrhythmogenic cardiomyopathy (7.0%), hypertrophic cardiomyopathy (6.1%), arrhythmogenic right ventricular cardiomyopathy (5.2%), and other forms (7.4%). Overall, 132 (57.4%) patients developed MACE, with 96 (41.7%) having cardiac conduction disease, 36 (15.7%) sustained VA, and 43 (18.7%) HF events. Familial penetrance of cardiac disease was 63.6% among relatives with pathogenic/LP DES variants. Male sex was associated with an increased risk of sustained VA (hazard ratio, 2.28; P=0.02) and HF events (hazard ratio, 2.45; P=0.008). CONCLUSIONS DES cardiomyopathy exhibits heterogeneous phenotypes and a distinct natural history, characterized by high familial penetrance and a substantial MACE burden. Male patients face a higher risk of sustained VA events.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Marina Rieder
- Dept of Cardiology, Inselspital, Bern Univ Hospital, Univ of Bern, Bern, Switzerland
| | - Brittney Murray
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Steven A. Muller
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
- Division of Cardiology, Univ Medical Ctr Utrecht
| | - Crystal Tichnell
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Alessio Gasperetti
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Richard T. Carrick
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Emily Joseph
- Welch Medical Library, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Doris G. Leung
- Kennedy Krieger Institute, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Anneline S.J.M. te Riele
- Division of Cardiology, Univ Medical Ctr Utrecht
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Stefan L. Zimmerman
- The Russell H. Morgan Dept of Radiology & Radiological Sciences, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Hugh Calkins
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Cynthia A. James
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| | - Andreas S. Barth
- Division of Cardiology, Dept of Medicine, Johns Hopkins Univ School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Geng L, Wang M, Wang K, Xu L, Li J, Liu F, Lu J. Desmin-related myopathy manifested by various types of arrhythmias: a case report and literature review. J Int Med Res 2024; 52:3000605241291741. [PMID: 39501717 PMCID: PMC11539263 DOI: 10.1177/03000605241291741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Desmin is a type III intermediate filament protein specifically expressed in muscle cells, which is encoded by the DES gene. Defects in the desmin protein and cytoskeletal instability may interfere with cardiac muscle conduction signals, a fundamental mechanism for arrhythmias in patients with desmin-related myopathy. This current case report presents a female patient in her early 20s who presented with early-onset complete atrioventricular block and complete left bundle branch block over the previous decade. More recently, she had developed ventricular tachycardia, ventricular fibrillation, atrial fibrillation and other arrhythmias. Echocardiography revealed non-compaction of the ventricular myocardium and pulmonary hypertension. Whole-exome sequencing analysis identified a heterozygous missense mutation in the DES gene: c.1216C>T (p.Arg406Trp). She was eventually diagnosed with arrhythmias due to desmin-related myopathy. A literature review of international databases was undertaken to summarise the clinical characteristics of the cardiac involvement associated with this DES gene mutation.
Collapse
Affiliation(s)
- Lu Geng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mengxiao Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Keke Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Liang Xu
- Department of Cardiology, The 7 People’s Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Jiaqi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
3
|
Asatryan B, Rieder M, Murray B, Muller SA, Tichnell C, Gasperetti A, Carrick RT, Joseph E, Leung DG, te Riele AS, Zimmerman SL, Calkins H, James CA, Barth AS. Natural History, Phenotype Spectrum and Clinical Outcomes of Desmin ( DES)-Associated Cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.24.24311904. [PMID: 39252922 PMCID: PMC11383507 DOI: 10.1101/2024.08.24.24311904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Pathogenic/likely pathogenic (P/LP) desmin (DES) variants cause heterogeneous cardiomyopathy and/or skeletal myopathy phenotypes. Limited data suggest a high incidence of major adverse cardiac events (MACE), including cardiac conduction disease (CCD), sustained ventricular arrhythmias (VA), and heart failure (HF) events (HF hospitalization, LVAD/cardiac transplant, HF-related death), in patients with P/LP DES variants. However, pleiotropic presentation and small cohort sizes have limited clinical phenotype and outcome characterization. Objectives We aimed to describe the natural history, phenotype spectrum, familial penetrance and outcomes in patients with P/LP DES variants through a systematic review and individual patient data meta-analysis using published reports. Methods We searched Medline (PubMed) and Embase for studies that evaluated cardiac phenotypes in patients with P/LP DES variants. Cardiomyopathy diagnosis or occurrence of MACE were considered evidence of cardiac involvement/penetrance. Lifetime event-free survival from CCD, sustained VA, HF events, and composite MACE was assessed. Results Out of 4,212 screened publications, 71 met the inclusion criteria. A total of 230 patients were included (52.6% male, 52.2% probands, median age: 31 years [22.0; 42.8] at first evaluation, median follow-up: 3 years [0; 11.0]). Overall, 124 (53.9%) patients were diagnosed with cardiomyopathy, predominantly dilated cardiomyopathy (14.8%), followed by restrictive cardiomyopathy (13.5%), whereas other forms were less common: arrhythmogenic cardiomyopathy (7.0%), hypertrophic cardiomyopathy (6.1%), arrhythmogenic right ventricular cardiomyopathy (5.2%), and other forms (7.4%). Overall, 132 (57.4%) patients developed MACE, with 96 [41.7%] having CCD, 36 [15.7%] sustained VA, and 43 [18.7%] HF events. Familial penetrance of cardiac disease was 63.6% among relatives with P/LP DES variants. Male sex was associated with increased risk of sustained VA (HR 2.28, p=0.02) and HF events (HR 2.45, p=0.008). Conclusions DES cardiomyopathy exhibits heterogeneous phenotypes and distinct natural history, characterized by high familial penetrance and substantial MACE burden. Male patients face higher risk of sustained VA events.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marina Rieder
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven A. Muller
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard T. Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Joseph
- Welch Medical Library, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Doris G. Leung
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anneline S.J.M. te Riele
- Division of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Stefan L. Zimmerman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas S. Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Polavarapu K, O'Neil D, Thompson R, Spendiff S, Nandeesh B, Vengalil S, Huddar A, Baskar D, Arunachal G, Kotambail A, Bhatia S, Tumulu SK, Matalonga L, Töpf A, Laurie S, Zeldin J, Nashi S, Unnikrishnan G, Nalini A, Lochmüller H. Partial loss of desmin expression due to a leaky splice site variant in the human DES gene is associated with neuromuscular transmission defects. Neuromuscul Disord 2024; 39:10-18. [PMID: 38669730 DOI: 10.1016/j.nmd.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Kiran Polavarapu
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Daniel O'Neil
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Rachel Thompson
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Sally Spendiff
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Bevinahalli Nandeesh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Saloni Bhatia
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seetam Kumar Tumulu
- Department of Neuroradiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Steven Laurie
- Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Joshua Zeldin
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Centro Nacional de Análisis Genómico, Baldiri Reixac 4, Barcelona 08028, Spain; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
5
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
6
|
Geryk M, Charpentier F. Pathophysiological mechanisms of cardiomyopathies induced by desmin gene variants located in the C-Terminus of segment 2B. J Cell Physiol 2024; 239:e31254. [PMID: 38501553 DOI: 10.1002/jcp.31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.
Collapse
Affiliation(s)
- Michelle Geryk
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| | - Flavien Charpentier
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| |
Collapse
|
7
|
Grasso M, Bondavalli D, Vilardo V, Cavaliere C, Gatti I, Di Toro A, Giuliani L, Urtis M, Ferrari M, Cattadori B, Serio A, Pellegrini C, Arbustini E. The new 2023 ESC guidelines for the management of cardiomyopathies: a guiding path for cardiologist decisions. Eur Heart J Suppl 2024; 26:i1-i5. [PMID: 38867869 PMCID: PMC11167974 DOI: 10.1093/eurheartjsupp/suae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In the ESC 2023 guidelines, cardiomyopathies are conservatively defined as 'myocardial disorders in which the heart muscle is structurally and functionally abnormal, in the absence of coronary artery disease, hypertension, valvular disease, and congenital heart disease sufficient to cause the observed myocardial abnormality'. They are morpho-functionally classified as hypertrophic, dilated, restrictive, and arrhythmogenic right ventricular cardiomyopathy with the addition of the left ventricular non-dilated cardiomyopathy that describes intermediate phenotypes not fulfilling standard disease definitions despite the presence of myocardial disease on cardiac imaging or tissue analysis. The new ESC guidelines provide 'a guide to the diagnostic approach to cardiomyopathies, highlight general evaluation and management issues, and signpost the reader to the relevant evidence base for the recommendations'. The recommendations and suggestions included in the document provide the tools to build up pathways tailored to specific cardiomyopathy (phenotype and cause) and define therapeutic indications, including target therapies where possible. The impact is on clinical cardiology, where disease-specific care paths can be assisted by the guidelines, and on genetics, both clinics and testing, where deep phenotyping and participated multi-disciplinary evaluation provide a unique tool for validating the pathogenicity of variants. The role of endomyocardial biopsy remains underexploited and confined to particular forms of restrictive cardiomyopathy, myocarditis, and amyloidosis. New research and development will be needed to cover the gaps between science and clinics. Finally, the opening up to disciplines such as bioinformatics, bioengineering, mathematics, and physics will support clinical cardiologists in the best governance of the novel artificial intelligence-assisted resources.
Collapse
Affiliation(s)
- Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Bondavalli
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Viviana Vilardo
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Cavaliere
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Gatti
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michela Ferrari
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia 27100, Italy
| | - Barbara Cattadori
- Cardiac Surgery, Department of Intensive Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pellegrini
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Cardiac Surgery, Department of Intensive Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
8
|
Vlachakis D, Tsilafakis K, Kostavasili I, Kossida S, Mavroidis M. Unraveling Desmin's Head Domain Structure and Function. Cells 2024; 13:603. [PMID: 38607042 PMCID: PMC11012097 DOI: 10.3390/cells13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
- Biochemistry & Biotechnology Department, University of Thessaly, 41500 Larisa, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| | - Sophia Kossida
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France;
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| |
Collapse
|
9
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Xiao H, Song L, Tao L. A case report of adolescent myofibrillar myopathy due to a de novo R406W pathogenic variant in desmin with symptoms of "hypertrophic cardiomyopathy". Heliyon 2024; 10:e25009. [PMID: 38314304 PMCID: PMC10837553 DOI: 10.1016/j.heliyon.2024.e25009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Myofibrillar myopathies (MFM) are a group of sporadic and inherited progressive skeletal muscle disorders that can lead to physical disability and premature death. To date, pathogenic variants in different genes are associated with MFM. MFM induced by variants in the Desmin (DES) gene is the most common subtype of MFM. Case presentation A 15-year-old boy with MFM was described, whose symptoms first presented as cardiac symptoms. Enlarged right and left atria, thickened ventricular septal (IVS) and mild mitral (MR) and tricuspid regurgitation (TR) in the echocardiography were found. Atrial fibrillation, intermittent atrioventricular (AV) block, ST-T changes in the dynamic electrocardiogram (ECG) were shown. Mild myopathic changes in the electromyographic exam were detected. Ultrastructural analysis found slight Z-line changes and a few small myolysis lesions, but no abnormal inclusion bodies. Genetic testing detected a heterozygous missense variant (c.1216C > T) of DES, and 2 rare variants: TNNI3K (c.1102C > G) and PRDM16 (c.3074G > A). The patient's parents didn't show skeletal and cardiac muscle disorders. DNA sequencing analysis showed no variant of DES was carried by them. Thus, we detected a case of MFM caused by de novo DES variant c.1216C > T/p.Arg406Trp with predominantly myocardial alterations.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| | - Laichun Song
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| |
Collapse
|
11
|
Zampieri M, Di Filippo C, Zocchi C, Fico V, Golinelli C, Spaziani G, Calabri G, Bennati E, Girolami F, Marchi A, Passantino S, Porcedda G, Capponi G, Gozzini A, Olivotto I, Ragni L, Favilli S. Focus on Paediatric Restrictive Cardiomyopathy: Frequently Asked Questions. Diagnostics (Basel) 2023; 13:3666. [PMID: 38132249 PMCID: PMC10742619 DOI: 10.3390/diagnostics13243666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Restrictive cardiomyopathy (RCM) is characterized by restrictive ventricular pathophysiology determined by increased myocardial stiffness. While suspicion of RCM is initially raised by clinical evaluation and supported by electrocardiographic and echocardiographic findings, invasive hemodynamic evaluation is often required for diagnosis and management of patients during follow-up. RCM is commonly associated with a poor prognosis and a high incidence of heart failure, and PH is reported in paediatric patients with RCM. Currently, only a few therapies are available for specific RCM aetiologies. Early referral to centres for advanced heart failure treatment is often necessary. The aim of this review is to address questions frequently asked when facing paediatric patients with RCM, including issues related to aetiologies, clinical presentation, diagnostic process and prognosis.
Collapse
Affiliation(s)
- Mattia Zampieri
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Chiara Di Filippo
- Local Health Unit, Outpatient Cardiology Clinic, 84131 Salerno, Italy
| | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, 52100 Arezzo, Italy
| | - Vera Fico
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Cristina Golinelli
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio—Thoracic and Vascular Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Gaia Spaziani
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Giovanni Calabri
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Elena Bennati
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Francesca Girolami
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Alberto Marchi
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Silvia Passantino
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Giulio Porcedda
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Guglielmo Capponi
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Alessia Gozzini
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| | - Iacopo Olivotto
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luca Ragni
- Pediatric Cardiology and Adult Congenital Heart Disease Program, Department of Cardio—Thoracic and Vascular Medicine, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Favilli
- Pediatric Cardiology, Meyer Children’s University Hospital IRCCS, 50134 Florence, Italy (S.F.)
| |
Collapse
|
12
|
Wang T, Hou S, Chen J, Zhao X, Xiao T, Hou C, Zhou C. Generation of an induced pluripotent stem cell line (SHETi004-A) from a Chinese Han child with left bundle branch block. Stem Cell Res 2023; 73:103227. [PMID: 37931536 DOI: 10.1016/j.scr.2023.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Desmin (DES) is an important intermediate filament protein associated with the extrasarcomeric cytoskeleton and cellular function that was first reported to be associated with cardiac conduction disease and cardiomyopathy in 1998. We generated an induced pluripotent stem cell (iPSC) line from the left bundle branch block (LBBB) patient's peripheral blood mononuclear cells using Sendai virus-mediated reprogramming. The iPSCs exhibited stable amplification, expressed pluripotent markers, and spontaneously differentiated into three layers in vitro. Additionally, it showed a normal diploid karyotype and maintained the pathogenic mutation in DES. Hence, the iPSC line provided a platform for exploring LBBB mechanisms associated with DES mutations.
Collapse
Affiliation(s)
- Tingxia Wang
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China
| | - Shan Hou
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China
| | - Juan Chen
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China
| | - Xiaopei Zhao
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200062, China.
| | - Cuizhen Zhou
- Department of Cardiology, Shanghai Children's Hospital, School of medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
13
|
Takegami N, Mitsutake A, Mano T, Shintani-Domoto Y, Unuma A, Yamaguchi-Takegami N, Ishiura H, Sakuishi K, Ando M, Yamauchi H, Ono M, Morishita S, Mitsui J, Shimizu J, Tsuji S, Toda T. The Myocardial Accumulation of Aggregated Desmin Protein in a Case of Desminopathy with a de novo DES p.R406W Mutation. Intern Med 2023; 62:2883-2887. [PMID: 36792195 PMCID: PMC10602824 DOI: 10.2169/internalmedicine.0992-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023] Open
Abstract
Desminopathy is a cardiac and skeletal myopathy caused by disease-causing variants in the desmin (DES) gene and represents a subgroup of myofibrillar myopathies, where cytoplasmic desmin-postive immunoreactivity is the pathological hallmark. We herein report a 28-year-old Japanese man who was initially diagnosed with sporadic hypertrophic cardiomyopathy with atrioventricular block at 9 years old and developed weakness in the soft palate and extremities. The myocardial tissue dissected during implantation of the ventricular-assisted device showed a dilated phase of hypertrophic cardiomyopathy and intracellular accumulation of proteinase K-resistant desmin aggregates. Genetic testing confirmed a de novo mutation of DES, which has already been linked to desminopathy. As the molecular diagnosis of desminopathy is challenging, particularly if patients show predominantly cardiac signs and a routine skeletal muscle biopsy is unavailable, these characteristic pathological findings of endomyocardial proteinase K-resistant desmin aggregates might aid in clinical practice.
Collapse
Affiliation(s)
- Naoki Takegami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akihiko Mitsutake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | | | - Atsushi Unuma
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masahiko Ando
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Haruo Yamauchi
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Minoru Ono
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
14
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Monda E, Lioncino M, Caiazza M, Simonelli V, Nesti C, Rubino M, Perna A, Mauriello A, Budillon A, Pota V, Bruno G, Varone A, Nigro V, Santorelli FM, Pacileo G, Russo MG, Frisso G, Sampaolo S, Limongelli G. Clinical, Genetic, and Histological Characterization of Patients with Rare Neuromuscular and Mitochondrial Diseases Presenting with Different Cardiomyopathy Phenotypes. Int J Mol Sci 2023; 24:ijms24109108. [PMID: 37240454 DOI: 10.3390/ijms24109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe the clinical, molecular, and histological characteristics of a consecutive cohort of patients with cardiomyopathy associated with NMDs or MDs referred to a tertiary cardiomyopathy clinic. Consecutive patients with a definitive diagnosis of NMDs and MDs presenting with a cardiomyopathy phenotype were described. Seven patients were identified: two patients with ACAD9 deficiency (Patient 1 carried the c.1240C>T (p.Arg414Cys) homozygous variant in ACAD9; Patient 2 carried the c.1240C>T (p.Arg414Cys) and the c.1646G>A (p.Ar549Gln) variants in ACAD9); two patients with MYH7-related myopathy (Patient 3 carried the c.1325G>A (p.Arg442His) variant in MYH7; Patient 4 carried the c.1357C>T (p.Arg453Cys) variant in MYH7); one patient with desminopathy (Patient 5 carried the c.46C>T (p.Arg16Cys) variant in DES); two patients with mitochondrial myopathy (Patient 6 carried the m.3243A>G variant in MT-TL1; Patient 7 carried the c.253G>A (p.Gly85Arg) and the c.1055C>T (p.Thr352Met) variants in MTO1). All patients underwent a comprehensive cardiovascular and neuromuscular evaluation, including muscle biopsy and genetic testing. This study described the clinical phenotype of rare NMDs and MDs presenting as cardiomyopathies. A multidisciplinary evaluation, combined with genetic testing, plays a main role in the diagnosis of these rare diseases, and provides information about clinical expectations, and guides management.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | | | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alessia Perna
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alfredo Mauriello
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alberta Budillon
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Vincenzo Pota
- NeuroMuscular Omnicentre (NEMO), AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Giorgia Bruno
- Pediatric Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Naples, Italy
| | - Antonio Varone
- Pediatric Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi De Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Maria Giovanna Russo
- Paediatric Cardiology Unit, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81100 Caserta, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80138 Naples, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
- NeuroMuscular Omnicentre (NEMO), AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Gower St, London WC1E 6DD, UK
| |
Collapse
|
16
|
Genetically determined cardiomyopathies at autopsy: the pivotal role of the pathologist in establishing the diagnosis and guiding family screening. Virchows Arch 2023; 482:653-669. [PMID: 36897369 PMCID: PMC10067659 DOI: 10.1007/s00428-023-03523-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Cardiomyopathies (CMP) comprise a heterogenous group of diseases affecting primarily the myocardium, either genetic and/or acquired in origin. While many classification systems have been proposed in the clinical setting, there is no internationally agreed pathological consensus concerning the diagnostic approach to inherited CMP at autopsy. A document on autopsy diagnosis of CMP is needed because the complexity of the pathologic backgrounds requires proper insight and expertise. In cases presenting with cardiac hypertrophy and/or dilatation/scarring with normal coronary arteries, a suspicion of inherited CMP must be considered, and a histological examination is essential. Establishing the actual cause of the disease may require a number of tissue-based and/or fluid-based investigations, be it histological, ultrastructural, or molecular. A history of illicit drug use must be looked for. Sudden death is frequently the first manifestation of disease in case of CMP, especially in the young. Also, during routine clinical or forensic autopsies, a suspicion of CMP may arise based on clinical data or pathological findings at autopsy. It is thus a challenge to make a diagnosis of a CMP at autopsy. The pathology report should provide the relevant data and a cardiac diagnosis which can help the family in furthering investigations, including genetic testing in case of genetic forms of CMP. With the explosion in molecular testing and the concept of the molecular autopsy, the pathologist should use strict criteria in the diagnosis of CMP, and helpful for clinical geneticists and cardiologists who advise the family as to the possibility of a genetic disease.
Collapse
|
17
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Onore ME, Savarese M, Picillo E, Passamano L, Nigro V, Politano L. Bi-Allelic DES Gene Variants Causing Autosomal Recessive Myofibrillar Myopathies Affecting Both Skeletal Muscles and Cardiac Function. Int J Mol Sci 2022; 23:ijms232415906. [PMID: 36555543 PMCID: PMC9785402 DOI: 10.3390/ijms232415906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations in the human desmin gene (DES) may cause both autosomal dominant and recessive cardiomyopathies leading to heart failure, arrhythmias and atrio-ventricular blocks, or progressive myopathies. Cardiac conduction disorders, arrhythmias and cardiomyopathies usually associated with progressive myopathy are the main manifestations of autosomal dominant desminopathies, due to mono-allelic pathogenic variants. The recessive forms, due to bi-allelic variants, are very rare and exhibit variable phenotypes in which premature sudden cardiac death could also occur in the first or second decade of life. We describe a further case of autosomal recessive desminopathy in an Italian boy born of consanguineous parents, who developed progressive myopathy at age 12, and dilated cardiomyopathy four years later and died of intractable heart failure at age 17. Next Generation Sequencing (NGS) analysis identified the homozygous loss-of-function variant c.634C>T; p.Arg212*, which was likely inherited from both parents. Furthermore, we performed a comparison of clinical and genetic results observed in our patient with those of cases so far reported in the literature.
Collapse
Affiliation(s)
- Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marco Savarese
- Folkhälsan Research Center, 00280 Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00280 Helsinki, Finland
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Correspondence:
| |
Collapse
|
19
|
Urtis M, Di Toro A, Osio R, Giuliani L, Serio A, Grasso M, Fergnani V, Smirnova A, Aliberti F, Arbustini E. Genetics and clinics: together to diagnose cardiomyopathies. Eur Heart J Suppl 2022; 24:I9-I15. [PMID: 36380800 PMCID: PMC9653158 DOI: 10.1093/eurheartjsupp/suac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The diagnostic paths of hereditary cardiomyopathies (CMPs) include both clinical and molecular genetics. The first step is the clinical diagnosis that guides the decisions about treatments, monitoring, prognostic stratification, and prevention of major events. The type of CMP [hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy (ARVC)] is defined by the phenotype, and the genetic testing may identify the precise cause. Furthermore, genetic testing provides a pre-clinical diagnosis in unaffected family members and the basis for prenatal diagnosis. It can contribute to risk stratification (e.g. LMNA) and can be a major diagnostic criterion (e.g. ARVC). The test can be limited to a single gene when the pre-test diagnostic hypothesis is based on proven clinical evidence (e.g. GLA for Fabry disease). Alternatively, it can be expanded from a multigene panel to a whole exome or whole genome sequencing when the pre-test hypothesis is a genetically heterogeneous disease. In the last decade, the study of larger genomic targets led to the identification of numerous gene variants not only pathogenic (clinically actionable) but also of uncertain clinical significance (not actionable). For the latter, the pillar of the genetic diagnosis is the correct interpretation of the pathogenicity of genetic variants, which is evaluated using both bioinformatics and clinical-genetic criteria about the patient and family. In this context, cardiologists play a central role in the interpretation of genetic tests, performing the deep-phenotyping of variant carriers and establishing the co-segregation of the genotype with the phenotype in families.
Collapse
Affiliation(s)
- Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberto Osio
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- University of Texas at Austin, Austin, TX, USA
| | - Lorenzo Giuliani
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Serio
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Viola Fergnani
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alexandra Smirnova
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- University of Texas at Austin, Austin, TX, USA
| | - Flaminia Aliberti
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
20
|
Su W, van Wijk SW, Brundel BJJM. Desmin variants: Trigger for cardiac arrhythmias? Front Cell Dev Biol 2022; 10:986718. [PMID: 36158202 PMCID: PMC9500482 DOI: 10.3389/fcell.2022.986718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a classical type III intermediate filament protein encoded by the DES gene. Desmin is abundantly expressed in cardiac, skeletal, and smooth muscle cells. In these cells, desmin interconnects several protein-protein complexes that cover cell-cell contact, intracellular organelles such as mitochondria and the nucleus, and the cytoskeletal network. The extra- and intracellular localization of the desmin network reveals its crucial role in maintaining the structural and mechanical integrity of cells. In the heart, desmin is present in specific structures of the cardiac conduction system including the sinoatrial node, atrioventricular node, and His-Purkinje system. Genetic variations and loss of desmin drive a variety of conditions, so-called desminopathies, which include desmin-related cardiomyopathy, conduction system-related atrial and ventricular arrhythmias, and sudden cardiac death. The severe cardiac disease outcomes emphasize the clinical need to understand the molecular and cellular role of desmin driving desminopathies. As the role of desmin in cardiomyopathies has been discussed thoroughly, the current review is focused on the role of desmin impairment as a trigger for cardiac arrhythmias. Here, the molecular and cellular mechanisms of desmin to underlie a healthy cardiac conduction system and how impaired desmin triggers cardiac arrhythmias, including atrial fibrillation, are discussed. Furthermore, an overview of available (genetic) desmin model systems for experimental cardiac arrhythmia studies is provided. Finally, potential implications for future clinical treatments of cardiac arrhythmias directed at desmin are highlighted.
Collapse
Affiliation(s)
- Wei Su
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stan W. van Wijk
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bianca J. J. M. Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Bianca J. J. M. Brundel,
| |
Collapse
|
21
|
Claes L, Schil KV, Dewals W, Beysen D. A Severe Form of Familial Desminopathy Due to a Homozygous Nonsense DES Variant in Two Siblings. Neuropediatrics 2022. [PMID: 35675837 DOI: 10.1055/a-1871-3692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Familial primary desminopathies are usually autosomal dominantly inherited and present at the age of 20 to 40 years with progressive muscle weakness and atrophy, cardiomyopathy, and cardiac arrhythmias. Cardiac features may precede the muscular weakness. Here, we report the rare case of two siblings presenting with a desminopathy at pediatric age, due to homozygous nonsense variations (c.700G > T [p.Glu234Ter]) in DES, representing an autosomal recessive inheritance pattern. The homozygous state of these variants is expected to result in the complete absence of desmin production. Rare autosomal recessive DES variants are associated with an earlier clinical presentation (from childhood to early adulthood) and faster evolution compared with more common autosomal dominant variants. A normal resting electrocardiography (ECG) and cardiac ultrasound can be a pitfall, as seen in our patient who has extensive fibrotic scarring on cardiac magnetic resonance imaging (MRI). We recommend yearly cardiac ultrasound, yearly 24-hour Holter monitoring and 2 yearly cardiac MRI from the age of 10 years in all asymptomatic patients. Heterozygous patients usually have no or only mild complaints but, though not yet reported in autosomal recessive desminopathies, muscular complaints are possible, as seen in the father of our patients. The prognosis for these patients with desminopathy presenting in childhood is unpredictable but anticipated as poor.
Collapse
Affiliation(s)
- Laura Claes
- Department of Paediatric Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Kristof van Schil
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Medical Genetics, Antwerp University Hospital, Antwerp, Belgium
| | - Wendy Dewals
- Department of Paediatric Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Diane Beysen
- Department of Paediatric Neurology, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Silva AMS, Rodrigo P, Moreno CAM, Mendonça RDH, Estephan EDP, Camelo CG, Campos ED, Dias AT, Nascimento AM, Kulikowski LD, Oliveira ASB, Reed UC, Goldfarb LG, Olivé M, Zanoteli E. The Location of Disease-Causing DES Variants Determines the Severity of Phenotype and the Morphology of Sarcoplasmic Aggregates. J Neuropathol Exp Neurol 2022; 81:746-757. [PMID: 35898174 DOI: 10.1093/jnen/nlac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Desmin (DES) is the main intermediate muscle filament that connects myofibrils individually and with the nucleus, sarcolemma, and organelles. Pathogenic variants of DES cause desminopathy, a disorder affecting the heart and skeletal muscles. We aimed to analyze the clinical features, morphology, and distribution of desmin aggregates in skeletal muscle biopsies of patients with desminopathy and to correlate these findings with the type and location of disease-causing DES variants. This retrospective study included 30 patients from 20 families with molecularly confirmed desminopathy from 2 neuromuscular referral centers. We identified 2 distinct patterns of desmin aggregates: well-demarcated subsarcolemmal aggregates and diffuse aggregates with poorly delimited borders. Pathogenic variants located in the 1B segment and the tail domain of the desmin molecule are more likely to present with early-onset cardiomyopathy compared to patients with variants in other segments. All patients with mutations in the 1B segment had well-demarcated subsarcolemmal aggregates, but none of the patients with variants in other desmin segments showed such histological features. We suggest that variants located in the 1B segment lead to well-shaped subsarcolemmal desmin aggregation and cause disease with more frequent cardiac manifestations. These findings will facilitate early identification of patients with potentially severe cardiac syndromes.
Collapse
Affiliation(s)
| | - Patricia Rodrigo
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Eliene Dutra Campos
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Alexandre Torchio Dias
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lev G Goldfarb
- Department of Pathology and Molecular Medicine, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Montse Olivé
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
23
|
Arbustini E, Behr ER, Carrier L, van Duijn C, Evans P, Favalli V, van der Harst P, Haugaa KH, Jondeau G, Kääb S, Kaski JP, Kavousi M, Loeys B, Pantazis A, Pinto Y, Schunkert H, Di Toro A, Thum T, Urtis M, Waltenberger J, Elliott P. Interpretation and actionability of genetic variants in cardiomyopathies: a position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur Heart J 2022; 43:1901-1916. [PMID: 35089333 DOI: 10.1093/eurheartj/ehab895] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
This document describes the contribution of clinical criteria to the interpretation of genetic variants using heritable Mendelian cardiomyopathies as an example. The aim is to assist cardiologists in defining the clinical contribution to a genetic diagnosis and the interpretation of molecular genetic reports. The identification of a genetic variant of unknown or uncertain significance is a limitation of genetic testing, but current guidelines for the interpretation of genetic variants include essential contributions from clinical family screening that can establish a de novo assignment of the variant or its segregation with the phenotype in the family. A partnership between clinicians and patients helps to solve major uncertainties and provides reliable and clinically actionable information.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elijah R Behr
- Cardiology Research Section and Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, and INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
| | | | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristina Hermann Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postboks 4950 Nydalen, Oslo 0424, Norway
- University of Oslo, Boks 1072 Blindern, Oslo 0316, Norway
| | - Guillaume Jondeau
- CNMR Syndrome de Marfan et apparentés, Member of VASCERN, AP-HP Hopital Bichat, Service de Cardiologie, 46 rue Henri Huchard, Paris 75018, France
- INSERM LVTS U1148, Paris 75018, France
- Université de Paris, Paris, France
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU University Hospital Munich, Munich, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Juan Pablo Kaski
- Institute of Cardiovascular Science, University College London, London, UK
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart Loeys
- Cardiogenomics, Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonis Pantazis
- The Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Yigal Pinto
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Center, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, München, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Alessandro Di Toro
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Johannes Waltenberger
- Department of Cardiology and Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Medicine, Hirslanden Klinik Im Park, Seestrasse 220, Zürich 8027, Switzerland
| | - Perry Elliott
- Barts Heart Centre St Bartholomew's Hospital, London, UK
- Institute for Cardiovascular Science, University College London, London, UK
| |
Collapse
|
24
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
25
|
Limongelli G, Adorisio R, Baggio C, Bauce B, Biagini E, Castelletti S, Favilli S, Imazio M, Lioncino M, Merlo M, Monda E, Olivotto I, Parisi V, Pelliccia F, Basso C, Sinagra G, Indolfi C, Autore C. Diagnosis and Management of Rare Cardiomyopathies in Adult and Paediatric Patients. A Position Paper of the Italian Society of Cardiology (SIC) and Italian Society of Paediatric Cardiology (SICP). Int J Cardiol 2022; 357:55-71. [PMID: 35364138 DOI: 10.1016/j.ijcard.2022.03.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies (CMPs) are myocardial diseases in which the heart muscle is structurally and functionally abnormal in the absence of coronary artery disease, hypertension, valvular disease and congenital heart disease sufficient to cause the observed myocardial abnormality. Thought for a long time to be rare diseases, it is now clear that most of the CMPs can be easily observed in clinical practice. However, there is a group of specific heart muscle diseases that are rare in nature whose clinical/echocardiographic phenotypes resemble those of the four classical morphological subgroups of hypertrophic, dilated, restrictive, arrhythmogenic CMPs. These rare CMPs, often but not solely diagnosed in infants and paediatric patients, should be more properly labelled as specific CMPs. Emerging consensus exists that these conditions require tailored investigation and management. Indeed, an appropriate understanding of these conditions is mandatory for early treatment and counselling. At present, however, the multisystemic and heterogeneous presentation of these entities is a challenge for clinicians, and time delay in diagnosis is a significant concern. The aim of this paper is to define practical recommendations for diagnosis and management of the rare CMPs in paediatric or adult age. A modified Delphi method was adopted to grade the recommendations proposed by each member of the writing committee.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy; Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu).
| | - Rachele Adorisio
- Heart Failure, Transplant and Mechanical Cardiocirculatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart Lung Transplantation, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | - Chiara Baggio
- Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Barbara Bauce
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Elena Biagini
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Castelletti
- Cardiomyopathy Unit and Center for Cardiac Arrhythmias of Genetic Origin, Department of Cardiovascular, Neural and Metabolic Science, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Silvia Favilli
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Massimo Imazio
- Head of Cardiology, Cardiothoracic Department, University Hospital "Santa Maria della Misericordia", ASUFC, Piazzale Santa Maria della Misericordia 15, Udine 33100, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Marco Merlo
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Azienda Ospedaliera Universitaria Careggi and the University of Florence, Florence, Italy
| | - Vanda Parisi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Cristina Basso
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health Azienda Ospedaliera, University of Padua Padova, Italy
| | - Gianfranco Sinagra
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy
| | - Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Division of Cardiology, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | | | | |
Collapse
|
26
|
Chintanaphol M, Orgil BO, Alberson NR, Towbin JA, Purevjav E. Restrictive cardiomyopathy: from genetics and clinical overview to animal modeling. Rev Cardiovasc Med 2022; 23:108. [PMID: 35345275 DOI: 10.31083/j.rcm2303108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022] Open
Abstract
Restrictive cardiomyopathy (RCM), a potentially devastating heart muscle disorder, is characterized by diastolic dysfunction due to abnormal muscle relaxation and myocardial stiffness resulting in restrictive filling of the ventricles. Diastolic dysfunction is often accompanied by left atrial or bi-atrial enlargement and normal ventricular size and systolic function. RCM is the rarest form of cardiomyopathy, accounting for 2-5% of pediatric cardiomyopathy cases, however, survival rates have been reported to be 82%, 80%, and 68% at 1-, 2-, and 5-years after diagnosis, respectively. RCM can be idiopathic, familial, or secondary to a systemic disorder, such as amyloidosis, sarcoidosis, and hereditary hemochromatosis. Approximately 30% of cases are familial RCM, and the genes that have been linked to RCM are cTnT, cTnI, MyBP-C, MYH7, MYL2, MYL3, DES, MYPN, TTN, BAG3, DCBLD2, LNMA, and FLNC. Increased Ca2+ sensitivity, sarcomere disruption, and protein aggregates are some of the few mechanisms of pathogenesis that have been revealed by studies utilizing cell lines and animal models. Additional exploration into the pathogenesis of RCM is necessary to create novel therapeutic strategies to reverse restrictive cardiomyopathic phenotypes.
Collapse
Affiliation(s)
- Michelle Chintanaphol
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Buyan-Ochir Orgil
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Neely R Alberson
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Jeffrey A Towbin
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Enkhsaikhan Purevjav
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| |
Collapse
|
27
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
28
|
Cardiomyopathies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Zhang SS, Gu LN, Zhang T, Xu L, Wei X, Chen SH, Shi SJ, Sun DQ, Zhou SH, Zhao QY. Case report: Fatal infantile hypertonic myofibrillar myopathy with compound heterozygous mutations in the CRYAB gene. Front Pediatr 2022; 10:993165. [PMID: 36727013 PMCID: PMC9884804 DOI: 10.3389/fped.2022.993165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/09/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fatal infantile hypertonic myofibrillar myopathy (FIHMM) is an autosomal recessive hereditary disease characterized by amyotrophy, progressive flexion contracture and ankylosis of the trunk and limb muscles, apnea and respiratory failure, and increased creatine phosphate levels. It is caused by mutations in the CRYAB gene, and only around 18 cases including genetic mutations have been reported worldwide. All patients with FIHMM develop respiratory distress, progressive stiffness of the limbs, and have a poor prognosis. However, no effective treatment for CRYAB-associated respiratory failure has been reported. Here, we report a case of FIHMM with a novel heterozygous missense mutation. CASE PRESENTATION A 2-year-old female developed scoliosis of the lumbar spine and restrictive ventilatory dysfunction in infancy. She was admitted to the hospital with labored breathing on the third day after the second injection of inactivated poliomyelitis vaccine. Acute respiratory failure, pneumothorax, and cardiac arrest arose in the patient during hospitalization, and progressive stiffness of the trunk and limb muscles appeared, accompanied by obvious abdominal distension and an increase in phosphocreatine kinase levels. Screenings for genetic metabolic diseases in the blood and urine were normal. Electromyography revealed mild myogenic damage. A muscle biopsy indicated the accumulation of desmin, α-crystallin, and myotilin in the musculus biceps brachii, and dense granules were observed in muscle fibers using electron microscopy. Mutation analysis of CRYAB revealed a novel heterozygous missense mutation in the proband, c.302A > C (p.His101Pro) and c.3G > A (p.Met1Ile), which inherited from her asymptomatic, heterozygous carrier parents, respectively. The proband was finally diagnosed as FIHMM. One month after the FIHMM diagnosis, the child died of respiratory failure. CONCLUSION We report a case of FIHMM with a novel heterozygous missense mutation of CRYAB. This finding might improve our understanding of FIHMM and highlight a novel mutation in the Chinese population.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Li-Niu Gu
- Department of Immunization Planning, Lianyungang Center for Disease Control and revention, Lianyungang, China
| | - Teng Zhang
- Department of Science & Education, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Lu Xu
- Department of Neonatology, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Xiang Wei
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Su-Hong Chen
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Su-Jie Shi
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Da-Quan Sun
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Shao-Hong Zhou
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Qian-Ye Zhao
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| |
Collapse
|
30
|
Brodehl A, Hain C, Flottmann F, Ratnavadivel S, Gaertner A, Klauke B, Kalinowski J, Körperich H, Gummert J, Paluszkiewicz L, Deutsch MA, Milting H. The Desmin Mutation DES-c.735G>C Causes Severe Restrictive Cardiomyopathy by Inducing In-Frame Skipping of Exon-3. Biomedicines 2021; 9:biomedicines9101400. [PMID: 34680517 PMCID: PMC8533191 DOI: 10.3390/biomedicines9101400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 02/02/2023] Open
Abstract
Currently, little is known about the genetic background of restrictive cardiomyopathy (RCM). Herein, we screened an index patient with RCM in combination with atrial fibrillation using a next generation sequencing (NGS) approach and identified the heterozygous mutation DES-c.735G>C. As DES-c.735G>C affects the last base pair of exon-3, it is unknown whether putative missense or splice site mutations are caused. Therefore, we applied nanopore amplicon sequencing revealing the expression of a transcript without exon-3 in the explanted myocardial tissue of the index patient. Western blot analysis verified this finding at the protein level. In addition, we performed cell culture experiments revealing an abnormal cytoplasmic aggregation of the truncated desmin form (p.D214-E245del) but not of the missense variant (p.E245D). In conclusion, we show that DES-c.735G>C causes a splicing defect leading to exon-3 skipping of the DES gene. DES-c.735G>C can be classified as a pathogenic mutation associated with RCM and atrial fibrillation. In the future, this finding might have relevance for the genetic understanding of similar cases.
Collapse
Affiliation(s)
- Andreas Brodehl
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| | - Carsten Hain
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Franziska Flottmann
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Sandra Ratnavadivel
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Anna Gaertner
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Bärbel Klauke
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Clinic for General and Interventional Cardiology/Angiology, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Hermann Körperich
- Heart and Diabetes Center NRW, Institute for Radiology, Nuclear Medicine and Molecular Imaging, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany;
| | - Jan Gummert
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Lech Paluszkiewicz
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Marcus-André Deutsch
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Hendrik Milting
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| |
Collapse
|
31
|
García-Foncillas J, Argente J, Bujanda L, Cardona V, Casanova B, Fernández-Montes A, Horcajadas JA, Iñiguez A, Ortiz A, Pablos JL, Pérez Gómez MV. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 2021; 25:563-576. [PMID: 34331269 DOI: 10.1007/s40291-021-00544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/11/2022]
Abstract
Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Department of Oncology, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain.
- Medical Oncology Department, University Hospital Fundación Jiménez Díaz-Universidad Autonoma de Madrid, Madrid, Spain.
| | - Jesús Argente
- Department of Endocrinology, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Victoria Cardona
- Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- ARADyAL Research Network, Barcelona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Fernández-Montes
- Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Andrés Iñiguez
- Department of Cardiology, Hospital Álvaro Cunqueiro-Complejo Hospitalario Universitario, Vigo, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
32
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
33
|
Ditaranto R, Caponetti AG, Ferrara V, Parisi V, Minnucci M, Chiti C, Baldassarre R, Di Nicola F, Bonetti S, Hasan T, Potena L, Galiè N, Ragni L, Biagini E. Pediatric Restrictive Cardiomyopathies. Front Pediatr 2021; 9:745365. [PMID: 35145940 PMCID: PMC8822222 DOI: 10.3389/fped.2021.745365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is the least frequent phenotype among pediatric heart muscle diseases, representing only 2.5-3% of all cardiomyopathies diagnosed during childhood. Pediatric RCM has a poor prognosis, high incidence of pulmonary hypertension (PH), thromboembolic events, and sudden death, is less amenable to medical or surgical treatment with high mortality rates. In this scenario, heart transplantation remains the only successful therapeutic option. Despite a shared hemodynamic profile, characterized by severe diastolic dysfunction and restrictive ventricular filling, with normal ventricle ejection fraction and wall thickness, RCM recognizes a broad etiological spectrum, consisting of genetic/familial and acquired causes, each of which has a distinct pathophysiology and natural course. Hence, the aim of this review is to cover the causes, clinical presentation, diagnostic evaluation, treatment, and prognosis of pediatric RCM.
Collapse
Affiliation(s)
- Raffaello Ditaranto
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Angelo Giuseppe Caponetti
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Valentina Ferrara
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Vanda Parisi
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Matteo Minnucci
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Chiti
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Riccardo Baldassarre
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Federico Di Nicola
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Simone Bonetti
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Tammam Hasan
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Nazzareno Galiè
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luca Ragni
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Elena Biagini
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Herrmann H, Cabet E, Chevalier NR, Moosmann J, Schultheis D, Haas J, Schowalter M, Berwanger C, Weyerer V, Agaimy A, Meder B, Müller OJ, Katus HA, Schlötzer-Schrehardt U, Vicart P, Ferreiro A, Dittrich S, Clemen CS, Lilienbaum A, Schröder R. Dual Functional States of R406W-Desmin Assembly Complexes Cause Cardiomyopathy With Severe Intercalated Disc Derangement in Humans and in Knock-In Mice. Circulation 2020; 142:2155-2171. [PMID: 33023321 DOI: 10.1161/circulationaha.120.050218] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.
Collapse
Affiliation(s)
- Harald Herrmann
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany.,Molecular Genetics, German Cancer Research Center, Heidelberg, Germany (H.H.)
| | - Eva Cabet
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes (N.R.C.), University of Paris, France
| | - Julia Moosmann
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Dorothea Schultheis
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.)
| | - Mirjam Schowalter
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.)
| | - Veronika Weyerer
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Abbas Agaimy
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.).,Department of Genetics, Stanford University School of Medicine, CA (B.M.)
| | - Oliver J Müller
- Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel, and German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, and German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Heidelberg, Germany (H.A.K.)
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology (U.S.-S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Patrick Vicart
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris, France (A.F.)
| | - Sven Dittrich
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.).,Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, and Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany(C.S.C.)
| | - Alain Lilienbaum
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Rolf Schröder
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
35
|
Langer HT, Mossakowski AA, Willis BJ, Grimsrud KN, Wood JA, Lloyd KCK, Zbinden-Foncea H, Baar K. Generation of desminopathy in rats using CRISPR-Cas9. J Cachexia Sarcopenia Muscle 2020; 11:1364-1376. [PMID: 32893996 PMCID: PMC7567154 DOI: 10.1002/jcsm.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Desminopathy is a clinically heterogeneous muscle disease caused by over 60 different mutations in desmin. The most common mutation with a clinical phenotype in humans is an exchange of arginine to proline at position 350 of desmin leading to p.R350P. We created the first CRISPR-Cas9 engineered rat model for a muscle disease by mirroring the R350P mutation in humans. METHODS Using CRISPR-Cas9 technology, Des c.1045-1046 (AGG > CCG) was introduced into exon 6 of the rat genome causing p.R349P. The genotype of each animal was confirmed via quantitative PCR. Six male rats with a mutation in desmin (n = 6) between the age of 120-150 days and an equal number of wild type littermates (n = 6) were used for experiments. Maximal plantar flexion force was measured in vivo and combined with the collection of muscle weights, immunoblotting, and histological analysis. In addition to the baseline phenotyping, we performed a synergist ablation study in the same animals. RESULTS We found a difference in the number of central nuclei between desmin mutants (1 ± 0.4%) and wild type littermates (0.2 ± 0.1%; P < 0.05). While muscle weights did not differ, we found the levels of many structural proteins to be altered in mutant animals. Dystrophin and syntrophin were increased 54% and 45% in desmin mutants, respectively (P < 0.05). Dysferlin and Annexin A2, proteins associated with membrane repair, were increased two-fold and 32%, respectively, in mutants (P < 0.05). Synergist ablation caused similar increases in muscle weight between mutant and wild type animals, but changes in fibre diameter revealed that fibre hypertrophy in desmin mutants was hampered compared with wild type animals (P < 0.05). CONCLUSIONS We created a novel animal model for desminopathy that will be a useful tool in furthering our understanding of the disease. While mutant animals at an age corresponding to a preclinical age in humans show no macroscopic differences, microscopic and molecular changes are already present. Future studies should aim to further decipher those biological changes that precede the clinical progression of disease and test therapeutic approaches to delay disease progression.
Collapse
Affiliation(s)
- Henning T Langer
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Universität zu Berlin, and Berlin Institute of Health, Humboldt, CA, USA
| | | | - Kristin N Grimsrud
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Pathology, School of Medicine, University of California, Davis, CA, USA
| | - Joshua A Wood
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Kevin C K Lloyd
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Surgery, School of Medicine, University of California, Davis, CA, USA
| | | | - Keith Baar
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Giuliani L, Di Toro A, Urtis M, Smirnova A, Concardi M, Favalli V, Serio A, Grasso M, Arbustini E. Hereditary muscle diseases and the heart: the cardiologist’s perspective. Eur Heart J Suppl 2020; 22:E13-E19. [PMID: 32523431 PMCID: PMC7270924 DOI: 10.1093/eurheartj/suaa051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alexandra Smirnova
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Monica Concardi
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
37
|
Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework. Int J Genomics 2020; 2020:2415850. [PMID: 32211440 PMCID: PMC7061116 DOI: 10.1155/2020/2415850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/08/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors and bradycardia should be summarized and reevaluated. METHODS We summarized genetic studies published in the PubMed database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants. RESULTS We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database and classified ABCC9, ACTN2, CACNA1C, DES, HCN4, KCNQ1, KCNH2, LMNA, MECP2, LAMP2, NPPA, SCN5A, and TRPM4 as high-priority genes causing familial bradycardia. Most mutated genes have been reported as having multiple clinical manifestations. CONCLUSIONS For patients with familial CCD, 13 high-priority genes are recommended for evaluation. For genetic studies, variants should be carefully evaluated using the ACMG/AMP variant classification framework before publication.
Collapse
|
38
|
Restrictive Cardiomyopathy is Caused by a Novel Homozygous Desmin ( DES) Mutation p.Y122H Leading to a Severe Filament Assembly Defect. Genes (Basel) 2019; 10:genes10110918. [PMID: 31718026 PMCID: PMC6896098 DOI: 10.3390/genes10110918] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we present a small Iranian family, where the index patient received a diagnosis of restrictive cardiomyopathy (RCM) in combination with atrioventricular (AV) block. Genetic analysis revealed a novel homozygous missense mutation in the DES gene (c.364T > C; p.Y122H), which is absent in human population databases. The mutation is localized in the highly conserved coil-1 desmin subdomain. In silico, prediction tools indicate a deleterious effect of the desmin (DES) mutation p.Y122H. Consequently, we generated an expression plasmid encoding the mutant and wildtype desmin formed, and analyzed the filament formation in vitro in cardiomyocytes derived from induced pluripotent stem cells and HT-1080 cells. Confocal microscopy revealed a severe filament assembly defect of mutant desmin supporting the pathogenicity of the DES mutation, p.Y122H, whereas the wildtype desmin formed regular intermediate filaments. According to the guidelines of the American College of Medical Genetics and Genomics, we classified this mutation, therefore, as a novel pathogenic mutation. Our report could point to a recessive inheritance of the DES mutation, p.Y122H, which is important for the genetic counseling of similar families with restrictive cardiomyopathy caused by DES mutations.
Collapse
|
39
|
Stępień-Wojno M, Franaszczyk M, Bodalski R, Śpiewak M, Baranowski RS, Grzybowski J, Płoski R, Bilińska ZT. A different background of arrhythmia in siblings with a positive family history of sudden death at young age. Ann Noninvasive Electrocardiol 2019; 25:e12707. [PMID: 31609036 PMCID: PMC7358827 DOI: 10.1111/anec.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 12/03/2022] Open
Abstract
We present two symptomatic sisters who had a positive family history of sudden death. None of them had structural heart disease. In the 25‐year‐old proband, complex ventricular arrhythmia, cardiac conduction system disease, and skeletal muscle weakness were found. Genetic examination showed a pathogenic intronic variant in the desmin gene in the proband only. In the elder sister with palpitations, complex ventricular arrhythmia (>46 000 ectopic beats) was removed by radiofrequency ablation. This family case shows that complex ventricular arrhythmia may have different background within one family, genetic examinations should be performed in a person with broadest spectrum of symptoms.
Collapse
Affiliation(s)
- Małgorzata Stępień-Wojno
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Maria Franaszczyk
- Department of Medical Biology, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Robert Bodalski
- Department of Arrhythmia, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Mateusz Śpiewak
- Department of Radiology, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Rafał S Baranowski
- Department of Arrhythmia, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Jacek Grzybowski
- Department of Cardiomyopathy, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Zofia T Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
40
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
42
|
Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. Europace 2019; 21:1145-1158. [DOI: 10.1093/europace/euz109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Progressive cardiac conduction disease (PCCD) is often a primarily genetic disorder, with clinical and genetic overlaps with other inherited cardiac and metabolic diseases. A number of genes have been implicated in PCCD pathogenesis with or without structural heart disease or systemic manifestations. Precise genetic diagnosis contributes to risk stratification, better selection of specific therapy and allows familiar cascade screening. Cardiologists should be aware of the different phenotypes emerging from different gene-mutations and the potential risk of sudden cardiac death. Genetic forms of PCCD often overlap or coexist with other inherited heart diseases or manifest in the context of multisystem syndromes. Despite the significant advances in the knowledge of the genetic architecture of PCCD and overlapping diseases, in a measurable fraction of PCCD cases, including in familial clustering of disease, investigations of known cardiac disease-associated genes fail to reveal the underlying substrate, suggesting that new causal genes are yet to be discovered. Here, we provide insight into genetics and molecular mechanisms of PCCD and related diseases. We also highlight the phenotypic overlaps of PCCD with other inherited cardiac and metabolic diseases, present unmet challenges in clinical practice, and summarize the available therapeutic options for affected patients.
Collapse
Affiliation(s)
- Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, Switzerland
| | | |
Collapse
|
43
|
Recessive DES cardio/myopathy without myofibrillar aggregates: intronic splice variant silences one allele leaving only missense L190P-desmin. Eur J Hum Genet 2019; 27:1267-1273. [PMID: 31024060 DOI: 10.1038/s41431-019-0393-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
We establish autosomal recessive DES variants p.(Leu190Pro) and a deep intronic splice variant causing inclusion of a frameshift-inducing artificial exon/intronic fragment, as the likely cause of myopathy with cardiac involvement in female siblings. Both sisters presented in their twenties with slowly progressive limb girdle weakness, severe systolic dysfunction, and progressive, severe respiratory weakness. Desmin is an intermediate filament protein typically associated with autosomal dominant myofibrillar myopathy with cardiac involvement. However a few rare cases of autosomal recessive desminopathy are reported. In this family, a paternal missense p.(Leu190Pro) variant was viewed unlikely to be causative of autosomal dominant desminopathy, as the father and brothers carrying this variant were clinically unaffected. Clinical fit with a DES-related myopathy encouraged closer scrutiny of all DES variants, identifying a maternal deep intronic variant within intron-7, predicted to create a cryptic splice site, which segregated with disease. RNA sequencing and studies of muscle cDNA confirmed the deep intronic variant caused aberrant splicing of an artificial exon/intronic fragment into maternal DES mRNA transcripts, encoding a premature termination codon, and potently activating nonsense-mediate decay (92% paternal DES transcripts, 8% maternal). Western blot showed 60-75% reduction in desmin levels, likely comprised only of missense p.(Leu190Pro) desmin. Biopsy showed fibre size variation with increased central nuclei. Electron microscopy showed extensive myofibrillar disarray, duplication of the basal lamina, but no inclusions or aggregates. This study expands the phenotypic spectrum of recessive DES cardio/myopathy, and emphasizes the continuing importance of muscle biopsy for functional genomics pursuit of 'tricky' variants in neuromuscular conditions.
Collapse
|
44
|
Peña-Peña ML, Monserrat L. Papel de la genética en la estratificación del riesgo de pacientes con miocardiopatía dilatada no isquémica. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Anbo H, Sato M, Okoshi A, Fukuchi S. Functional Segments on Intrinsically Disordered Regions in Disease-Related Proteins. Biomolecules 2019; 9:biom9030088. [PMID: 30841624 PMCID: PMC6468909 DOI: 10.3390/biom9030088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023] Open
Abstract
One of the unique characteristics of intrinsically disordered proteins (IPDs) is the existence of functional segments in intrinsically disordered regions (IDRs). A typical function of these segments is binding to partner molecules, such as proteins and DNAs. These segments play important roles in signaling pathways and transcriptional regulation. We conducted bioinformatics analysis to search these functional segments based on IDR predictions and database annotations. We found more than a thousand potential functional IDR segments in disease-related proteins. Large fractions of proteins related to cancers, congenital disorders, digestive system diseases, and reproductive system diseases have these functional IDRs. Some proteins in nervous system diseases have long functional segments in IDRs. The detailed analysis of some of these regions showed that the functional segments are located on experimentally verified IDRs. The proteins with functional IDR segments generally tend to come and go between the cytoplasm and the nucleus. Proteins involved in multiple diseases tend to have more protein-protein interactors, suggesting that hub proteins in the protein-protein interaction networks can have multiple impacts on human diseases.
Collapse
Affiliation(s)
- Hiroto Anbo
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Masaya Sato
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Atsushi Okoshi
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan.
| |
Collapse
|
46
|
MOHSIN AHMAD, FAUST OLIVER. AUTOMATED CHARACTERIZATION OF CARDIOVASCULAR DISEASES USING WAVELET TRANSFORM FEATURES EXTRACTED FROM ECG SIGNALS. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease has been the leading cause of death worldwide. Electrocardiogram (ECG)-based heart disease diagnosis is simple, fast, cost effective and non-invasive. However, interpreting ECG waveforms can be taxing for a clinician who has to deal with hundreds of patients during a day. We propose computing machinery to reduce the workload of clinicians and to streamline the clinical work processes. Replacing human labor with machine work can lead to cost savings. Furthermore, it is possible to improve the diagnosis quality by reducing inter- and intra-observer variability. To support that claim, we created a computer program that recognizes normal, Dilated Cardiomyopathy (DCM), Hypertrophic Cardiomyopathy (HCM) or Myocardial Infarction (MI) ECG signals. The computer program combined Discrete Wavelet Transform (DWT) based feature extraction and K-Nearest Neighbor (K-NN) classification for discriminating the signal classes. The system was verified with tenfold cross validation based on labeled data from the PTB diagnostic ECG database. During the validation, we adjusted the number of neighbors [Formula: see text] for the machine learning algorithm. For [Formula: see text], training set has an accuracy and cross validation of 98.33% and 95%, respectively. However, when [Formula: see text], it showed constant for training set but dropped drastically to 80% for cross-validation. Hence, training set [Formula: see text] prevails. Furthermore, a confusion matrix proved that normal data was identified with 96.7% accuracy, 99.6% sensitivity and 99.4% specificity. This means an error of 3.3% will occur. For every 30 normal signals, the classifier will mislabel only 1 of the them as HCM. With these results, we are confident that the proposed system can improve the speed and accuracy with which normal and diseased subjects are identified. Diseased subjects can be treated earlier which improves their probability of survival.
Collapse
Affiliation(s)
- AHMAD MOHSIN
- Singapore University of Social Sciences, School of Science and Technology, Singapore
| | - OLIVER FAUST
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
47
|
Peña-Peña ML, Monserrat L. Risk Stratification in Patients With Nonisquemic Dilated Cardiomyopathy. The Role of Genetic Testing. ACTA ACUST UNITED AC 2019; 72:333-340. [PMID: 30792015 DOI: 10.1016/j.rec.2018.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy is inherited in nearly 50% of cases. More than 90 genes have been associated with this disease, which is one of the main causes of heart transplant and has been associated with an increased risk of sudden cardiac death. Risk stratification in these patients continues to be challenging. The identification of the specific etiology of the disease is very useful for the early detection of mutation carriers. Genetic study often provides prognostic information and can determine the therapeutic approach. Wide phenotypic variability is observed depending on the mutated gene, the type of mutation, and the presence of additional genetic and environmental factors.
Collapse
Affiliation(s)
- Maria Luisa Peña-Peña
- Unidad de Cardiopatías Familiares, Departamento de Cardiología, Hospital Universitario Virgen del Rocío, Seville, Spain; Departamento de Cardiología, Health in Code, A Coruña, Spain.
| | | |
Collapse
|
48
|
Bazoukis G, Letsas KP, Xia Y, Tse G, Li KHC. A novel desmin mutation causing severe left ventricular arrhythmogenic cardiomyopathy/dysplasia. J Thorac Dis 2018; 10:S3100-S3102. [PMID: 30370089 PMCID: PMC6186622 DOI: 10.21037/jtd.2018.07.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022]
Affiliation(s)
- George Bazoukis
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Athens, Greece
| | - Konstantinos P. Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, “Evangelismos” General Hospital of Athens, Athens, Greece
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Ka Hou Christien Li
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
49
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
50
|
Paldino A, De Angelis G, Merlo M, Gigli M, Dal Ferro M, Severini GM, Mestroni L, Sinagra G. Genetics of Dilated Cardiomyopathy: Clinical Implications. Curr Cardiol Rep 2018; 20:83. [DOI: 10.1007/s11886-018-1030-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|