1
|
Marwa Abdullah Saleh, Karima Fadhil Ali, Basma M. Abd Razik. Synthesizing, Studying Molecular Docking, Characterizing, and Preliminary Evaluating Anti-Bacterial Effects of Derivatives of Serotonin Contain Imidazolidine Ring. AL MUSTANSIRIYAH JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 22:1-16. [DOI: 10.32947/ajps.v22i3.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This study included synthesis of new serotonin derivatives in which imidazolidine rings are present in their structures. The final imidazolidine derivatives compounds were synthesized by reaction of synthesized
Schiff bases derivatives of serotonin with the glycine (NH2-CH2COOH) in presence of tetrahydrofuran (THF) as a solvent. The imidazolidine derivatives were identified by physical characteristics, FT-IR spectroscopy and 1H- NMR spectroscopy. Biological activities against two Gram negative (Klebsiella and E. coli) and two Gram positive (Streptococcus pyogenes and Staphylococcus aureus) bacteria were also distinguished. All the synthesized compounds III(a-d) exhibit moderate activities on four types of bacteria comparing with the activity of standard drug (Trimethoprim) but the highest activities of these compounds occur on Streptococcus pyogenes and their least activities occur on E. coli. The synthesized compounds were studied for the molecular docking to know the interaction and affinity of binding between them and bacteria
Collapse
|
2
|
Bernhard S, Kaiser M, Burri C, Mäser P. Fexinidazole for Human African Trypanosomiasis, the Fruit of a Successful Public-Private Partnership. Diseases 2022; 10:90. [PMID: 36278589 PMCID: PMC9589988 DOI: 10.3390/diseases10040090] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 08/14/2023] Open
Abstract
After 100 years of chemotherapy with impractical and toxic drugs, an oral cure for human African trypanosomiasis (HAT) is available: Fexinidazole. In this case, we review the history of drug discovery for HAT with special emphasis on the discovery, pre-clinical development, and operational challenges of the clinical trials of fexinidazole. The screening of the Drugs for Neglected Diseases initiative (DNDi) HAT-library by the Swiss TPH had singled out fexinidazole, originally developed by Hoechst (now Sanofi), as the most promising of a series of over 800 nitroimidazoles and related molecules. In cell culture, fexinidazole has an IC50 of around 1 µM against Trypanosoma brucei and is more than 100-fold less toxic to mammalian cells. In the mouse model, fexinidazole cures both the first, haemolymphatic, and the second, meningoencephalitic stage of the infection, the latter at 100 mg/kg twice daily for 5 days. In patients, the clinical trials managed by DNDi and supported by Swiss TPH mainly conducted in the Democratic Republic of the Congo demonstrated that oral fexinidazole is safe and effective for use against first- and early second-stage sleeping sickness. Based on the positive opinion issued by the European Medicines Agency in 2018, the WHO has released new interim guidelines for the treatment of HAT including fexinidazole as the new therapy for first-stage and non-severe second-stage sleeping sickness caused by Trypanosoma brucei gambiense (gHAT). This greatly facilitates the diagnosis and treatment algorithm for gHAT, increasing the attainable coverage and paving the way towards the envisaged goal of zero transmission by 2030.
Collapse
Affiliation(s)
- Sonja Bernhard
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Christian Burri
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4002 Basel, Switzerland
| |
Collapse
|
3
|
Mousavi A, Foroumadi P, Emamgholipour Z, Mäser P, Kaiser M, Foroumadi A. 2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study. Molecules 2022; 27:molecules27175559. [PMID: 36080325 PMCID: PMC9457997 DOI: 10.3390/molecules27175559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Nitro-containing compounds are a well-known class of anti-infective agents, especially in the field of anti-parasitic drug discovery. HAT or sleeping sickness is a neglected tropical disease caused by a protozoan parasite, Trypanosoma brucei. Following the approval of fexinidazole as the first oral treatment for both stages of T. b. gambiense HAT, there is an increased interest in developing new nitro-containing compounds against parasitic diseases. In our previous projects, we synthesized several megazole derivatives that presented high activity against Leishmania major promastigotes. Here, we screened and evaluated their trypanocidal activity. Most of the compounds showed submicromolar IC50 against the BSF form of T. b. rhodesiense (STIB 900). To the best of our knowledge, compound 18c is one of the most potent nitro-containing agents reported against HAT in vitro. Compound 18g revealed an acceptable cure rate in the acute mouse model of HAT, accompanied with noteworthy in vitro activity against T. brucei, T. cruzi, and L. donovani. Taken together, these results suggest that these compounds are promising candidates to evaluate their pharmacokinetic and biological profiles in the future.
Collapse
Affiliation(s)
- Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Parham Foroumadi
- Department of Medicinal Chemistry, School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
- Correspondence: (M.K.); (A.F.)
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Correspondence: (M.K.); (A.F.)
| |
Collapse
|
4
|
Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals (Basel) 2022; 15:ph15050561. [PMID: 35631389 PMCID: PMC9144801 DOI: 10.3390/ph15050561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.
Collapse
|
5
|
Cullen DR, Gallagher A, Duncan CL, Pengon J, Rattanajak R, Chaplin J, Gunosewoyo H, Kamchonwongpaisan S, Payne A, Mocerino M. Synthesis and evaluation of tetrahydroisoquinoline derivatives against Trypanosoma brucei rhodesiense. Eur J Med Chem 2021; 226:113861. [PMID: 34624822 DOI: 10.1016/j.ejmech.2021.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma brucei (T. b.), and affects communities in sub-Saharan Africa. Previously, analogues of a tetrahydroisoquinoline scaffold were reported as having in vitro activity (IC50 = 0.25-70.5 μM) against T. b. rhodesiense. In this study the synthesis and antitrypanosomal activity of 80 compounds based around a core tetrahydroisoquinoline scaffold are reported. A detailed structure activity relationship was revealed, and five derivatives (two of which have been previously reported) with inhibition of T. b. rhodesiense growth in the sub-micromolar range were identified. Four of these (3c, 12b, 17b and 26a) were also found to have good selectivity over mammalian cells (SI > 50). Calculated logD values and preliminary ADME studies predict that these compounds are likely to have good absorption and metabolic stability, with the ability to passively permeate the blood brain barrier. This makes them excellent leads for a blood-brain barrier permeable antitrypanosomal scaffold.
Collapse
Affiliation(s)
- Danica R Cullen
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ashlee Gallagher
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - Caitlin L Duncan
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Jutharat Pengon
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Roonglawan Rattanajak
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jason Chaplin
- Epichem Pty Ltd. Suite 5, 3 Brodie-Hall Drive Bentley, WA, 6102, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Sumalee Kamchonwongpaisan
- BIOTEC Medical Molecular Biotechnology Research Group - National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Alan Payne
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences - Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
6
|
Niclosamide Is Active In Vitro against Mycetoma Pathogens. Molecules 2021; 26:molecules26134005. [PMID: 34209118 PMCID: PMC8271592 DOI: 10.3390/molecules26134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested). Based on these results, we propose to further evaluate the salicylanilides, niclosamidein particular, as drug repurposing candidates for mycetoma.
Collapse
|
7
|
Mutuku CN, Bateta R, Rono MK, Njunge JM, Awuoche EO, Ndung'u K, Mang'era CM, Akoth MO, Adung'a VO, Ondigo BN, Mireji PO. Physiological and proteomic profiles of Trypanosoma brucei rhodesiense parasite isolated from suramin responsive and non-responsive HAT patients in Busoga, Uganda. Int J Parasitol Drugs Drug Resist 2021; 15:57-67. [PMID: 33588295 PMCID: PMC7895675 DOI: 10.1016/j.ijpddr.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Human African Trypanosomiasis (HAT) is a disease of major economic importance in Sub-Saharan Africa. The HAT is caused by Trypanosoma brucei rhodesiense (Tbr) parasite in eastern and southern Africa, with suramin as drug of choice for treatment of early stage of the disease. Suramin treatment failures has been observed among HAT patients in Tbr foci in Uganda. In this study, we assessed Tbr parasite strains isolated from HAT patients responsive (Tbr EATRO-232) and non-responsive (Tbr EATRO-734) to suramin treatment in Busoga, Uganda for 1) putative role of suramin resistance in the treatment failure 2) correlation of suramin resistance with Tbr pathogenicity and 3) proteomic pathways underpinning the potential suramin resistance phenotype in vivo. We first assessed suramin response in each isolate by infecting male Swiss white mice followed by treatment using a series of suramin doses. We then assessed relative pathogenicity of the two Tbr isolates by assessing changes pathogenicity indices (prepatent period, survival and mortality). We finally isolated proteins from mice infected by the isolates, and assessed their proteomic profiles using mass spectrometry. We established putative resistance to 2.5 mg/kg suramin in the parasite Tbr EATRO-734. We established that Tbr EATRO-734 proliferated slower and has significantly enriched pathways associated with detoxification and metabolism of energy and drugs relative to Tbr EATRO-232. The Tbr EATRO-734 also has more abundantly expressed mitochondrion proteins and enzymes than Tbr EATRO-232. The suramin treatment failure may be linked to the relatively higher resistance to suramin in Tbr EATRO-734 than Tbr EATRO-232, among other host and parasite specific factors. However, the Tbr EATRO-734 appears to be less pathogenic than Tbr EATRO-232, as evidenced by its lower rate of parasitaemia. The Tbr EATRO-734 putatively surmount suramin challenges through induction of energy metabolism pathways. These cellular and molecular processes may be involved in suramin resistance in Tbr.
Collapse
Affiliation(s)
- Catherine N Mutuku
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya.
| | - Martin K Rono
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - James M Njunge
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya
| | - Erick O Awuoche
- Department of Biological Sciences, School of Pure and Applied Science, Meru University of Science and Technology, Meru, Kenya
| | - Kariuki Ndung'u
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
| | - Clarence M Mang'era
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Modesta O Akoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Vincent O Adung'a
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya; Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, PO Box 230-80108 Kilifi, Kenya.
| |
Collapse
|
8
|
Activities of Quinoxaline, Nitroquinoxaline, and [1,2,4]Triazolo[4,3-a]quinoxaline Analogs of MMV007204 against Schistosoma mansoni. Antimicrob Agents Chemother 2021; 65:AAC.01370-20. [PMID: 33257453 DOI: 10.1128/aac.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in millions of people a year shows the need to further develop a pipeline of new drugs to treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against Schistosoma mansoni In this study, 47 synthesized compounds containing quinoxaline moieties were first assayed against the larval stage of this parasite, newly transformed schistosomula (NTS); of these, 16 killed over 70% NTS at 10 µM. Further testing against NTS and adult S. mansoni yielded three compounds with 50% inhibitory concentrations (IC50s) of ≤0.31 µM against adult S. mansoni and selectivity indices of ≥8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body weight to S. mansoni -infected mice yielded only moderate worm burden reduction (WBR) (9.3% to 46.3%). The discrepancy between these compounds' good in vitro activities and their poor in vivo activities indicates that optimization of their pharmacokinetic properties may yield compounds with greater bioavailabilities and better antischistosomiasis activities in vivo.
Collapse
|
9
|
Abbas SY, Sh. El-Sharief MAM, Salem MA, Sh. El-Sharief AM. Utilization of cyanothioformamides in the syntheses of various types of imidazole derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1700524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Samir Y. Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Marwa A. M. Sh. El-Sharief
- Applied Organic Chemistry Department, National Research Centre, Cairo, Egypt
- Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
| | - Mohamed A. Salem
- Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| | | |
Collapse
|
10
|
Al-Harbi RAK, Al-Sharari MAM, El-Sharief MAMS. Synthesis and anticancer evaluation of imidazolidine derivatives: study the reaction of imidazolidineiminothione derivatives with amino acids methyl ester. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1778312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Reem A. K. Al-Harbi
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarrah, Saudi Arabia
| | | | - Marwa A. M. Sh. El-Sharief
- Chemistry Department, Faculty of Science and Arts, Mohail Asser, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Abbas SY, El-Sharief MAMS, Al-Harbi RAK, El-Gammal EW, El-Sharief AMS. Synthesis and Evaluation of 5-imino-4-thioxoimidazolidin-2-one Derivatives as Antibacterial and Antifungal Agents. Med Chem 2019; 17:638-645. [PMID: 31880248 DOI: 10.2174/1573406416666191227112648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/20/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE It was interesting to synthesize some new 5-imino-4-thioxoimidazolidin-2- one derivatives with different halogenated and alkylated aromatic substituents at N-(1) and N-(3) and evaluation of their expected antibacterial and antifungal activities. METHODS New 5-imino-4-thioxoimidazolidin-2-one derivatives were synthesized through the reaction of different halogenated and alkylated N-arylcyanothioformamides with halogenated and alkylated aryl isocyanates. RESULTS 5-Imino-4-thioxoimidazolidin-2-ones were obtained in high yields with excellent purity. The activities of imidazolidines as antibacterial and antifungal agents were studied. Some of the imidazolidine derivatives displayed significant antibacterial and antifungal activities. CONCLUSION 5-Imino-4-thioxoimidazolidin-2-ones were obtained in 77-90% yields with excellent purity. The antibacterial and antifungal activities suggest that some of the imidazole derivatives possess significant antimicrobial activity against B. subtilis, K. pneumonia and C. albicans and moderate activity against S. aureus.
Collapse
Affiliation(s)
- Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | | | - Reem A K Al-Harbi
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarrah, Saudi Arabia
| | - Eman W El-Gammal
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Ahmed M S El-Sharief
- Chemistry Department, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| |
Collapse
|
12
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
14
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
15
|
Abstract
The nitro group is considered to be a versatile and unique functional group in medicinal chemistry. Despite a long history of use in therapeutics, the nitro group has toxicity issues and is often categorized as a structural alert or a toxicophore, and evidence related to drugs containing nitro groups is rather contradictory. In general, drugs containing nitro groups have been extensively associated with mutagenicity and genotoxicity. In this context, efforts toward the structure-mutagenicity or structure-genotoxicity relationships have been undertaken. The current Perspective covers various aspects of agents that contain nitro groups, their bioreductive activation mechanisms, their toxicities, and approaches to combat their toxicity issues. In addition, recent advances in the field of anticancer, antitubercular and antiparasitic agents containing nitro groups, along with a patent survey on hypoxia-activated prodrugs containing nitro groups, are also covered.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
16
|
Maleki A, Aghaie M. Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol. ULTRASONICS SONOCHEMISTRY 2017; 39:534-539. [PMID: 28732978 DOI: 10.1016/j.ultsonch.2017.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 05/27/2023]
Abstract
An efficient sonochemical protocol for the nitration of aromatic compounds was described in the presence of a catalytic amount of sulfuric acid-functionalized silica-based core/shell magnetic nanocomposite at room temperature in an eco-friendly and recyclable media, deep eutectic solvent (DES), based on choline chloride and urea. The particle size, morphology and elemental analysis of the core/shell nanocatalyst were carried out by TEM, SEM, EDX and XRD analyses. The nanocatalyst and DES were easily recovered from the reaction mixture quantitatively and reused several times.
Collapse
Affiliation(s)
- Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Morteza Aghaie
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Ang CW, Jarrad AM, Cooper MA, Blaskovich MAT. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J Med Chem 2017; 60:7636-7657. [PMID: 28463485 DOI: 10.1021/acs.jmedchem.7b00143] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infectious diseases claim millions of lives every year, but with the advent of drug resistance, therapeutic options to treat infections are inadequate. There is now an urgent need to develop new and effective treatments. Nitroimidazoles are a class of antimicrobial drugs that have remarkable broad spectrum activity against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. While nitroimidazoles were discovered in the 1950s, there has been renewed interest in their therapeutic potential, particularly for the treatment of parasitic infections and tuberculosis. In this review, we summarize different classes of nitroimidazoles that have been described in the literature in the past five years, from approved drugs and clinical candidates to examples undergoing preclinical or early stage development. The relatively "nonspecific" mode of action and resistance mechanisms of nitromidazoles are discussed, and contemporary strategies to facilitate nitroimidazole drug development are highlighted.
Collapse
Affiliation(s)
- Chee Wei Ang
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Angie M Jarrad
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Matthew A Cooper
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| | - Mark A T Blaskovich
- The Institute for Molecular Bioscience, The University of Queensland , St Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
Salerno A, Celentano AM, López J, Lara V, Gaozza C, Balcazar DE, Carrillo C, Frank FM, Blanco MM. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity. Eur J Med Chem 2017; 125:327-334. [DOI: 10.1016/j.ejmech.2016.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
|
19
|
Highly efficient protocol for the aromatic compounds nitration catalyzed by magnetically recyclable core/shell nanocomposite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0996-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Cullen DR, Pengon J, Rattanajak R, Chaplin J, Kamchonwongpaisan S, Mocerino M. Scoping Studies into the Structure-Activity Relationship (SAR) of Phenylephrine-Derived Analogues as Inhibitors ofTrypanosoma brucei rhodesiense. ChemistrySelect 2016. [DOI: 10.1002/slct.201601059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Danica R. Cullen
- Department of Chemistry; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Jutharat Pengon
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Roonglawan Rattanajak
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Jason Chaplin
- Epichem Pty Ltd; Suite 5, 3 Brodie-Hall Drive Bentley WA 6102 Australia
| | - Sumalee Kamchonwongpaisan
- BIOTEC Medical Molecular Biology Research Unit; National Science and Technology Development Agency; 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand
| | - Mauro Mocerino
- Department of Chemistry; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| |
Collapse
|
21
|
Ammar YA, El-Sharief MAMS, Ghorab MM, Mohamed YA, Ragab A, Abbas SY. New Imidazolidineiminothione, Imidazolidin-2-one and Imidazoquinoxaline
Derivatives: Synthesis and Evaluation of Antibacterial and Antifungal Activities. Curr Org Synth 2016; 13:466-475. [PMID: 27594815 PMCID: PMC4997951 DOI: 10.2174/1570179412666150817221755] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 11/22/2022]
Abstract
A series of new 5-imino-4-thioxo-2-imidazolidinone derivatives 3 with various halogenated and alkylated aromatic substituents at N1 and N3 was synthesized. Imidazolidineiminothione derivatives 3 were prepared from the reaction of N-arylcyanothioformamide derivatives with aryl isocyanates. These compounds were used as key synthons for the preparation of wide variety of new substituted imidazole compounds. Imine hydrolysis of 3 with ethanolic HCl produced the corresponding 4-thioxo-2,5-imidazolidindiones 4. Condensation of 3 with benzophenonhydrazone furnished the corresponding 4-azine derivatives 5. Monohydrazono and dihydrazono derivatives 6 and 8 were obtained upon treatment of imidazolidinone derivatives 3 with hydrazine hydrate. Finally, imidazolidinones 3 were reacted with o-phenylenediamines or pyrazol-5(4H)-ones and afforded the corresponding imidazoquinoxaline and imidazolidin-4-ylidenepyrazolone-5(4H)-one derivatives 11 and 12, respectively. Evaluation of the antibacterial and antifungal activities for the synthesized compounds was carried out to probe their activities. Most of the tested compounds showed significant activities. The best antimicrobial activity was observed for 1-(3-ethoxyphenyl)-6-methyl-1-phenyl-1H-imidazo[4,5-b]quinoxalin-2(3H)-ones (11c) followed by 5-imino-3-(3-methoxy- phenyl)-1-phenyl-4-thioxoimidazolidin-2-one (3f).
Collapse
Affiliation(s)
- Yousry A. Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo,Egypt
| | - Marwa A. M. Sh. El-Sharief
- Applied Organic Chemistry Department, National Research Centre, Cairo,Egypt
- Faculty of Science and Arts, Mohail Asser, King Khalid University,Saudi Arabia
| | - Mostafa M. Ghorab
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451,Saudi Arabia
| | - Yehia A. Mohamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo,Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo,Egypt
| | - Samir Y. Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo,Egypt
| |
Collapse
|
22
|
Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. Eur J Med Chem 2016; 120:353-62. [PMID: 27236016 PMCID: PMC4920673 DOI: 10.1016/j.ejmech.2016.04.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/21/2022]
Abstract
Diarrhoeal diseases caused by the intestinal parasites Giardia lamblia and Entamoeba histolytica constitute a major global health burden. Nitroimidazoles are first-line drugs for the treatment of giardiasis and amebiasis, with metronidazole 1 being the most commonly used drug worldwide. However, treatment failures in giardiasis occur in up to 20% of cases and development of resistance to metronidazole is of concern. We have re-examined 'old' nitroimidazoles as a foundation for the systematic development of next-generation derivatives. Using this approach, derivatisation of the nitroimidazole carboxamide scaffold provided improved antiparasitic agents. Thirty-three novel nitroimidazole carboxamides were synthesised and evaluated for activity against G. lamblia and E. histolytica. Several of the new compounds exhibited potent activity against G. lamblia strains, including metronidazole-resistant strains of G. lamblia (EC50 = 0.1-2.5 μM cf. metronidazole EC50 = 6.1-18 μM). Other compounds showed improved activity against E. histolytica (EC50 = 1.7-5.1 μM cf. metronidazole EC50 = 5.0 μM), potent activity against Trichomonas vaginalis (EC50 = 0.6-1.4 μM cf. metronidazole EC50 = 0.8 μM) and moderate activity against the intestinal bacterial pathogen Clostridium difficile (0.5-2 μg/mL, cf. metronidazole = 0.5 μg/mL). The new compounds had low toxicity against mammalian kidney and liver cells (CC50 > 100 μM), and selected antiparasitic hits were assessed for human plasma protein binding and metabolic stability in liver microsomes to demonstrate their therapeutic potential.
Collapse
|
23
|
Gallardo-Fuentes S, Contreras R, Ormazábal-Toledo R. Origins of the ANRORC reactivity in nitroimidazole derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra00199h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Highlighting the key role of proton transfer along the PES: unraveling the mechanism of ANRORC reactions in 1,4-dinitro-1H-imidazole derivatives.
Collapse
Affiliation(s)
| | - Renato Contreras
- Departamento de Química
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile
| | | |
Collapse
|
24
|
Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur J Med Chem 2014; 87:79-88. [DOI: 10.1016/j.ejmech.2014.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022]
|
25
|
Eperon G, Balasegaram M, Potet J, Mowbray C, Valverde O, Chappuis F. Treatment options for second-stage gambiense human African trypanosomiasis. Expert Rev Anti Infect Ther 2014; 12:1407-17. [PMID: 25204360 PMCID: PMC4743611 DOI: 10.1586/14787210.2014.959496] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of second-stage gambiense human African trypanosomiasis relied on toxic arsenic-based derivatives for over 50 years. The availability and subsequent use of eflornithine, initially in monotherapy and more recently in combination with nifurtimox (NECT), has drastically improved the prognosis of treated patients. However, NECT logistic and nursing requirements remain obstacles to its deployment and use in peripheral health structures in rural sub-Saharan Africa. Two oral compounds, fexinidazole and SCYX-7158, are currently in clinical development. The main scope of this article is to discuss the potential impact of new oral therapies to improve diagnosis-treatment algorithms and patients' access to treatment, and to contribute to reach the objectives of the recently launched gambiense human African trypanosomiasis elimination program.
Collapse
Affiliation(s)
| | | | - Julien Potet
- Geneva University Hospitals,
Geneva, Switzerland
| | | | | | | |
Collapse
|
26
|
Alliouche H, Bouraiou A, Bouacida S, Merazig H, Belfaitah A. Crystal structure of ( E)-1-methyl-2-[2-(2-methoxphenyl)ethenyl]-4-nitro-1 H-imidazole. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o966-7. [PMID: 25309283 PMCID: PMC4186069 DOI: 10.1107/s1600536814017206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022]
Abstract
In the asymmetric unit of the title compound, C13H13N3O3, the 2-(2-methoxphenyl)ethenyl unit is connected to the methyl-nitroimidazole 1-methyl-4-nitro-1H-imidazole moiety. The molecule is quasi-planar and the planes of the two rings form a dihedral angle of 0.92 (11)°. The crystal packing can be described as layers parallel to the (011) plane, stabilized by intermolecular C—H...O hydrogen bonding, resulting in the formation of an infinite three-dimensional network linking these layers. Strong π–π stacking interactions are observed,viz.benzene–benzene, imidazole–imidazole and benzene–imidazole rings, with centroid–centroid distances of 3.528 (2), 3.457 (2) and 3.544 (2) Å, respectively. Intensity statistics indicated twinning by non-merohedry, with refined weighs of the twin components of 0.3687:0.6313.
Collapse
|
27
|
Drug discovery and human African trypanosomiasis: a disease less neglected? Future Med Chem 2014; 5:1801-41. [PMID: 24144414 DOI: 10.4155/fmc.13.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
Collapse
|
28
|
Gogoi A, Sarmah G, Dewan A, Bora U. Unique copper–salen complex: an efficient catalyst for N-arylations of anilines and imidazoles at room temperature. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Evaluating aziridinyl nitrobenzamide compounds as leishmanicidal prodrugs. Antimicrob Agents Chemother 2013; 58:370-7. [PMID: 24165190 DOI: 10.1128/aac.01459-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the nitroaromatic agents used in medicine function as prodrugs and must undergo activation before exerting their toxic effects. In most cases, this is catalyzed by flavin mononucleotide (FMN)-dependent type I nitroreductases (NTRs), a class of enzyme absent from higher eukaryotes but expressed by bacteria and several eukaryotic microbes, including trypanosomes and Leishmania. Here, we utilize this difference to evaluate whether members of a library of aziridinyl nitrobenzamides have activity against Leishmania major. Biochemical screens using purified L. major NTR (LmNTR) revealed that compounds containing an aziridinyl-2,4-dinitrobenzyl core were effective substrates for the enzyme and showed that the 4-nitro group was important for this activity. To facilitate drug screening against intracellular amastigote parasites, we generated leishmanial cells that expressed the luciferase reporter gene and optimized a mammalian infection model in a 96-well plate format. A subset of aziridinyl-2,4-dinitrobenzyl compounds possessing a 5-amide substituent displayed significant growth-inhibitory properties against the parasite, with the most potent agents generating 50% inhibitory concentrations of <100 nM for the intracellular form. This antimicrobial activity was shown to be LmNTR specific since L. major NTR(+/-) heterozygote parasites were slightly resistance to most aziridinyl dinitrobenzyl agents tested. When the most potent leishmanicidal agents were screened against the mammalian cells in which the amastigote parasites were propagated, no growth-inhibitory effect was observed at concentrations of up to 100 μM. We conclude that the aziridinyl nitrobenzamides represent a new lead structure that may have the potential to treat leishmanial infections.
Collapse
|
30
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Kaiser M, Chatelain E, Ioset JR. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg Med Chem 2013; 21:6600-7. [PMID: 24012457 DOI: 10.1016/j.bmc.2013.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/01/2013] [Accepted: 08/10/2013] [Indexed: 11/17/2022]
Abstract
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.
Collapse
Affiliation(s)
- Maria V Papadopoulou
- NorthShore University HealthSystem, Department of Radiation Medicine, 2650 Ridge Ave., Evanston, IL 60201, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Voak AA, Gobalakrishnapillai V, Seifert K, Balczo E, Hu L, Hall BS, Wilkinson SR. An essential type I nitroreductase from Leishmania major can be used to activate leishmanicidal prodrugs. J Biol Chem 2013; 288:28466-76. [PMID: 23946481 DOI: 10.1074/jbc.m113.494781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitroaromatic prodrugs are used to treat a range of microbial infections with selectivity achieved by specific activation reactions. For trypanosomatid parasites, this is mediated by type I nitroreductases. Here, we demonstrate that the causative agent of leishmaniasis, Leishmania major, expresses an FMN-containing nitroreductase (LmNTR) that metabolizes a wide range of substrates, and based on electron donor and acceptor preferences, it may function as an NADH:quinone oxidoreductase. Using gene deletion approaches, we demonstrate that this activity is essential to L. major promastigotes, the parasite forms found in the insect vector. Intriguingly, LmNTR(+/-) heterozygote promastigote parasites could readily differentiate into infectious metacyclic cells but these were unable to establish infections in cultured mammalian cells and caused delayed pathology in mice. Furthermore, we exploit the LmNTR activity evaluating a library of nitrobenzylphosphoramide mustards using biochemical and phenotypic screens. We identify a subset of compounds that display significant growth inhibitory properties against the intracellular parasite form found in the mammalian hosts. The leishmanicidal activity was shown to be LmNTR-specific as the LmNTR(+/-) heterozygote promastigotes displayed resistance to the most potent mustards. We conclude that LmNTR can be targeted for drug development by exploiting its prodrug activating property or by designing specific inhibitors to block its endogenous function.
Collapse
Affiliation(s)
- Andrew A Voak
- From the Queen Mary Pre-Clinical Drug Discovery Group, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Kurpet MK, Dąbrowska A, Jarosz MM, Kajewska-Kania K, Kuźnik N, Suwiński JW. Coupling of C-nitro-NH-azoles with arylboronic acids. A route to N-aryl-C-nitroazoles. Beilstein J Org Chem 2013; 9:1517-25. [PMID: 23946851 PMCID: PMC3740504 DOI: 10.3762/bjoc.9.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/28/2013] [Indexed: 11/27/2022] Open
Abstract
A method for the synthesis of N-aryl-C-nitroazoles is presented. A coupling reaction between variously substituted arylboronic acids and 3(5)-nitro-1H-pyrazole catalyzed by copper salt has been carried out in methanol in the presence of sodium hydroxide to afford the desired N-aryl-C-nitroazoles in good yields. This synthetic route has also been successfully applied to obtain N-phenyl derivatives of 4-nitropyrazole, 2-nitroimidazole, 4(5)-nitroimidazole and 3-nitro-1,2,4-triazole.
Collapse
Affiliation(s)
- Marta K Kurpet
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Babokhov P, Sanyaolu AO, Oyibo WA, Fagbenro-Beyioku AF, Iriemenam NC. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health 2013; 107:242-252. [PMID: 23916333 PMCID: PMC4001453 DOI: 10.1179/2047773213y.0000000105] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the recent advances in drug research, finding a safe, effective, and easy to use chemotherapy for human African trypanosomiasis (HAT) remains a challenging task. The four current anti-trypanosomiasis drugs have major disadvantages that limit more widespread use of these drugs in the endemic regions of sub-Saharan Africa. Pentamidine and suramin are limited by their effectiveness against the only first stage of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively. In addition, melarsoprol and eflornithine (two second stage drugs) each have disadvantages of their own. The former is toxic and has increasing treatment failures while the latter is expensive, laborious to administer, and lacks efficacy against T. b. rhodesiense. Furthermore, melarsoprol's toxicity and decreasing efficacy are glaring problems and phasing out the drug as a frontline treatment against T. b. gambiense is now possible with the emergence of competent, safe combination chemotherapies such as nifurtimox-eflornithine combination treatment (NECT). The future of eflornithine, on the other hand, is more promising. The drug is useful in the context of combination chemotherapy and potential orally administered analogues. Due to the limits of monotherapies, greater emphasis should be placed on the research and development of combination chemotherapies, based on the successful clinical tests with NECT and its current use as a frontline anti-trypanosomiasis treatment. This review discussed the current and future chemotherapy strategies for the treatment of HAT.
Collapse
|
34
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Kurpet M, Jędrysiak R, Suwiński J. N-Aryl-C-nitroazoles. 1. C-nitro-N-phenylazoles (Review). Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Tweats D, Bourdin Trunz B, Torreele E. Genotoxicity profile of fexinidazole--a drug candidate in clinical development for human African trypanomiasis (sleeping sickness). Mutagenesis 2012; 27:523-32. [PMID: 22539226 DOI: 10.1093/mutage/ges015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 2012.
Collapse
Affiliation(s)
- David Tweats
- Drugs for Neglected Diseases initiative, 15 Chemin Louis-Dunant, Geneva CH-1202, Switzerland.
| | | | | |
Collapse
|
37
|
Faist J, Seebacher W, Saf R, Brun R, Kaiser M, Weis R. New N-methylpiperazinyl derivatives of bicyclic antiprotozoal compounds. Eur J Med Chem 2012; 47:510-9. [DOI: 10.1016/j.ejmech.2011.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/07/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
|