1
|
Bogdanov FB, Balakhonov RY, Volkov ES, Sonin IV, Andreeva OE, Sorokin DV, Piven YA, Scherbakov AM, Shirinian VZ. Photochemical Metal-Free synthesis and biological Assessment of isocryptolepine analogues targeting estrogen receptor Alpha in breast cancer cells. Bioorg Chem 2024; 153:107942. [PMID: 39515131 DOI: 10.1016/j.bioorg.2024.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to develop a new series of isocryptolepines and evaluate their antiproliferative and antiestrogenic activities on cancer cells. A series of isocryptolepine derivatives were synthesized using developed one-pot photochemical, metal-free protocol, employing readily available 2-arylindoles as starting compounds. The resulting isocryptolepines demonstrated (sub)micromolar inhibitory activity against selected breast cancer cell lines. The IC50 values of lead compound 3c against hormone-dependent breast cancer types (MCF7 and T47D) were 0.3 μM and 0.12 μM, respectively, and significantly greater than 3 μM against estrogen receptor α (ERα)-deficient cell lines, MDA-MB-231 and HCC1954, respectively. To assess the antiestrogenic potency of compound 3c, MCF7 cells were transfected with a plasmid containing a luciferase reporter gene under the control of an estrogen-responsive element (ERE), creating the MCF7/ERE-LUC cell subline. In these cells, luciferase activity was induced by the natural ERα ligand, 17β-estradiol (E2). Compound 3c inhibited luciferase activity by 50 % at a concentration of 0.12 μM, highlighting its potent inhibitory effect on ERα. Molecular modeling further indicated that compound 3c could directly bind to ERα. Compound 3c induced apoptosis, as evidenced by PARP cleavage and downregulation of p-Bcl-2 and Bcl-2, and demonstrated synergistic effects in combination with the chemotherapeutic agent 5-fluorouracil. Compound 3c also showed selectivity towards hormone-dependent breast cancer cells, likely targeting ERα - a key driver in this cancer subtype. In summary, we report the development of a first-in-class antiestrogenic isocryptolepine with notable pro-apoptotic efficacy.
Collapse
Affiliation(s)
- F B Bogdanov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Faculty of Medicine, Moscow State University, Lomonosov prospect 27 bldg.1, 119991 Moscow, Russia.
| | - R Yu Balakhonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - E S Volkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - I V Sonin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - O E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - D V Sorokin
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - Yu A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220084, Belarus.
| | - A M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, 119021 Moscow, Russia.
| | - V Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
3
|
Racané L, Zlatić K, Cindrić M, Mehić E, Karminski-Zamola G, Taylor MC, Kelly JM, Malić SR, Stojković MR, Kralj M, Hranjec M. Synthesis and Biological Activity of 2-Benzo[b]thienyl and 2-Bithienyl Amidino-Substituted Benzothiazole and Benzimidazole Derivatives. ChemMedChem 2023; 18:e202300261. [PMID: 37376962 DOI: 10.1002/cmdc.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Novel benzo[b]thienyl- and 2,2'-bithienyl-derived benzothiazoles and benzimidazoles were synthesized to study their antiproliferative and antitrypanosomal activities in vitro. Specifically, we assessed the impact that amidine group substitutions and the type of thiophene backbone have on biological activity. In general, the benzothiazole derivatives were more active than their benzimidazole analogs as both antiproliferative and antitrypanosomal agents. The 2,2'-bithienyl-substituted benzothiazoles with unsubstituted and 2-imidazolinyl amidine showed the most potent antitrypanosomal activity, and the greatest selectivity was observed for the benzimidazole derivatives bearing isopropyl, unsubstituted and 2-imidazolinyl amidine. The 2,2'-bithiophene derivatives showed most selective antiproliferative activity. Whereas the all 2,2'-bithienyl-substituted benzothiazoles were selectively active against lung carcinoma, the benzimidazoles were selective against cervical carcinoma cells. The compounds with an unsubstituted amidine group also produced strong antiproliferative effects. The more pronounced antiproliferative activity of the benzothiazole derivatives was attributed to different cytotoxicity mechanisms. Cell cycle analysis, and DNA binding experiments provide evidence that the benzimidazoles target DNA, whereas the benzothiazoles have a different cellular target because they are localized in the cytoplasm and do not interact with DNA.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića, 10000, Zagreb, Croatia
| | - Katarina Zlatić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Maja Cindrić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Emina Mehić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Grace Karminski-Zamola
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Silvana Raić Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| |
Collapse
|
4
|
Recognition of ATT Triplex and DNA:RNA Hybrid Structures by Benzothiazole Ligands. Biomolecules 2022; 12:biom12030374. [PMID: 35327566 PMCID: PMC8945811 DOI: 10.3390/biom12030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Interactions of an array of nucleic acid structures with a small series of benzothiazole ligands (bis-benzothiazolyl-pyridines—group 1, 2-thienyl/2-benzothienyl-substituted 6-(2-imidazolinyl)benzothiazoles—group 2, and three 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazoles—group 3) were screened by competition dialysis. Due to the involvement of DNA:RNA hybrids and triplex helices in many essential functions in cells, this study’s main aim is to detect benzothiazole-based moieties with selective binding or spectroscopic response to these nucleic structures compared to regular (non-hybrid) DNA and RNA duplexes and single-stranded forms. Complexes of nucleic acids and benzothiazoles, selected by this method, were characterized by UV/Vis, fluorescence and circular dichroism (CD) spectroscopy, isothermal titration calorimetry, and molecular modeling. Two compounds (1 and 6) from groups 1 and 2 demonstrated the highest affinities against 13 nucleic acid structures, while another compound (5) from group 2, despite lower affinities, yielded higher selectivity among studied compounds. Compound 1 significantly inhibited RNase H. Compound 6 could differentiate between B- (binding of 6 dimers inside minor groove) and A-type (intercalation) helices by an induced CD signal, while both 5 and 6 selectively stabilized ATT triplex in regard to AT duplex. Compound 3 induced strong condensation-like changes in CD spectra of AT-rich DNA sequences.
Collapse
|
5
|
Ersan RH, Alagoz MA, Ertan-Bolelli T, Duran N, Burmaoglu S, Algul O. Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis. Mol Divers 2021; 25:2247-2259. [PMID: 32556804 DOI: 10.1007/s11030-020-10115-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
In the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was investigated using MTT assay. Bisbenzazole derivatives showed significant antiproliferative activity against all the four tested cancer cell lines. Among the various bisbenzazole derivatives, bisbenzoxazole derivatives exhibited the most promising anticancer activity followed by bisbenzimidazole and bisbenzothiazole derivatives. All the derivatives were found to be less toxic as compared to methotrexate (positive control) in normal human cells, indicating selective and efficient antiproliferative activity of these bisbenzazole derivatives. The structure-activity relationships of heteroaromatic systems and linkers present in bisbenzazole derivatives were analyzed in detail. In silico ADMET prediction revealed that bisbenzazole is a drug-like small molecule with a favorable safety profile. Compound 31 is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from methotrexate. Twenty-one bisbenzoxazole derivatives have been designed synthesized and evaluated to be an antiproliferative activity against four human tumor cell lines.
Collapse
Affiliation(s)
- Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Tugba Ertan-Bolelli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, 31100, Antakya, Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
| |
Collapse
|
6
|
Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021; 26:molecules26216518. [PMID: 34770926 PMCID: PMC8587170 DOI: 10.3390/molecules26216518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/27/2023] Open
Abstract
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.
Collapse
|
7
|
Ptiček L, Hok L, Grbčić P, Topić F, Cetina M, Rissanen K, Pavelić SK, Vianello R, Racané L. Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles. Org Biomol Chem 2021; 19:2784-2793. [PMID: 33704342 DOI: 10.1039/d1ob00235j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2-aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with the obtained kinetic and thermodynamic parameters indicating full agreement with the experimental observations. The obtained amidines were subjected to a condensation reaction with aryl carboxylic acids that allowed the synthesis of a new library of 5- and 6-amidino substituted 2-arylbenzoxazoles. Their antiproliferative features against four human tumour cell lines (SW620, HepG2, CFPAC-1, HeLa) revealed sub-micromolar activities on SW620 for several cyclic amidino 2-naphthyl benzoxazoles, thus demonstrating the usefulness of the proposed synthetic strategy and promoting amidino substituted 2-aminophenols as important building blocks towards biologically active systems.
Collapse
Affiliation(s)
- Lucija Ptiček
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Racané L, Cindrić M, Zlatar I, Kezele T, Milić A, Brajša K, Hranjec M. Preclinical in vitro screening of newly synthesised amidino substituted benzimidazoles and benzothiazoles. J Enzyme Inhib Med Chem 2021; 36:163-174. [PMID: 33404264 PMCID: PMC7801115 DOI: 10.1080/14756366.2020.1850711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Newly synthesised benzimidazole/benzotiazole derivatives bearing amidino, namely 3,4,5,6-tetrahydropyrimidin-1-ium chloride, substituents have been evaluated for their potential antitumor activity in vitro. Compounds and standard drugs (doxorubicin, staurosporine and vandetanib) were tested on three human lung cancer cell lines A549, HCC827 and NCI-H358. We tested compounds in MTS citotoxicity assay and in BrdU proliferative assay performed on 2 D and 3 D assay format. Because benzmidazole scaffold is similar to natural purines, we tested the most active compounds for ability to induce cell apoptosis of A549 by binding to DNA in comparison with doxorubicin and saturosporine. Additionally, the ADME properties of the most active benzothiazole/benzimidazole and non-active compounds were determined to see if the different ADME properties are the cause of different activity in 2 D and 3 D assays, as well as to see if the tested active compounds have drug like properties and potency for further profilation. ADME characterisation included solubility, lipophilicity, permeability, metabolic stability and binding to plasma proteins. In general, the benzothiazole derivatives were more active in comparison to their benzimidazole analogues. The exception was 2-phenyl substituted benzimidazole 6a being active with very pronounced activity especially towards HCC827 cells. All active compounds have similar mode of action on A549 cell line as standard compound doxorubicin, which binds to nucleic acids with the DNA double helix. Tested active benzothiazole compounds were characterised by moderate to good solubility, good metabolic stability, low permeability and high binding to plasma proteins. One tested active benzimidazole derivative showed ADME properties, but lower lipophilicity resulted in low PPB and higher metabolic instability. In addition, no significant difference was observed in ADME profile between active and non-active compounds.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia
| | - Maja Cindrić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Ivo Zlatar
- Pharmacology in vitro, Fidelta Ltd, Zagreb, Croatia
| | | | | | | | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Algul O, Ersan RH, Alagoz MA, Duran N, Burmaoglu S. An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities. J Biomol Struct Dyn 2020; 39:6926-6938. [PMID: 32772845 DOI: 10.1080/07391102.2020.1803966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of unsymmetrical nine di-heterocyclic compounds of benzazole derivatives were synthesized at one step via cyclization reaction. The compounds evaluated for in vitro cytotoxic activity against A549, A498, HeLa, and HepG2 cancer cell lines. The biological evaluation results show that 23, 26 and 29 exhibit better activity against HepG2 and HeLa cancer cell lines. Compound 23 also showed good activity against A549, and A498 cancer cell lines. The analogs were further performed molecular docking studies against human cytochrome P450 2C8 monooxygenase enzyme, calculated some theoretical quantum parameters, ADMET descriptor and molecular electrostatic potential analysis. The strategy applied in this research work may act as a perspective for the rational design of potential anticancer drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates. Mol Divers 2018; 22:723-741. [PMID: 29667008 DOI: 10.1007/s11030-018-9827-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
Abstract
Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are positively correlated with anti-proliferative activity, while compound's capability to accept H-bond was identified as a negatively correlated property. Comparison of molecular properties identified for different cell lines enabled assumptions about similarity of mode of action through which anti-proliferative activities against different cell lines are accomplished. Novel compounds that are predicted to have enhanced activities in comparison with herein presented ones were designed using 3D-QSAR analysis as guideline.
Collapse
|
11
|
Ranjith P, Al-Abdullah ES, Al-Omary FA, El-Emam AA, Anto P, Sheena MY, Armaković S, Armaković SJ, Zitko J, Dolezal M, Van Alsenoy C. FT-IR and FT-Raman characterization and investigation of reactive properties of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide by molecular dynamics simulations and DFT calculations. J Mol Struct 2017; 1136:14-24. [DOI: 10.1016/j.molstruc.2017.01.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Swain SS, Paidesetty SK, Padhy RN. Antibacterial activity, computational analysis and host toxicity study of thymol-sulfonamide conjugates. Biomed Pharmacother 2017; 88:181-193. [DOI: 10.1016/j.biopha.2017.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
|
13
|
Swain SS, Paidesetty SK, Padhy RN. Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 140:185-194. [PMID: 28254074 DOI: 10.1016/j.cmpb.2016.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE To develop 6 conjugate agents of the moribund antibiotic sulfamethoxazole (SMZ) joined to 6 individual monoterpenes, followed by protocols of medicinal chemistry as potent antibacterials, against multidrug resistant (MDR) human gruesome pathogenic bacteria. METHODS Antibacterial activities of the proposed conjugates were ascertained by the 'prediction of activity spectra of substances' (PASS) program. Drug-likeness parameters and toxicity profiles of conjugates were standardized with the Lipinski rule of five, using cheminformatic tools, Molsoft, molinspiration, OSIRIS and ProTox. Antibacterial activities of individual chemicals and conjugates were examined by targeting the bacterial folic acid biosynthesis enzyme, dihydropteroate synthases (DHPSs) of bacteria, Bacillus anthracis, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae and Mycobacterium tuberculosis, with 3D structures of DHPSs from protein data bank. RESULTS According to the PASS program, biological spectral values of conjugate-2, conjugate-5 and conjugate-6 were ascertained effective with 'probably active' or 'Pa' value > 0.5, for anti-infective and antituberculosic activities. Using molecular docking against 5 cited bacterial DHPSs, effective docking scores of 6 monoterpenes in the specified decreasing order (kcal/mol): -9.72 (eugenol against B. anthracis), -9.61 (eugenol against S. pneumoniae), -9. 42 (safrol, against B. anthracis), -9.39 (thymol, against M. tuberculosis), -9.34 (myristicin, against S. pneumoniae) and -9.29 (thymol, against B. anthracis); whereas the lowest docking score of SMZ was -8.46kcal/mol against S. aureus DHPS. Similarly, effective docking scores of conjugates were as specified (kcal/mol.): -10.80 (conjugate-4 consisting SMZ+safrol, against M. tuberculosis), -10.78 (conjugate-5 consisting SMZ+thymol, against M. tuberculosis), -10.60 (conjugate-5 against B. anthracis), -10.26 (conjugate-2 consisting SMZ+ eugenol, against M. tuberculosis), -10.25 (conjugate-5, against S. aureus) and -10.19 (conjugate-2 against S. pneumoniae. Conjugates-2 and -5 were the most effective antibacterials based on Lipinski rule of five with lethal doses 3471 and 3500mg/kg, respectively and toxicity class levels. CONCLUSIONS Conjugate-2 and conjugate-5 were more effective than individual monoterpenes and SMZ, against pathogenic bacteria. Synthesis, characterization and in vitro antibacterial study with acute toxicity testing for Wister rat model of the conjugate-5 could land at success in the recorded computational trial and it could be promoted for synthesis in the control of MDR bacteria.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
14
|
Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 2016; 125:143-189. [PMID: 27662031 DOI: 10.1016/j.ejmech.2016.09.023] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series.
Collapse
Affiliation(s)
- Jawaid Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Ahsan Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Zulphikar Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Rafi Haider
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
15
|
Mg–V/CO3 hydrotalcite: an efficient and reusable catalyst for one-pot synthesis of multisubstituted pyridines. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1890-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Interactions with polynucleotides and antitumor activity of amidino and imidazolinyl substituted 2-phenylbenzothiazole mesylates. Eur J Med Chem 2014; 86:406-19. [PMID: 25194933 DOI: 10.1016/j.ejmech.2014.08.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/12/2014] [Accepted: 08/30/2014] [Indexed: 11/23/2022]
Abstract
Based on previously reported antiproliferative activity screening, four most promising disubstituted 2-phenylbenzothiazole hydrochlorides were chosen for detailed study. Water solubility, as well as liphophilicity/hydrophilicity balance of organic core were modified by conversion to mesylate salts. For purpose of structure/activity studies their structures were determined by X-ray structure analysis. Detailed analysis of interactions of new compounds with double stranded (ds-) DNA/RNA by UV/Vis and CD titrations, thermal melting and viscometry experiments revealed that most of studied compounds intercalate into ds-RNA but bind into minor groove of AT-DNA, and agglomerate along GC-DNA. Furthermore, compounds also interact with ss-RNA, but only amino-imidazolinyl 2-phenylbenzothiazole, 4b displayed well defined orientation and dominant binding mode (by induced CD signals) with poly A and poly G. Besides, in vitro investigations revealed moderate to high antiproliferative activity of benzothiazoles against seven human cancer cell lines, while in some cases (HTC 116, SW620, MIA PaCa-2) high correlation between the type of the amidino group and cytotoxic activity was observed.
Collapse
|
17
|
Chandrasekhar B. 2-Alkyl/aryl/heteroarylbenzothiazole ring systems fromo-aminothiophenol and its derivatives as versatile synthons. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2014.934245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Domínguez-Álvarez E, Plano D, Font M, Calvo A, Prior C, Jacob C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 2013; 73:153-66. [PMID: 24389510 DOI: 10.1016/j.ejmech.2013.11.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
A series of 31 new selenoesters were synthesized and their cytotoxic activity was evaluated against a prostate cancer cell line (PC-3). The most active compounds were also tested against three tumoural cell lines (MCF-7, A-549 and HT-29) and one non-tumour prostate cell line (RWPE-1). Thirteen compounds showed significant activity towards all tumour cells investigated, and some of them were even more potent than etoposide and cisplatin, which were used as reference drugs. Because of their pronounced potency and/or selectivity, four analogues (5, 21, 28 and 30), were selected in order to assess their redox properties related to a possible redox modulating activity. The glutathione peroxidase (GPx) assay showed slight activity for compound 30 and the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) assay showed a weak activity for compounds 5 and 28. The present results revealed that analogues 5, 21, 28 and 30 might serve as a useful starting point for the design of improved anti-tumour agents.
Collapse
Affiliation(s)
- Enrique Domínguez-Álvarez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Daniel Plano
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - María Font
- Molecular Modeling Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Alfonso Calvo
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Celia Prior
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Juan Antonio Palop
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| | - Carmen Sanmartín
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
19
|
Design, synthesis, and antimicrobial activity of some novel homodrimane sesquiterpenoids with diazine skeleton. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Racané L, Pavelić SK, Nhili R, Depauw S, Paul-Constant C, Ratkaj I, David-Cordonnier MH, Pavelić K, Tralić-Kulenović V, Karminski-Zamola G. New anticancer active and selective phenylene-bisbenzothiazoles: synthesis, antiproliferative evaluation and DNA binding. Eur J Med Chem 2013; 63:882-91. [PMID: 23603616 DOI: 10.1016/j.ejmech.2013.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/25/2022]
Abstract
Novel amidino-derivatives of phenylene-bisbenzothiazoles were synthesized and tested for their antiproliferative activity against several human cancer cell lines, as well as DNA-binding properties. The synthetic approach used for preparation of isomeric amidino substituted-phenylene-bis-benzothyazoles 3a-3f was achieved by condensation reaction of isophthaloyl dichloride 1a and terephthaloyl dichloride 1b or with phthalic acid 1c with 5-amidinium-2-aminobenzothiolate 2a and 5-(imidazolinium-2-yl)-2-aminobenzothiolate 2b in good yields. The targeted compounds were converted in the desired water soluble dihydrochloride salts by reaction of appropriate free base with concd HCl in ethanol or acetic acid. All tested compounds (3a-3f) showed antiproliferative effects on tumour cells in a concentration-dependant manner. The strongest activity and cytotoxicity was observed for diimidazolinyl substituted phenylene-bisbenzothiazole compound 3b. These effects were shown to be related to DNA-binding properties, topoisomerase I and II poisoning effects and apoptosis induction. The highest tested selectivity towards tumour cells was observed for the imidazolyl substituted phenylene-benzothiazole 3d that showed no cytotoxic effects on normal fibroblasts making it an excellent candidate for further chemical optimization and preclinical evaluation.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, baruna Filipovića 28a, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ahmed S, Sharif M, Shoaib K, Reimann S, Iqbal J, Patonay T, Spannenberg A, Langer P. Synthesis of 2,6-diaryl-3-(trifluoromethyl)pyridines by regioselective Suzuki–Miyaura reactions of 2,6-dichloro-3-(trifluoromethyl)pyridine. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|