1
|
Killi N, Rumpke K, Kuckling D. Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst. Gels 2025; 11:278. [PMID: 40277714 PMCID: PMC12026977 DOI: 10.3390/gels11040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis.
Collapse
Affiliation(s)
| | | | - Dirk Kuckling
- Department of Chemistry, Faculty of Science, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (N.K.); (K.R.)
| |
Collapse
|
2
|
Mangana M, Lambrinidis G, Kostakis IK, Kalpaktsi I, Sagnou M, Nicolaou C, Mikros E, Chatzipanagiotou S, Ioannidis A. Towards New Scaffolds for Antimicrobial Activity-In Silico/In Vitro Workflow Introducing New Lead Compounds. Antibiotics (Basel) 2024; 14:11. [PMID: 39858297 PMCID: PMC11763081 DOI: 10.3390/antibiotics14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The rapid evolution of bacterial resistance and the high cost of drug development have attributed greatly to the dearth in drug design. Computational approaches and natural product exploitation offer potential solutions to accelerate drug discovery. Methods: In this research article, we aimed to identify novel antibacterial hits. For the in silico studies, molecular scaffolds from the in-house chemical library of the Department of Pharmacy of Athens (Pharmalab) and the National Cancer Institute (NCI) were screened and selected for further experimental procedures. Compounds from both libraries that were not previously screened for their antimicrobial properties were tested in vitro against Gram-positive and Gram-negative bacterial strains. The microdilution method was used to determine the minimum inhibitory concentrations (MICs). Results: In silico screening identified twenty promising molecules from the NCI and seven from the Pharmalab databases. The unexplored compounds for their antibacterial activity can be characterized as weak strain-specific antimicrobials. The NSC 610491 and NSC 610493 were active against Staphylococcus aureus (MIC: 25 and 12.5 µg/mL, respectively) and methicillin-resistant S. aureus (MRSA) (MIC: 50 and 12.5 µg/mL, respectively). Six out of seven hydroxytyrosol (HTy) compounds were moderately active (MIC: 25-50 µg/mL) against S. aureus, MRSA and Enterococcus faecalis. For the Gram-negative bacteria, no activity was detected (≥100 µg/mL). Conclusions: The tested scaffolds could be considered as promising candidates for novel antimicrobials with improvements. Further experimentation is required to assess mechanisms of action and evaluate the efficacy and safety.
Collapse
Affiliation(s)
- Maria Mangana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, 11528 Athens, Greece; (M.M.); (C.N.); (S.C.)
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.K.K.); (I.K.); (E.M.)
| | - Ioannis K. Kostakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.K.K.); (I.K.); (E.M.)
| | - Ioanna Kalpaktsi
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.K.K.); (I.K.); (E.M.)
| | - Marina Sagnou
- Institute of Biosciences & Application, NCSR “Demokritos”, 15310 Athens, Greece;
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece
| | - Chrysoula Nicolaou
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, 11528 Athens, Greece; (M.M.); (C.N.); (S.C.)
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.K.K.); (I.K.); (E.M.)
| | - Stylianos Chatzipanagiotou
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, 11528 Athens, Greece; (M.M.); (C.N.); (S.C.)
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripolis, Greece
| |
Collapse
|
3
|
Nair D, Tiwari A, Laha B, Namboothiri INN. Diastereoselective synthesis of highly substituted cyclohexanones and tetrahydrochromene-4-ones via conjugate addition of curcumins to arylidenemalonates. Beilstein J Org Chem 2024; 20:2016-2023. [PMID: 39161707 PMCID: PMC11331540 DOI: 10.3762/bjoc.20.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
A cascade inter-intramolecular double Michael strategy for the synthesis of highly functionalized cyclohexanones from curcumins and arylidenemalonates is reported. This strategy works in the presence of aqueous KOH using TBAB as a suitable phase transfer catalyst at room temperature. The functionalized cyclohexanones are formed as major products in moderate to excellent yields with complete diastereoselectivity in most cases. A triple Michael adduct, tetrahydrochromen-4-one, is also formed as a side product in a few cases with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Deepa Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Abhishek Tiwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Banamali Laha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | | |
Collapse
|
4
|
Gogoi NG, Rahman A, Dutta P, Saikia J, Baruah A, Handique JG. Design, Synthesis, Biological Evaluation and in Silico Studies of Curcumin Pyrrole Conjugates. Chem Biodivers 2024; 21:e202301605. [PMID: 38488861 DOI: 10.1002/cbdv.202301605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.
Collapse
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Manohari Devi Kanoi Girls College, Dibrugarh, 786001, Assam, India
| | - Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Pankaj Dutta
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | | |
Collapse
|
5
|
Yan Y, Bao A, Wang Y, Xie X, Wang D, Deng Z, Wang X, Cheng W, Li W, Zhang X, Tang X. Design, Synthesis, Antifungal Activity, and Molecular Docking Studies of Novel Chiral Isoxazoline-Benzofuran-Sulfonamide Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619015 DOI: 10.1021/acs.jafc.3c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Succinate dehydrogenase (SDH) is one of the most important molecular targets for the development of novel fungicides. With the emerging problem of resistance in plant fungal pathogens, novel compounds with high fungicidal activity need to be developed, but the study of chiral pesticides for the inhibition of highly destructive plant pathogens has been rarely reported in recent years. Therefore, a series of novel chiral isoxazoline-benzofuran-sulfonamide derivatives were designed to investigate potential novel antifungal molecules. The chiral target compound 3a was cultured as a single crystal and confirmed using X-ray diffraction. All the target compounds were tested for antifungal activity, and compounds 3c, 3i, 3s, and 3r were found to have significant antifungal effects against S. sclerotiorum with EC50 values of 0.42 mg/L, 0.33 mg/L, 0.37 mg/L, and 0.40 mg/L, respectively, which were superior to the commercial fungicide fluopyram (EC50 = 0.47 mg/L). The IC50 value of compound 3i against the SDH of S. sclerotiorum was 0.63 mg/mL, which was further demonstrated by enzyme activity assays. Scanning electron microscopy showed that 3i had a significant inhibitory effect on S. sclerotiorum. In addition, the fluorescence quenching analysis assay indicated that compound 3i had a similar effect with the positive control fluopyram. Molecular docking exhibited that target compounds with chiral configuration had better affinity than racemic configuration, and 3i possessed stronger action than fluopyram, which was in keeping with the in vitro test results. These results would provide a basis and reference for the development of novel chiral fungicides.
Collapse
Affiliation(s)
- Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Ailing Bao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Yunfan Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Xiansong Xie
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Deyuan Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Ziquan Deng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xuesong Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Wei Cheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Weiyi Li
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xiaomei Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
6
|
Laha B, Tiwari AR, Gravel E, Doris E, Namboothiri INN. The Michael donor-acceptor reactivity of curcumins in the synthesis of diverse multi-functional scaffolds. Org Biomol Chem 2024; 22:1346-1359. [PMID: 38268394 DOI: 10.1039/d3ob01734f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Curcumin is a key constituent of turmeric with a variety of biological activities. From a chemical point of view, curcumin contains different functional groups that can undergo multiple transformations such as Michael addition, cycloaddition, click reaction, polymerisation, etc. Among these, Michael-type reactions under benign conditions constitute a captivating domain of curcumin's reactivity. To the best of our knowledge, no review focusing on the Michael donor-acceptor reactivity of curcumins has been published to date. Herein, we have compiled the chemistry of curcumins with respect to their chemical synthesis, biosynthesis, and involvement in chemical transformations, especially in Michael additions with advances in mechanistic aspects and understanding.
Collapse
Affiliation(s)
- Banamali Laha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Abhishek R Tiwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Irishi N N Namboothiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Gandha Gogoi N, Dutta P, Saikia J, Handique JG. Antioxidant, Antibacterial, and BSA Binding Properties of Curcumin Caffeate Capped Silver Nanoparticles Prepared by Greener Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | - Pankaj Dutta
- Department of Physics Dibrugarh University 786004 Dibrugarh Assam India
| | - Jiban Saikia
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | | |
Collapse
|
8
|
Kumar M, Kumar V, Singh V, Thakral S. Synthesis, in silico studies and biological screening of (E)-2-(3-(substitutedstyryl)-5-(substitutedphenyl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole derivatives as an anti-oxidant, anti-inflammatory and antimicrobial agents. BMC Chem 2022; 16:103. [PMID: 36434662 PMCID: PMC9694607 DOI: 10.1186/s13065-022-00901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
A new series of (E)-2-(3-(substitutedstyryl)-5-(substitutedphenyl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole derivatives was synthesized and the chemical structures of synthesized compounds were deduced by IR and NMR spectral tools. These compounds were synthesized via aldol condensation reaction of substituted benzaldehydes and acetone in alkaline ethanolic solution and their in vitro anti-oxidant, anti-inflammatory and antimicrobial activities were investigated. All the synthesized compounds displayed anti-oxidant potential with IC50 values ranging from 0.13 to 8.43 µmol/ml. The compound Z13 exhibited potent anti-inflammatory activity with IC50 value of 0.03 µmol/ml compared with the standard ibuprofen, which showed IC50 value of 0.11 µmol/ml. On the other hand, most of the compounds had a certain antibacterial potential particularly against P. aeruginosa and among these derivatives, compound Z2 exhibited the highest potential against P. aeruginosa with MIC value of 0.0069 µmol/ml. The analysis of docking results demonstrated the binding affinity and hydrogen bond, electrostatic and hydrophobic interactions of all the synthesized compounds with their respective targets. In silico ADMET studies were carried out for the synthesized compounds and most of the compounds exhibited good ADMET profile.
Collapse
Affiliation(s)
- Manoj Kumar
- grid.411892.70000 0004 0500 4297Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Vijay Kumar
- grid.411892.70000 0004 0500 4297Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Vikramjeet Singh
- grid.411892.70000 0004 0500 4297Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Samridhi Thakral
- grid.411892.70000 0004 0500 4297Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| |
Collapse
|
9
|
Palabindela R, Guda R, Ramesh G, Bodapati R, Nukala SK, Myadaraveni P, Ravi G, Kasula M. Curcumin based Pyrazole-thiazole Hybrids as Antiproliferative Agents: Synthesis, Pharmacokinetic, Photophysical Properties, and Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Ahsan MJ, Choudhary K, Ali A, Ali A, Azam F, Almalki AH, Santali EY, Bakht MA, Tahir A, Salahuddin. Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues. PLANTS (BASEL, SWITZERLAND) 2022; 11:2835. [PMID: 36365289 PMCID: PMC9655326 DOI: 10.3390/plants11212835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023]
Abstract
With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Kavita Choudhary
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Abu Tahir
- Department of Pharmacology, Hakikullah Choudhary College of Pharmacy, Ghari Ghat 271 312, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, Uttar Pradesh, India
| |
Collapse
|
11
|
Sethiya A, Kalal P, Teli P, Sahiba N, Soni J, Joshi D, Agarwal S. Highly efficient and diversity-oriented solvent-free synthesis of biologically active fused heterocycles using glycerol-based sulfonic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Bahmani A, Najafi Z, Chehardoli G. Curcumin-Derived Heterocycles as Anticancer Agents. A Systematic Review. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Asrin Bahmani
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. Ultrasound-Mediated Green Synthesis of Novel Functionalized Benzothiazole[3,2- a]Pyrimidine Derivatives through a Multicomponent Reaction. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1867204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
14
|
Movaheditabar P, Javaherian M, Nobakht V. Synthesis and catalytic application of a curcumin‐based bio‐MOF in one‐pot preparation of tetrahydroquinazolinone derivatives
via
Biginelli reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parviz Movaheditabar
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Mohammad Javaherian
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
15
|
Fu W, Hu X, Yuan Q, Sun X, Xu Z, Zhang Y, Cheng J, Ye Y, Li Z, Shao X. Azo-incorporating Increases Inhibitory Activity of Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13448-13459. [PMID: 34748325 DOI: 10.1021/acs.jafc.1c05551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diversity of pesticide discovery provided a solution to resistance. Here, we presented a strategy of azo-incorporating to promote the diverse developments of fungicide. A series of novel fungicides were synthesized by incorporating azobenzene derivatives into fluxapyroxad. Much better in vitro fungicidal activity increases for compound 9d were observed compared to the positive control, fluxapyroxad against Botrytis cinerea and Rhizoctonia solani. Compound 9d (IC50 = 0.03 μM) also had a great enzyme-inhibiting activity increase toward succinate dehydrogenase in comparison with fluxapyroxad (IC50 = 4.40 μM). A comparatively equivalent biological activity was observed between compounds 8a and 9d. SEM analysis helped us to observe clearly the morphology of the fungi before and after active ingredient delivery. Our results of molecular docking analysis, fluorescence quenching analysis, and enzymatic assays demonstrated that compound 8a and 9d act on SDH. An increase in inhibitory activity could be occurring after incorporation of azobenzene, which provided a new strategy for molecular design in pesticide discovery.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Hu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Khajeh Dangolani S, Panahi F, Khalafi-Nezhad A. Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles. Mol Divers 2021; 25:2123-2135. [PMID: 32419085 DOI: 10.1007/s11030-020-10104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
A multicomponent reaction containing curcumin, aldehydes, malononitrile and amine was developed for the one-pot synthesis of a novel library of 4H-pyran and 1,4-dihyropyridin heterocycles incorporating curcumin moiety. The products were obtained in the presence of p-toluenesulfonic acid as catalyst in ethanol as solvent in good to excellent yields.
Collapse
Affiliation(s)
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| |
Collapse
|
17
|
Rodrigues FC, Kumar NVA, Hari G, Pai KSR, Thakur G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. CHEMICAL PAPERS 2021; 75:5995-6008. [DOI: 10.1007/s11696-021-01775-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
AbstractCurcumin, a potent phytochemical derived from the spice element turmeric, has been identified as a herbal remedy decades ago and has displayed promise in the field of medicinal chemistry. However, multiple traits associated with curcumin, such as poor bioavailability and instability, limit its effectiveness to be accepted as a lead drug-like entity. Different reactive sites in its chemical structure have been identified to incorporate modifications as attempts to improving its efficacy. The diketo group present in the center of the structural scaffold has been touted as the group responsible for the instability of curcumin, and substituting it with a heterocyclic ring contributes to improved stability. In this study, four heterocyclic curcumin analogues, representing some broad groups of heterocyclic curcuminoids (isoxazole-, pyrazole-, N-phenyl pyrazole- and N-amido-pyrazole-based), have been synthesized by a simple one-pot synthesis and have been characterized by FTIR, 1H-NMR, 13C-NMR, DSC and LC–MS. To predict its potential anticancer efficacy, the compounds have been analyzed by computational studies via molecular docking for their regulatory role against three key proteins, namely GSK-3β—of which abnormal regulation and expression is associated with cancer; Bcl-2—an apoptosis regulator; and PR which is a key nuclear receptor involved in breast cancer development. One of the compounds, isoxazole-curcumin, has consistently indicated a better docking score than the other tested compounds as well as curcumin. Apart from docking, the compounds have also been profiled for their ADME properties as well as free energy binding calculations. Further, the in vitro cytotoxic evaluation of the analogues was carried out by SRB assay in breast cancer cell line (MCF7), out of which isoxazole-curcumin (IC50–3.97 µM) has displayed a sevenfold superior activity than curcumin (IC50–21.89 µM). In the collation of results, it can be suggested that isoxazole-curcumin behaves as a potential lead owing to its ability to be involved in a regulatory role with multiple significant cancer proteins and hence deserves further investigations in the development of small molecule-based anti-breast cancer agents.
Graphic abstract
Collapse
|
18
|
Mathavan S, Yamajala RBRD. Elemental Sulfur‐Promoted Tandem One‐Pot Synthesis of Diverse 4
H
‐Pyrimido[2,1‐
b
]benzothiazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sivagami Mathavan
- Department of Chemistry School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - Rajesh B. R. D. Yamajala
- Department of Chemistry School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
19
|
Molecular Engineering of Curcumin, an Active Constituent of Curcuma longa L. (Turmeric) of the Family Zingiberaceae with Improved Antiproliferative Activity. PLANTS 2021; 10:plants10081559. [PMID: 34451604 PMCID: PMC8398451 DOI: 10.3390/plants10081559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
Cancer is the world’s second leading cause of death, accounting for nearly 10 million deaths and 19.3 million new cases in 2020. Curcumin analogs are gaining popularity as anticancer agents currently. We reported herein the isolation, molecular engineering, molecular docking, antiproliferative, and anti-epidermal growth factor receptor (anti-EGFR) activities of curcumin analogs. Three curcumin analogs were prepared and docked against the epidermal growth factor receptor (EGFR), revealing efficient binding. Antiproliferative activity against 60 NCI cancer cell lines was assessed using National Cancer Institute (NCI US) protocols. The compound 3b,c demonstrated promising antiproliferative activity in single dose (at 10 µM) as well as five dose (0.01, 0.10, 1.00, 10, and 100 µM). Compound 3c inhibited leukemia cancer panel better than other cancer panels with growth inhibition of 50% (GI50) values ranging from 1.48 to 2.73 µM, and the most promising inhibition with GI50 of 1.25 µM was observed against leukemia cell line SR, while the least inhibition was found against non-small lung cancer cell line NCI-H226 with GI50 value of 7.29 µM. Compounds 3b,c demonstrated superior antiproliferative activity than curcumin and gefitinib. In molecular docking, compound 3c had the most significant interaction with four H-bonds and three π–π stacking, and compound 3c was found to moderately inhibit EGFR. The curcumin analogs discovered in this study have the potential to accelerate the anticancer drug discovery program.
Collapse
|
20
|
Green and highly efficient MCR strategy for the synthesis of pyrimidine analogs in water via C–C and C–N bond formation and docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04529-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
22
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
23
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
24
|
Chen M, Wang Y, Su S, Chen Y, Peng F, Zhou Q, Liu T, Luo H, Wang H, Xue W. Synthesis and biological evaluation of 1,4-pentadien-3-one derivatives containing 1,2,4-triazole. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Propargylated monocarbonyl curcumin analogues: synthesis, bioevaluation and molecular docking study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Novel curcumin derivatives as P-glycoprotein inhibitors: Molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur J Med Chem 2020; 198:112331. [DOI: 10.1016/j.ejmech.2020.112331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023]
|
27
|
Hosseinikhah SS, Mirjalili BBF. Fe 3O 4@NCs/Sb(V): As a Cellulose Based Nano-Catalyst for the Synthesis of 4 H-Pyrimido[2,1- b]benzothiazoles. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1764985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Alishahi N, Nasr‐Esfahani M, Mohammadpoor‐Baltork I, Tangestaninejad S, Mirkhani V, Moghadam M. Nicotine‐based ionic liquid supported on magnetic nanoparticles: An efficient and recyclable catalyst for selective one‐pot synthesis of
mono
‐ and
bis
‐4
H
‐pyrimido[2,1‐
b
]benzothiazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nasrin Alishahi
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | | | | | | | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
29
|
Abstract
In the last few decades, pyrazole chemistry has attracted chemists’ and biologists’ attention
mainly due to the discovery of the interesting properties of a great number of pyrazole derivatives.
The resulting proliferation of research literature reflects the enormous biological potential of
pyrazole derivatives as antitumor, anti-inflammatory, anti-HIV and antimicrobial agents. This review
focuses on research concerning the antimicrobial activity of pyrazole derivatives conducted from
2010-2018, and is intended to assist in the development of a new generation of antimicrobial drugs.
Collapse
Affiliation(s)
- Anshul Bansal
- Department of Chemistry, S. A. Jain (PG) College, Ambala City-134003, India
| |
Collapse
|
30
|
A Fluorinated Phenylbenzothiazole Arrests the Trypanosoma cruzi Cell Cycle and Diminishes the Infection of Mammalian Host Cells. Antimicrob Agents Chemother 2020; 64:AAC.01742-19. [PMID: 31712204 DOI: 10.1128/aac.01742-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) is a human infection caused by Trypanosoma cruzi CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 μM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 μM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.
Collapse
|
31
|
Balaji S, Ahsan MJ, Jadav SS, Trivedi V. Molecular modelling, synthesis, and antimalarial potentials of curcumin analogues containing heterocyclic ring. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Novel benzothiazole containing 4H-pyrimido[2,1-b]benzothiazoles derivatives: One pot, solvent-free microwave assisted synthesis and their biological evaluation. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
33
|
Synthesis, structures and antibacterial properties of Cu(II) and Ag(I) complexes derived from 2,6-bis(benzothiazole)-pyridine. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Adnan M, Ali S, Sheikh K, Amber R. Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis. J Pharm Pharmacol 2019; 71:1599-1625. [DOI: 10.1111/jphp.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/28/2019] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The main objective of this review was to collect scattered literature on ethnomedicinal plants used to treat pneumonia and tuberculosis in the Himalayan region and their in-vitro validation against bacterial pathogens.
Key findings
Current review contains information on ethnomedicines of total 137 plants from Himalaya region. Out of these, 59 plants have been studied in vitro against bacteria while seven plants extracts have been checked for their toxicological effects. The most commonly used plant families for pneumonia and tuberculosis therapy in the study region were Asteraceae, Bignoniaceae and Fabaceae (seven plants in each); of these, Curcuma longa L., Punica granatum L. and Justicia adhatoda L. carried the most inhibiting potential against Staphylococcus aureus and Streptococcus pneumoniae while that of Acalypha indica L. against Mycobacterium tuberculosis. Different compounds such as ascorbic acid, curcumin, vasicine, piperine, quercetin, myricetin and gallic acid being reportedly isolated from these plants possess antibacterial potential.
Summary
Himalayan region has variety of ethnomedicinal plants used against pneumonia and tuberculosis; however, studies on in-vivo activity, toxicology and mechanism of action are very limited. Hence, detailed investigation on these aspects needs to be carried out for the development of novel antibacterial drugs from the studied plant species.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shandana Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Khushboo Sheikh
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Rahila Amber
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
35
|
|
36
|
Batsalova T, Basheva D, Bardarov K, Bardarov V, Dzhambazov B, Teneva I. Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. CHEMOSPHERE 2019; 218:93-103. [PMID: 30469008 DOI: 10.1016/j.chemosphere.2018.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Cyanoprokaryotes (Cyanobacteria/Cyanophyta) are ancient photosynthetic prokaryotic organisms with cosmopolitan distribution. They are producers of a number of biologically active substances with antitumor and antifungal activity, vitamins, antibiotics, algaecides, insecticides, repellents, hormones, immunosuppressants and toxins. So far, the cyanobacterium Fischerella major Gomont has not been studied regarding its impact on the environment and human health. In this study, the cytotoxic, antioxidant and antitumor activities of four extracts prepared from Fischerella major were evaluated in vitro. In addition, the total phenolic content and the potential for production of cyanotoxins were also analyzed. The conducted GC/MS analysis identified 45 compounds with different chemical nature and biological activity. Presence of microcystins and saxitoxins was detected in all Fischerella major extracts. In vitro testing on cell cultures showed a significant concentration- and time-dependent cytotoxic effect on all cell lines (HeLa, SK-Hep-1 and FL) treated at three exposure times (24, 48 and 72 h) with four extracts. A selective antitumor effect was not observed. This is the first study demonstrating biological activity of extracts from Fischerella major, which makes it an interesting subject for further research, including environmental risk assessments (as producer of cyanotoxins) or as a potential source of pharmaceuticals.
Collapse
Affiliation(s)
- Tsvetelina Batsalova
- Department of Developmental Biology, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Diyana Basheva
- Department of Botany, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | | | | | - Balik Dzhambazov
- Department of Developmental Biology, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Ivanka Teneva
- Department of Botany, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
37
|
Mishra S, Patel S, Halpani CG. Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application. Chem Biodivers 2019; 16:e1800366. [PMID: 30460748 DOI: 10.1002/cbdv.201800366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Curcumin is an admired, plant-derived compound that has been extensively investigated for diverse range of biological activities, but the use of this polyphenol is limited due to its instability. Chemical modifications in curcumin are reported to seize this limitation; such efforts are intensively performed to discover molecules with similar but improved stability and better properties. Focal points of these reviews are synthesis of stable pyrazole and isoxazole analogs of curcumin and application in various biological systems. This review aims to emphasize the latest evidence of curcumin pyrazole analogs as a privileged scaffold in medicinal chemistry. Manifold features of curcumin pyrazole analogs will be summarized herein, including the synthesis of novel curcumin pyrazole analogs and the evaluation of their biological properties. This review is expected to be a complete, trustworthy and critical review of the curcumin pyrazole analogs template to the medicinal chemistry community.
Collapse
Affiliation(s)
- Satyendra Mishra
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Sejal Patel
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Chandni G Halpani
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
38
|
Kaurav MS, Sahu PK, Sahu PK, Messali M, Almutairi SM, Sahu PL, Agarwal DD. An efficient, mild and metal free l-proline catalyzed construction of fused pyrimidines under microwave conditions in water. RSC Adv 2019; 9:3755-3763. [PMID: 35518091 PMCID: PMC9060310 DOI: 10.1039/c8ra07517d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 02/03/2023] Open
Abstract
One-pot condensation of 4-hydroxy coumarins, aldehydes and urea/thiourea to build C-C and C-N bonds is described. Fused pyrimidines have been synthesized under mild reaction conditions using l-proline. The protocol has been performed rapidly and efficiently in water under metal free conditions. Heterocyclic derivatives have been synthesized using the present methodology and avoid the use of hazardous solvents over conventional organic solvents. A proposed mechanism could be established for three component reactions. The present study reveals the first case in which l-proline has been explored as a homogeneous catalyst in the synthesis of fused pyrimidines in water under microwave irradiation. This synthesis involves simple workup and acceptable efficiency. The most notable feature of this protocol is the ability of the catalyst to influence asymmetric induction in the reaction.
Collapse
Affiliation(s)
- Manvendra S Kaurav
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Pramod K Sahu
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Praveen K Sahu
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Mouslim Messali
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Saud M Almutairi
- King Abdulaziz City for Science and Technology P. O. Box 6086 Riyadh 11442 Saudi Arabia
| | - Puran L Sahu
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare Sector-23, Raj Nagar Ghaziabad 201002 India
- National Dope Testing Laboratory (NDTL), Ministry of Youth Affair & Sports, Government of India J. L. N. Stadium Complex East Gate No. 10, Lodi Road New Delhi-3 India
| | - Dau D Agarwal
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| |
Collapse
|
39
|
Safajoo N, Mirjalili BBF, Bamoniri A. Fe3O4@nano-cellulose/Cu(ii): a bio-based and magnetically recoverable nano-catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives. RSC Adv 2019; 9:1278-1283. [PMID: 35518002 PMCID: PMC9059560 DOI: 10.1039/c8ra09203f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Fe3O4@nano-cellulose/Cu(ii) as a green bio-based magnetic catalyst was prepared through in situ co-precipitation of Fe2+ and Fe3+ ions in an aqueous suspension of nano-cellulose. The mentioned magnetically heterogeneous catalyst was characterized by FT-IR, XRD, VSM, FESEM, TEM, XRF, EDS and TGA. In this research, the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives was developed via a three component reaction of aromatic aldehyde, 2-aminobenzothiazole and ethyl acetoacetate using Fe3O4@nano-cellulose/Cu(ii) under solvent-free condition at 80 °C. Some advantages of this protocol are good yields, environmentally benign, easy work-up and moderate reusability of the catalyst. The product structures were confirmed by FT-IR, 1H NMR, and 13C NMR spectra. Fe3O4@nano-cellulose/Cu(ii) as a green bio-based magnetic catalyst are prepared, characterized and applied for synthesis of 4H-pyrimido[2,1-b]benzothiazoles with good to excellent yields.![]()
Collapse
Affiliation(s)
- Nasrin Safajoo
- Department of Chemistry
- College of Science
- Yazd University
- Yazd
- Islamic Republic of Iran
| | | | - Abdolhamid Bamoniri
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- Islamic Republic of Iran
| |
Collapse
|
40
|
Ahmed T, Khan AU, Abbass M, Filho ER, Ud Din Z, Khan A. Synthesis, characterization, molecular docking, analgesic, antiplatelet and anticoagulant effects of dibenzylidene ketone derivatives. Chem Cent J 2018; 12:134. [PMID: 30523436 PMCID: PMC6768048 DOI: 10.1186/s13065-018-0507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
In this study dibenzylidene ketone derivatives (2E,5E)-2-(4-methoxybenzylidene)-5-(4-nitrobenzylidene) cyclopentanone (AK-1a) and (1E,4E)-4-(4-nitrobenzylidene)-1-(4-nitrophenyl) oct-1-en-3-one (AK-2a) were newly synthesized, inspired from curcuminoids natural origin. Novel scheme was used for synthesis of AK-1a and AK-2a. The synthesized compounds were characterized by spectroscopic techniques. AK-1a and AK-2a showed high computational affinities (E-value > - 9.0 kcal/mol) against cyclooxygenase-1, cyclooxygenase-2, proteinase-activated receptor 1 and vitamin K epoxide reductase. AK-1a and AK-2a showed moderate docking affinities (E-value > - 8.0 kcal/mol) against mu receptor, kappa receptor, delta receptor, human capsaicin receptor, glycoprotein IIb/IIIa, prostacyclin receptor I2, antithrombin-III, factor-II and factor-X. AK-1a and AK-2a showed lower affinities (E-value > - 7.0 kcal/mol) against purinoceptor-3, glycoprotein-VI and purinergic receptor P2Y12. In analgesic activity, AK-1a and AK-2a decreased numbers of acetic acid-induced writhes (P < 0.001 vs. saline group) in mice. AK-1a and AK-2a significantly prolonged the latency time of mice (P < 0.05, P < 0.01 and P < 0.001 vs. saline group) in hotplate assay. AK-1a and AK-2a inhibited arachidonic acid and adenosine diphosphate induced platelet aggregation with IC50 values of 65.2, 37.7, 750.4 and 422 µM respectively. At 30, 100, 300 and 1000 µM concentrations, AK-1a and AK-2a increased plasma recalcification time (P < 0.001 and P < 0.001 vs. saline group) respectively. At 100, 300 and 1000 µg/kg doses, AK-1a and AK-2a effectively prolonged bleeding time (P < 0.001 and P < 0.01 vs. saline group) respectively. Thus in-silico, in-vitro and in-vivo investigation of AK-1a and AK-2a reports their analgesic, antiplatelet and anticoagulant actions.
Collapse
Affiliation(s)
- Tauqeer Ahmed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Muzaffar Abbass
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Edson Rodrigues Filho
- LaBioMMi, Department of Chemistry, Federal University of São Carlos, CP 676, São Carlos, SP, 13565-905, Brazil
| | - Zia Ud Din
- LaBioMMi, Department of Chemistry, Federal University of São Carlos, CP 676, São Carlos, SP, 13565-905, Brazil
- Department of Chemistry, Woman University Swabi, GulooDehri, Topi Road, Swabi, KP, 23340, Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions-(COSHP-J), King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Alnajjar A, Abdelkhalik MM, Riad HM, Sayed SM, Sadek KU. Regioselectivity in the Reaction of 2‐Aminobenzothiazoles and 2‐Aminobenzimidazoles with Enaminonitriles and Enaminones: Synthesis of Functionally Substituted Pyrimido[2,1‐ b][1,3]benzothiazole and Pyrimido[1,2‐ a]benzimidazole Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abdulaziz Alnajjar
- Applied Science Department, College of Technological StudiesPublic Authority for Applied Education and Training P.O. Box 42325 Safat 70654 Kuwait
| | - Mervat Mohammed Abdelkhalik
- Applied Science Department, College of Technological StudiesPublic Authority for Applied Education and Training P.O. Box 42325 Safat 70654 Kuwait
| | | | | | - Kamal Usef Sadek
- Chemistry Department, Faculty of ScienceMinia University Minia 61519 Egypt
| |
Collapse
|
42
|
Sahu PK, Sahu PK, Kaurav MS, Messali M, Almutairi SM, Sahu PL, Agarwal DD. Metal-Free Construction of Fused Pyrimidines via Consecutive C-C and C-N Bond Formation in Water. ACS OMEGA 2018; 3:15035-15042. [PMID: 31458170 PMCID: PMC6643823 DOI: 10.1021/acsomega.8b01993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/10/2018] [Indexed: 05/22/2023]
Abstract
A facile and efficient protocol has been developed for mild construction of fused pyrimidines via l-proline-catalyzed reaction of 4-hydroxy coumarins, aldehydes, and 2-aminobenzothiazoles/urea. The reaction has been carried out rapidly and efficiently in water under mild and metal-free conditions. Current etiquette has efficiently synthesized the heterocycles and avoids the use of hazardous solvents over conventional organic solvents. A plausible reaction mechanism has been established in this study. This study represents the first case in which l-proline as a homogeneous catalyst has been explored in the synthesis of fused pyrimidines in water in view of simple procedure and acceptable efficiency. This method gives the target product in excellent yield with ease of workup.
Collapse
Affiliation(s)
- Pramod K. Sahu
- School of Studies in Chemistry and Department of Industrial Chemistry, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
- E-mail: , (Pramod Kumar Sahu)
| | - Praveen K. Sahu
- School of Studies in Chemistry and Department of Industrial Chemistry, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
| | - Manvendra S. Kaurav
- School of Studies in Chemistry and Department of Industrial Chemistry, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
| | - Mouslim Messali
- Department
of Chemistry, Taibah University, 30002 Al-Madina
Al-Mounawara, Saudi Arabia
| | - Saud M. Almutairi
- King Abdulaziz
City for Science and Technology, P.O.
Box 6086, Riyadh 11442, Saudi Arabia
| | - Puran L. Sahu
- Indian Pharmacopoeia Commission Ministry
of Health and Family Welfare, Sector-23, Raj Nagar, Ghaziabad 201002, India
| | - Dau D. Agarwal
- School of Studies in Chemistry and Department of Industrial Chemistry, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
| |
Collapse
|
43
|
Synthesis of new triazole tethered derivatives of curcumin and their antibacterial and antifungal properties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1524-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Sahu PK, Sahu PK, Kaurav MS, Messali M, Almutairi SM, Sahu PL, Agarwal DD. One-pot facile and mild construction of densely functionalized pyrimidines in water via consecutive C-C and C-S bonds formation. RSC Adv 2018; 8:33952-33959. [PMID: 35548808 PMCID: PMC9086688 DOI: 10.1039/c8ra04363a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022] Open
Abstract
Fused pyrimidines composed of alternating heteroatoms and a pyrimidine moiety were synthesized efficiently using readily available starting material 4-hydroxycoumarin, aromatic aldehydes, and urea/thiourea at room temperature. Acid, metal salts, and surfactants were screened for their influence on catalytic activity in three-component reactions and sodium lauryl sulphate (SLS) was used as the best catalyst with different concentrations. Screening results of catalyst loading from our investigation showed that good to excellent yields were obtained with 10 mol%. Our method efficiently synthesized heterocycles and avoided the use of hazardous solvents and conventional organic solvents. Our procedure which involves a surfactant is operationally simple, environmentally benign, has excellent yields, short reaction times, and synthetically is as efficient as conventional procedures using organic solvents.
Collapse
Affiliation(s)
- Pramod K Sahu
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Praveen K Sahu
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Manvendra S Kaurav
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Mouslim Messali
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Saud M Almutairi
- King Abdulaziz City for Science and Technology Riyadh 11442 P. O. Box 6086 Saudi Arabia
| | - Puran L Sahu
- Indian Pharmacopoeia Commission Ministry of Health and Family Welfare Sector-23, Raj Nagar Ghaziabad 201002 India
| | - Dau D Agarwal
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| |
Collapse
|
45
|
Mirjalili BBF, Aref F. Nano-cellulose/BF3/Fe3O4: a magnetic bio-based nano-catalyst for the synthesis of pyrimido[2,1-b]benzothiazoles under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3401-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Kumaravel G, Ponya Utthra P, Raman N. Exploiting the biological efficacy of benzimidazole based Schiff base complexes with l-Histidine as a co-ligand: Combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies. Bioorg Chem 2018; 77:269-279. [PMID: 29421702 DOI: 10.1016/j.bioorg.2018.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
Four new metal complexes were synthesized and screened for their cytotoxic activity after sufficient assertion from the preliminary DNA binding studies. The metal complexes could bind to CT-DNA through intercalation binding mode. This has also been confirmed by the molecular docking studies. The DNA cleavage efficiencies of these complexes with pBR322 DNA were investigated by gel electrophoresis. The complexes were found to promote the cleavage of pBR322 DNA from the supercoiled form I to the open circular form II in the presence of an oxidizing agent (H2O2). The in vitro chemosensitivity of the studied complexes exhibits significant cytotoxic effects, compared to those reported for cisplatin. These findings represent a prompting to search for the probable interaction of these complexes with other cellular elements of fundamental consequence in cell proliferation. The in vitro anticancer activities indicate that the Cu(II) complex is active against the selected human tumor cell lines, and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. Towards noncancerous cell line, Cu(II) complex exhibits very low toxicity. On the other hand all the complexes have been found to exhibit cytotoxic effects against cancerous cell lines with potency more than that of the widely used drug cisplatin and hence they have the potential to act as promising anticancer agents. Captivatingly, they are non-toxic to normal cell lymphocytes revealing that they are selective in killing only the cancer cells.
Collapse
Affiliation(s)
- Ganesan Kumaravel
- Research Department of Chemistry, VHNSN College, Virudhunagar 626 001, India
| | | | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar 626 001, India.
| |
Collapse
|
47
|
Stenger-Smith J, Chakraborty I, Sameera W, Mascharak PK. Antimicrobial silver (I) complexes derived from aryl-benzothiazoles as turn-on sensors: Syntheses, properties and density functional studies. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Dohutia C, Chetia D, Gogoi K, Bhattacharyya DR, Sarma K. Molecular docking, synthesis and in vitro antimalarial evaluation of certain novel curcumin analogues. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000400084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Ajavakom V, Yutthaseri T, Chantanatrakul R, Suksamrarn A, Ajavakom A. Curcuminoids in Multi-Component Synthesis. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vachiraporn Ajavakom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Ramkhamhaeng University; Bangkok 10240 Thailand
| | - Thatsawan Yutthaseri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Ramkhamhaeng University; Bangkok 10240 Thailand
| | - Rachata Chantanatrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Ramkhamhaeng University; Bangkok 10240 Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Ramkhamhaeng University; Bangkok 10240 Thailand
| | - Anawat Ajavakom
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| |
Collapse
|
50
|
Banuppriya G, Sribalan R, Padmini V. Evaluation of Antioxidant, Anti-Inflammatory, Antibacterial Activity and In Silico Molecular Docking Study of Pyrazole Curcumin Bisacetamide Analogs. ChemistrySelect 2017. [DOI: 10.1002/slct.201701533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Govindharasu Banuppriya
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| | - Rajendran Sribalan
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| | - Vediappen Padmini
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai, Tamil Nadu India
| |
Collapse
|