1
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Improvement of anti-prion efficacy with stearoxy conjugation of hydroxypropyl methylcellulose in prion-infected mice. Carbohydr Polym 2024; 337:122163. [PMID: 38710557 DOI: 10.1016/j.carbpol.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Lisnyak VG, Tan Y, Ramirez A, Wisniewski SR, Sarjeant AA. Development of a Crystallization-Induced Diastereomer Transformation of Oxime Isomers for the Asymmetric Synthesis of (1 S,6 R)-3,9-Diazabicyclo[4.2.1]nonane. J Org Chem 2023; 88:12493-12501. [PMID: 37610241 DOI: 10.1021/acs.joc.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Herein we report a practical crystallization-induced diastereomer transformation (CIDT) of oxime isomers for the scalable asymmetric synthesis of the bicyclic diamine (1S,6R)-3,9-diazabicyclo[4.2.1]nonane derivative that serves as a valuable building block in medicinal chemistry. The developed approach utilizes (S)-phenylethylamine as a chiral auxiliary handle for CIDT, and the starting nortropinone derivative is prepared in one step from commercially available materials. The resulting E-oxime is subjected to a stereospecific Beckmann rearrangement, followed by reduction of the resulting lactam with LiAlH4 to afford the monoprotected (1S,6R)-3,9-diazabicyclo[4.2.1]nonane derivative. The development of the CIDT and understanding of the mechanistic implications leading to the high selectivity are reported.
Collapse
Affiliation(s)
- Vladislav G Lisnyak
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Amy A Sarjeant
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
3
|
Sarangi N, Prabhakaran A, Keyes TE. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6411-6424. [PMID: 35561255 PMCID: PMC9134496 DOI: 10.1021/acs.langmuir.2c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Indexed: 05/19/2023]
Abstract
Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
4
|
Transcriptomic analysis reveals antibacterial mechanism of flavonoids from Sedum aizoon L. against Pseudomonas fragi. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Mondal PK, Tiwari SK, Singh P, Pandey G. Direct Arylation of Distal and Proximal C(sp 3)-H Bonds of t-Amines with Aryl Diazonium Tetrafluoroborates via Photoredox Catalysis. J Org Chem 2021; 86:17184-17196. [PMID: 34786938 DOI: 10.1021/acs.joc.1c02286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A visible light-mediated arylation protocol for t-amines has been reported through the coupling of γ- and α-amino alkyl radicals with different aryl diazonium salts using Ru(bpy)3Cl2·6H2O as a photocatalyst. Structurally different 9-aryl-9,10-dihydroacridine, 1-aryl tetrahydroisoquinoline, hexahydropyrrolo[2,1-a]isoquinoline, and hexahydro-2H-pyrido[2,1-a]isoquinoline frameworks with different substitution patterns have been synthesized in good yield using this methodology.
Collapse
Affiliation(s)
- Pradip Kumar Mondal
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Sandip Kumar Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Pushpendra Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Ganesh Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
6
|
Giancola JB, Bonifazi A, Cao J, Ku T, Haraczy AJ, Lam J, Rais R, Coggiano MA, Tanda G, Newman AH. Structure-activity relationships for a series of (Bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability. Eur J Med Chem 2020; 208:112674. [PMID: 32947229 PMCID: PMC7680422 DOI: 10.1016/j.ejmech.2020.112674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/13/2023]
Abstract
Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions as to what mechanism(s) of action should be targeted for developing pharmacotherapies. Atypical dopamine transporter (DAT) inhibitors, based on (±)modafinil, have shown therapeutic potential in preclinical models of psychostimulant abuse. However, metabolic instability among other limitations to piperazine analogues 1-3 have impeded further development. Herein, bioisosteric substitutions of the piperazine ring were explored with a series of aminopiperidines (A) and piperidine amines (B) wherein compounds with either a terminal tertiary amine or amide were synthesized. Several lead compounds showed high to moderate DAT affinities and metabolic stability in rat liver microsomes. Aminopiperidines 7 (DAT Ki = 50.6 nM), 21b (DAT Ki = 77.2 nM) and 33 (DAT Ki = 30.0 nM) produced only minimal stimulation of ambulatory activity in mice, compared to cocaine, suggesting an atypical DAT inhibitor profile.
Collapse
Affiliation(s)
- JoLynn B Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Alexandra J Haraczy
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States; Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States; Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, United States
| | - Mark A Coggiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Gianluigi Tanda
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| |
Collapse
|
7
|
Mustazza C, Sbriccoli M, Minosi P, Raggi C. Small Molecules with Anti-Prion Activity. Curr Med Chem 2020; 27:5446-5479. [PMID: 31560283 DOI: 10.2174/0929867326666190927121744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a β-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.
Collapse
Affiliation(s)
- Carlo Mustazza
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Neurosciences, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Raggi
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Ong WY, Go ML, Wang DY, Cheah IKM, Halliwell B. Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications. Mol Neurobiol 2020; 58:106-117. [PMID: 32897518 PMCID: PMC7477069 DOI: 10.1007/s12035-020-02093-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)—as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore.
| | - Mei-Lin Go
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Irwin Kee-Mun Cheah
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Barry Halliwell
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
9
|
Cao Z, Zhu Y, Li X, He Y, Zhang J, Xu L, Wei Y. tert-Butyl Bromide-Promoted Intramolecular Cyclization of 2-Arylamino Phenyl Ketones and Its Combination with Cu-Catalyzed C-N Coupling: Synthesis of Acridines at Room Temperature. J Org Chem 2020; 85:10167-10174. [PMID: 32568540 DOI: 10.1021/acs.joc.0c00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a facile intramolecular cyclization of 2-arylamino phenyl ketones is established to supersede the traditional high-temperature, strongly acidic conditions and achieve 9-substituted acridines, by virtue of the combination of 2,2,2-trifluoroethanol and tert-butyl bromide. This protocol can be merged well with the preceding Cu-catalyzed intermolecular Chan-Evans-Lam cross-coupling reactions, therefore enabling pot-economic modular synthesis of 9-substituted acridines from readily available 2-amino phenyl ketones and aryl boronic acids at room temperature.
Collapse
Affiliation(s)
- Zifeng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Xiaoman Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yang He
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Jinli Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| |
Collapse
|
10
|
Liu M, Feng M, Yang K, Cao Y, Zhang J, Xu J, Hernández SH, Wei X, Fan M. Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against Methicillin-resistant Staphylococcus aureus isolated from pork. Food Chem 2020; 309:125692. [DOI: 10.1016/j.foodchem.2019.125692] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|
11
|
Ellett LJ, Revill ZT, Koo YQ, Lawson VA. Strain variation in treatment and prevention of human prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:121-145. [PMID: 32958230 DOI: 10.1016/bs.pmbts.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.
Collapse
Affiliation(s)
- Laura J Ellett
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe T Revill
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Qian Koo
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria A Lawson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Electrochemical Oxidative Aromatizationof 9-Substituted 9,10-Dihydroacridines: Cleavage of C–H vs C–X Bond. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02562-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Nishizawa K, Teruya K, Oguma A, Sakasegawa Y, Schätzl H, Gilch S, Doh-Ura K. Preparation and Characterization of Cellulose Ether Liposomes for the Inhibition of Prion Formation in Prion-Infected Cells. J Pharm Sci 2019; 108:2814-2820. [PMID: 30914271 DOI: 10.1016/j.xphs.2019.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023]
Abstract
Prion accumulation in the brain and lymphoreticular system causes fatal neurodegenerative diseases. Our previous study revealed that cellulose ethers (CE) have anti-prion activities in vivo and in prion-infected cells when administered at high doses. This study aims to improve the bioavailability of a representative CE using a liposomal formulation and characterized CE-loaded liposomes in cultured cells. The liposomal formulation reduced the EC50 dose of CE by <1/200-fold in prion-infected cells. Compared to empty liposomes, CE-loaded liposomes were taken up much more highly by prion-infected cells and less by macrophage-like cells. Phosphatidylserine modification reduced the uptake of CE-loaded liposomes in prion-infected cells and did not change the anti-prion activity, whereas increased the uptake in macrophage-like cells. Polyethylene glycol modification reduced the uptake of CE-loaded liposomes in both types of cells and reduced the anti-prion activity in prion-infected cells. These results suggest that a liposomal formulation of CE is more practical than unformulated CE and showed that the CE-loaded liposome uptake levels in prion-infected cells were not associated with anti-prion activity. Although further improvement of the stealth function against phagocytic cells is needed, the liposomal formulation is useful to improve CE efficacy and elucidate the mechanism of CE action.
Collapse
Affiliation(s)
- Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann Schätzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
14
|
Teruya K, Nishizawa K, Oguma A, Sakasegawa Y, Kitamoto T, Doh-Ura K. Intermolecular crosslinking of abnormal prion protein is efficiently induced by a primuline-sensitized photoreaction. Biochim Biophys Acta Gen Subj 2018; 1863:384-394. [PMID: 30447252 DOI: 10.1016/j.bbagen.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022]
Abstract
In prion diseases, infectious pathogenic particles that are composed of abnormal prion proteins (PrPSc) accumulate in the brain. PrPSc is biochemically characterized by its protease-resistance core (PrPres), but its structural features have not been fully elucidated. Here, we report that primuline, a fluorescent dye with photosensitization activity, dramatically enhances UV-irradiation-induced SDS-resistant PrPSc/res oligomer formation that can be detected by immunoblot analysis of prion-infected materials. This oligomer formation occurs specifically with PrPSc/res but not with normal prion protein, and it was demonstrated using purified PrPSc/res as well as unpurified materials. The oligomer formation proceeded in both primuline-dose- and UV irradiation time-dependent manners. Treatment with urea or formic acid did not break oligomers into monomers. Neither did the presence of aromatic amino acids modify oligomer formation. Analysis with a panel of anti-prion protein antibodies showed that the antibodies against the N-terminal region of PrPres were less reactive in the dimer than the monomer. These findings suggest that the primuline-sensitized photoreaction enhances intermolecular crosslinking of PrPSc/res molecules at a hydrophobic area of the N-terminal region of PrPres. In the screening of other compounds, photoreactive compounds such as luciferin exhibited a similar but lower activity with respect to oligomer formation than primuline. The enhanced photoreaction with these compounds will be useful for evaluating the structural features of PrPSc/res, especially the interactions between PrPSc/res molecules.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
15
|
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.
Collapse
Affiliation(s)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.
| |
Collapse
|
16
|
Patel BA, Abel B, Barbuti AM, Velagapudi UK, Chen ZS, Ambudkar SV, Talele TT. Comprehensive Synthesis of Amino Acid-Derived Thiazole Peptidomimetic Analogues to Understand the Enigmatic Drug/Substrate-Binding Site of P-Glycoprotein. J Med Chem 2018; 61:834-864. [PMID: 29251928 DOI: 10.1021/acs.jmedchem.7b01340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel set of 64 analogues based on our lead compound 1 was designed and synthesized with an initial objective of understanding the structural requirements of ligands binding to a highly perplexing substrate-binding site of P-glycoprotein (P-gp) and their effect on modulating the ATPase function of the efflux pump. Compound 1, a stimulator of P-gp ATPase activity, was transformed to ATPase inhibitory compounds 39, 53, and 109. The ATPase inhibition by these compounds was predominantly contributed by the presence of a cyclohexyl group in lieu of the 2-aminobenzophenone moiety of 1. The 4,4-difluorocyclohexyl analogues, 53 and 109, inhibited the photolabeling by [125I]-IAAP, with IC50 values of 0.1 and 0.76 μM, respectively. Selected compounds were shown to reverse paclitaxel resistance in HEK293 cells overexpressing P-gp and were selective toward P-gp over CYP3A4. Induced-fit docking highlighted a plausible binding pattern of inhibitory compounds in the putative-binding pocket of P-gp. The current study underscores the stringent requirement by P-gp to bind to chemically similar molecules.
Collapse
Affiliation(s)
- Bhargav A Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Anna Maria Barbuti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| |
Collapse
|
17
|
Binding affinity toward human prion protein of some anti-prion compounds — Assessment based on QSAR modeling, molecular docking and non-parametric ranking. Eur J Pharm Sci 2018; 111:215-225. [DOI: 10.1016/j.ejps.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
|
18
|
Mu WL, Wang M, Li HJ, Huang DM, Zhang YY, Li CY, Liu Y, Wu YC. Palladium-Catalyzed Regioselective Oxidative Annulation of Cyclohexanones and 2-Aminophenyl Ketones Using Molecular Oxygen as the Sole Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wan-Lu Mu
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Meirong Wang
- School of Materials Science and Engineering; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Hui-Jing Li
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Deng-Ming Huang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Yi-Yun Zhang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Chao-Yi Li
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Ying Liu
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
| | - Yan-Chao Wu
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai 264209 People's Republic of China
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
19
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|
20
|
Abstract
Although an effective therapy for prion disease has not yet been established, many advances have been made toward understanding its pathogenesis, which has facilitated research into therapeutics for the disease. Several compounds, including flupirtine, quinacrine, pentosan polysulfate, and doxycycline, have recently been used on a trial basis for patients with prion disease. Concomitantly, several lead antiprion compounds, including compound B (compB), IND series, and anle138b, have been discovered. However, clinical trials are still far from yielding significantly beneficial results, and the findings of lead compound studies in animals have highlighted new challenges. These efforts have highlighted areas that need improvement or further exploration to achieve more effective therapies. In this work, we review recent advances in prion-related therapeutic research and discuss basic scientific issues to be resolved for meaningful medical intervention of prion disease.
Collapse
|
21
|
Kondru N, Manne S, Greenlee J, West Greenlee H, Anantharam V, Halbur P, Kanthasamy A, Kanthasamy A. Integrated Organotypic Slice Cultures and RT-QuIC (OSCAR) Assay: Implications for Translational Discovery in Protein Misfolding Diseases. Sci Rep 2017; 7:43155. [PMID: 28233859 PMCID: PMC5324099 DOI: 10.1038/srep43155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/19/2017] [Indexed: 01/13/2023] Open
Abstract
Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders. Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attempts to develop anti-prion therapeutics have been impeded by the lack of screening models that faithfully replicate prion diseases and the lack of rapid, sensitive biological screening systems. Therefore, a sensitive model encompassing prion replication and neurotoxicity would be indispensable to the pursuit of intervention strategies. We present an ultra-sensitive screening system coupled to an ex vivo prion organotypic slice culture model to rapidly advance rationale-based high-throughput therapeutic strategies. This hybrid Organotypic Slice Culture Assay coupled with RT-QuIC (OSCAR) permits sensitive, specific and quantitative detection of prions from an infectious slice culture model on a reduced time scale. We demonstrate that the anti-prion activity of test compounds can be readily resolved based on the power and kinetics of seeding activity in the OSCAR screening platform and that the prions generated in slice cultures are biologically active. Collectively, our results imply that OSCAR is a robust model of prion diseases that offers a promising platform for understanding prion proteinopathies and advancing anti-prion therapeutics.
Collapse
Affiliation(s)
- Naveen Kondru
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sireesha Manne
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Justin Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50011, USA
| | - Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Patrick Halbur
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
|
23
|
Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli. Curr Genet 2016; 63:709-722. [PMID: 28013396 DOI: 10.1007/s00294-016-0673-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 μg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.
Collapse
|
24
|
Shchepochkin AV, Chupakhin ON, Charushin VN, Steglenko DV, Minkin VI, Rusinov GL, Matern AI. C–H functionalization of azines. Anodic dehydroaromatization of 9-(hetero)aryl-9,10-dihydroacridines. RSC Adv 2016. [DOI: 10.1039/c6ra17783b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and efficient electrochemical method for the oxidative conversion of dihydroacridines into the corresponding 9-(hetero)aryl-N-methylacridinium salts has been developed. Current–voltage characteristics of dihydroacridines are given.
Collapse
Affiliation(s)
- A. V. Shchepochkin
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
- Ekaterinburg
- Russia
- Ural Federal University
| | - O. N. Chupakhin
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
- Ekaterinburg
- Russia
- Ural Federal University
| | - V. N. Charushin
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
- Ekaterinburg
- Russia
- Ural Federal University
| | - D. V. Steglenko
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov on Don
- Russia
| | - V. I. Minkin
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov on Don
- Russia
| | - G. L. Rusinov
- Institute of Organic Synthesis
- Ural Branch of the Russian Academy of Sciences
- Ekaterinburg
- Russia
- Ural Federal University
| | | |
Collapse
|
25
|
Zlatic CO, Mao Y, Ryan TM, Mok YF, Roberts BR, Howlett GJ, Griffin MDW. Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry 2015; 54:3831-8. [DOI: 10.1021/acs.biochem.5b00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Courtney O. Zlatic
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Mao
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy M. Ryan
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Hernán-Gómez A, Herd E, Uzelac M, Cadenbach T, Kennedy AR, Borilovic I, Aromı́ G, Hevia E. Zincate-Mediated Arylation Reactions of Acridine: Pre- and Postarylation Structural Insights. Organometallics 2015. [DOI: 10.1021/om501251q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alberto Hernán-Gómez
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Emma Herd
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Marina Uzelac
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Thomas Cadenbach
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Alan R. Kennedy
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Ivana Borilovic
- Departament
de Quı́mica Inorgànica and Institut de Nanociència
i Nanotecnologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Guillem Aromı́
- Departament
de Quı́mica Inorgànica and Institut de Nanociència
i Nanotecnologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eva Hevia
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| |
Collapse
|
27
|
Liu T, Huang B, Tian Y, Liang X, Liu H, Liu H, Zhan P, De Clercq E, Pannecouque C, Liu X. Design, Synthesis, and Biological Evaluation of Novel 4-Aminopiperidinyl-linked 3,5-Disubstituted-1,2,6-thiadiazine-1,1-dione Derivatives as HIV-1 NNRTIs. Chem Biol Drug Des 2014; 86:107-13. [PMID: 25359703 DOI: 10.1111/cbdd.12468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/31/2014] [Accepted: 10/15/2014] [Indexed: 01/03/2023]
Abstract
Based on the hybridization of the privileged fragments in DABO and DAPY-typed HIV-1 NNRTIs, a novel series of 4-aminopiperidinyl-linked 3,5-disubstituted-1,2,6-thiadiazine-1,1-dione derivatives were designed, synthesized, and evaluated for their in vitro anti-HIV activities in MT-4 cells. Most of the target compounds showed weak inhibitory activity against WT HIV-1. In order to confirm the mode of action of the target compounds, representative compounds Ba8 and Bb8 were selected to perform the HIV-1 RT inhibitory assay. In this assay, Ba8 and Bb8 displayed good activity with IC50 values of 3.15 and 1.52 μm, respectively. Additionally, preliminary structure-activity relationships (SARs) analysis and molecular docking studies of newly synthesized compounds are also discussed.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Xin Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Hong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Huiqing Liu
- Institute of Pharmacology, School of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, China
| |
Collapse
|
28
|
Quinacrine promotes replication and conformational mutation of chronic wasting disease prions. Proc Natl Acad Sci U S A 2014; 111:6028-33. [PMID: 24711410 DOI: 10.1073/pnas.1322377111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.
Collapse
|
29
|
Nguyen T, Yang T, Go ML. Functionalized acridin-9-yl phenylamines protected neuronal HT22 cells from glutamate-induced cell death by reducing intracellular levels of free radical species. Bioorg Med Chem Lett 2014; 24:1830-8. [PMID: 24602904 DOI: 10.1016/j.bmcl.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/01/2014] [Accepted: 02/05/2014] [Indexed: 01/02/2023]
Abstract
The in vitro neuronal cell death model based on the HT22 mouse hippocampal cell model is a convenient means of identifying compounds that protect against oxidative glutamate toxicity which plays a role in the development of certain neurodegenerative diseases. Functionalized acridin-9-yl-phenylamines were found to protect HT22 cells from glutamate challenge at submicromolar concentrations. The Aryl(1)-NH-Aryl(2) scaffold that is embedded in these compounds was the minimal pharmacophore for activity. Mechanistically, protection against the endogenous oxidative stress generated by glutamate did not involve up-regulation of glutathione levels but attenuation of the late stage increases in mitochondrial ROS and intracellular calcium levels. The NH residue in the pharmacophore played a crucial role in this regard as seen from the loss of neuroprotection when it was structurally modified or replaced. That the same NH was essential for radical scavenging in cell-free and cell-based systems pointed to an antioxidant basis for the neuroprotective activities of these compounds.
Collapse
Affiliation(s)
- Thuy Nguyen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800E Leigh Street, Richmond, VA 23298-0540, USA
| | - Tianming Yang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Mei-Lin Go
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Republic of Singapore.
| |
Collapse
|
30
|
Stable σH-adducts in the reactions of the acridinium cation with heterocyclic N-nucleophiles. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0105-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Staderini M, Cabezas N, Bolognesi ML, Menéndez JC. Solvent- and chromatography-free amination of π-deficient nitrogen heterocycles under microwave irradiation. A fast, efficient and green route to 9-aminoacridines, 4-aminoquinolines and 4-aminoquinazolines and its application to the synthesis of the drugs amsacrine and bistacrine. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Mays CE, Joy S, Li L, Yu L, Genovesi S, West FG, Westaway D. Prion inhibition with multivalent PrPSc binding compounds. Biomaterials 2012; 33:6808-22. [PMID: 22748770 DOI: 10.1016/j.biomaterials.2012.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
Abstract
Quinacrine and related heterocyclic compounds have antiprion activity. Since the infectious pathogen of prion diseases is composed of multimeric PrP(Sc) assemblies, we hypothesized that this antiprion property could be enhanced by attaching multiple quinacrine-derived chloroquinoline or acridine moieties to a scaffold. In addition to exploring Congo red dye and tetraphenylporphyrin tetracarboxylic acid scaffolds, which already possess intrinsic prion-binding ability; trimesic acid was used in this role. In practice, Congo red itself could not be modified with chloroquinoline or acridine units, and a modified dicarboxyl analog was also unreactive. The latter also lacked antiprion activity in infected cultured cells. While addition of chloroquinoline to a tetraphenylporphyrin tetracarboxylic acid scaffold resulted in some reduction of PrP(Sc), moieties attached to a trimesic acid scaffold exhibited sub-micromolar IC(50)'s as well as a toxicity profile superior to quinacrine. Antiprion activity of these molecules was influenced by the length, polarity, and rigidity associated with the variable linear or cyclic polyamine tethers, and in some instances was modulated by host-cell and/or strain type. Unexpectedly, several compounds in our series increased PrP(Sc) levels. Overall, inhibitory and enhancing properties of these multivalent compounds offer new avenues for structure-based investigation of prion biology.
Collapse
Affiliation(s)
- Charles E Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Hyodo I, Tobisu M, Chatani N. Regioselective C–H bond functionalizations of acridines using organozinc reagents. Chem Commun (Camb) 2012; 48:308-10. [DOI: 10.1039/c1cc16582h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|