1
|
Gao H, Xu Q, Zhu J, Kuerban K, Chen B, Zhao J, Aimulajiang K, Teng L. Efficacy and mechanism of action of harmine derivative H-2-104 against Echinococcus granulosus infection in mice. BMC Vet Res 2025; 21:174. [PMID: 40091052 PMCID: PMC11912776 DOI: 10.1186/s12917-025-04642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the parasite Echinococcus granulosus (E. granulosus). Currently, pharmacologic treatments are limited to albendazole and mebendazole; however, these treatments are associated with significant side effects and limited therapeutic efficacy, highlighting the urgent need for the development of new drugs. Harmine (HM) has been reported to exhibit potent antiparasitic effects, although it is also accompanied by notable neurotoxicity. H-2-104, a derivative of HM obtained through structural modification of its parent nucleus, represents a promising candidate for further investigation. This study aims to assess the in vivo and in vitro efficacy of H-2-104 against E. granulosus and to elucidate the mechanism of action of H-2-104 against CE from a metabolomics perspective. METHODS In vitro pharmacodynamics experiments were conducted to assess the inhibitory activity of H-2-104 against E. granulosus protoscoleces (PSCs). Following this, a mouse model of E. granulosus infection was established to explore the inhibitory effects against E. granulosus of H-2-104 at low, medium, and high concentrations. Additionally, non-targeted metabolomic approaches were utilized to analyze the serum and liver samples from mice in the control group, model group, and H-2-104 treatment group with the aim of identifying relevant biomarkers and crucial metabolic pathways involved in the response to H-2-104 treatment. RESULTS The in vitro results demonstrated that H-2-104 exhibited significantly superior inhibitory activity against PSCs compared to harmine and albendazole. Morphological observations revealed marked alterations in the ultrastructural characteristics of PSCs treated with H-2-104. In vivo pharmacodynamic studies showed that H-2-104 at a dosage of 100 mg/kg exhibited the highest cyst inhibition rate, which was (73.60 ± 4.71)%. Metabolomics analysis revealed that 64 serum metabolites were significantly altered, primarily involving metabolic pathways such as necroptosis, linoleic acid metabolism, and phenylalanine metabolism. Additionally, 81 liver metabolites were identified with significant differences, mainly involving metabolic pathways like fructose and mannose metabolism, and glycerophospholipid metabolism. CONCLUSIONS H-2-104 exhibits significant activity both in vitro and in vivo, suggesting its potential as a promising new drug for the treatment of CE. The anti-CE effects of H-2-104 may be attributed to its regulation of multiple biological pathways, including cell apoptosis, amino acid metabolism, and glucose metabolism.
Collapse
Affiliation(s)
- Huijing Gao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
| | - Qinwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kadierya Kuerban
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 831399, China
| | - Bei Chen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jun Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
- Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Liang Teng
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
2
|
Joshi H, Bhushan S, Dimri T, Sharma D, Sak K, Chauhan A, Chauhan R, Haque S, Ahmad F, Kumar M, Tuli HS, Kaur D. Anti-tumor potential of Harmine and its derivatives: recent trends and advancements. Discov Oncol 2025; 16:189. [PMID: 39954215 PMCID: PMC11829886 DOI: 10.1007/s12672-025-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Harmine is a β-carboline alkaloid derived from Peganum harmala, showing a solid antitumor potential in different types of human cancer cells. Unfortunately, the clinical application of this natural alkaloid has been impeded till now by severe toxic side effects, especially neurotoxicity, besides its poor water solubility. Therefore, over the recent years, several semisynthetic derivatives of harmine have been prepared and studied concerning their abilities to inhibit tumor cell proliferation, survival, angiogenesis, migration, and invasion in diverse preclinical models. This review article summarizes the anticancer effects of harmine and its synthetic derivatives, demonstrating their high potential to be developed as novel anticancer drugs to supplement our current therapeutic arsenal in the fight against the globally increasing rate of malignant disorders.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sakshi Bhushan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tanisha Dimri
- Department of Biotechnology, All India Institute of Medical Science, New Delhi, 110029, India
| | - Deepak Sharma
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India.
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, 134007, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Mullana, 133207, India
| | - Damandeep Kaur
- University Center for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
3
|
Huo H, Dan W, Qin L, Bo J, Zhang X, Yang C, Bai B, Ren J, Shi B, Li J. Novel steroidal β-carboline derivatives as promising antibacterial candidates against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2025; 283:117187. [PMID: 39709796 DOI: 10.1016/j.ejmech.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
A novel series of steroidal β-carboline quaternary ammonium derivatives (SCQADs) derived from natural cholic acid and its derivatives was designed, synthesized and biologically evaluated against four Gram-positive bacteria for the first time. Most of these derivatives exhibited promising antibacterial activity against the tested strains, particularly, compound 21g displayed strong antibacterial activity against MRSA (MIC = 0.5-1 μg/mL) with low cytotoxicity. Meanwhile, derivative 21g was able to quickly kill Gram-positive bacteria within 0.5 h without inducing bacterial resistance. Preliminary mechanistic explorations indicated that compound 21g destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 21g exhibited high in vivo efficacy and high survival protection in a mouse skin abscess model. These findings suggested that compound 21g has great potential to develop as an antibacterial agent.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Libo Qin
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Jiaxue Bo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Xiaonan Zhang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Chaofu Yang
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| |
Collapse
|
4
|
Ao J, Lai C, Wu X, Chen Z, Yang W, Qiu L, Li X, Cao R. Design, synthesis and biological evaluation of novel β-carbolines as antitumor agents via targeting autophagy in colorectal cancer. Eur J Med Chem 2025; 283:117145. [PMID: 39653623 DOI: 10.1016/j.ejmech.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
A series of novel β-carbolines with a flexible amino side chain at positions 1 and 3, respectively, were designed, synthesized and evaluated as potential antitumor agents. The results revealed that most of the compounds exhibited a broad spectrum of antiproliferative activity with IC50 value lower than 20 μM against human tumor cell lines. Among them, compound 2f was the most potent antiproliferative agent with IC50 value below 5.0 μM against human tumor cell lines. Subsequent studies on the in vivo antitumor efficacy of the representative compound 2f demonstrated its ability to hinder tumor progression and significantly diminish tumor mass in a mouse model of colorectal cancer. Further investigation on mechanisms of action showed that compound 2f induced autophagy via the ATG5/ATG7 pathway in HCT116 cells. These compounds may contribute to the development of therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Jingsheng Ao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430072, PR China
| | - Chengyao Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaofei Wu
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, 430072, PR China
| | - Zhiyong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weijie Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liqin Qiu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430072, PR China.
| | - Rihui Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
5
|
Hu Y, Yu X, Yang L, Xue G, Wei Q, Han Z, Chen H. Research progress on the antitumor effects of harmine. Front Oncol 2024; 14:1382142. [PMID: 38590646 PMCID: PMC10999596 DOI: 10.3389/fonc.2024.1382142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Harmine is a naturally occurring β-carboline alkaloid originally isolated from Peganum harmala. As a major active component, harmine exhibits a broad spectrum of pharmacological properties, particularly remarkable antitumor effects. Recent mechanistic studies have shown that harmine can inhibit cancer cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle regulation, angiogenesis, and the induction of tumor cell apoptosis. Furthermore, harmine reduces drug resistance when used in combination with chemotherapeutic drugs. Despite its remarkable antitumor activity, the application of harmine is limited by its poor solubility and toxic side effects, particularly neurotoxicity. Novel harmine derivatives have demonstrated strong clinical application prospects, but further validation based on drug activity, acute toxicity, and other aspects is necessary. Here, we present a review of recent research on the action mechanism of harmine in cancer treatment and the development of its derivatives, providing new insights into its potential clinical applications and strategies for mitigating its toxicity while enhancing its efficacy.
Collapse
Affiliation(s)
- Yonghua Hu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoli Yu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lei Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gaimei Xue
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qinglin Wei
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Yang XY, Yang JM, Wu B. TMSOTf-Promoted Cyclization of Indole-2-methyl-α-aminoketones: Access to 4-Aryl-Substituted β-Carbolines. Org Lett 2024; 26:1105-1109. [PMID: 38289176 DOI: 10.1021/acs.orglett.3c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An efficient method to construct 4-aryl-substituted β-carbolines from indole-2-methyl-α-aminoketones via a TMSOTf-promoted annulation reaction was reported. High yield along with wide substrate scope and functional group tolerance make this reaction applicable to build various highly potential bioactive β-carboline derivatives.
Collapse
Affiliation(s)
- Xin-Yu Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
7
|
Baldini E, Cardarelli S, Campese AF, Lori E, Fallahi P, Virili C, Forte F, Pironi D, Di Matteo FM, Palumbo P, Costanzo ML, D'Andrea V, Centanni M, Sorrenti S, Antonelli A, Ulisse S. Evaluation of the Therapeutic Effects of Harmine on Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2024; 25:1121. [PMID: 38256193 PMCID: PMC10816100 DOI: 10.3390/ijms25021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an extremely difficult disease to tackle, with an overall patient survival of only a few months. The currently used therapeutic drugs, such as kinase inhibitors or immune checkpoint inhibitors, can prolong patient survival but fail to eradicate the tumor. In addition, the onset of drug resistance and adverse side-effects over time drastically reduce the chances of treatment. We recently showed that Twist1, a transcription factor involved in the epithelial mesenchymal transition (EMT), was strongly upregulated in ATC, and we wondered whether it might represent a therapeutic target in ATC patients. To investigate this hypothesis, the effects of harmine, a β-carboline alkaloid shown to induce degradation of the Twist1 protein and to possess antitumoral activity in different cancer types, were evaluated on two ATC-derived cell lines, BHT-101 and CAL-62. The results obtained demonstrated that, in both cell lines, harmine reduced the level of Twist1 protein and reverted the EMT, as suggested by the augmentation of E-cadherin and decrease in fibronectin expression. The drug also inhibited cell proliferation and migration in a dose-dependent manner and significantly reduced the anchorage-independent growth of both ATC cell lines. Harmine was also capable of inducing apoptosis in BHT-101 cells, but not in CAL-62 ones. Finally, the activation of PI3K/Akt signaling, but not that of the MAPK, was drastically reduced in treated cells. Overall, these in vitro data suggest that harmine could represent a new therapeutic option for ATC treatment.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Silvia Cardarelli
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| | | | - Eleonora Lori
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 04100 Latina, Italy
| | - Flavio Forte
- Department of Urology, M.G. Vannini Hospital, 00177 Rome, Italy
| | - Daniele Pironi
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| | | | | | | | - Vito D'Andrea
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 04100 Latina, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Salvatore Ulisse
- Department of Surgery, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Pavić K, Poje G, Carvalho LPD, Held J, Rajić Z. Synthesis, antiproliferative and antiplasmodial evaluation of new chloroquine and mefloquine-based harmiquins. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:537-558. [PMID: 38147482 DOI: 10.2478/acph-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 12/28/2023]
Abstract
Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and β-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 μmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 μmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).
Collapse
Affiliation(s)
- Kristina Pavić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | - Goran Poje
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | | | - Jana Held
- 2University of Tübingen, Institute of Tropical Medicine, 72074, Tübingen Germany
- 3German Center for Infection Research (DZIF), 72074, Tübingen Germany
| | - Zrinka Rajić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| |
Collapse
|
9
|
Cho CC, Lin CJ, Huang HH, Yang WZ, Fei CY, Lin HY, Lee MS, Yuan HS. Mechanistic Insights into Harmine-Mediated Inhibition of Human DNA Methyltransferases and Prostate Cancer Cell Growth. ACS Chem Biol 2023; 18:1335-1350. [PMID: 37188336 PMCID: PMC10278071 DOI: 10.1021/acschembio.3c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 μM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 μM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Chun-Jung Lin
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hsun-Ho Huang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Hsin-Ying Lin
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Ming-Shyue Lee
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| |
Collapse
|
10
|
Design, synthesis and pharmacological evaluation of β-carboline derivatives as potential antitumor agent via targeting autophagy. Eur J Med Chem 2023; 246:114955. [PMID: 36459757 DOI: 10.1016/j.ejmech.2022.114955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
A series of novel β-carboline derivatives was designed, synthesized and evaluated as potential anticancer agents. Among them, compound 6g showed the most potent antiproliferative activity against the 786-0, HT-29 and 22RV1 cell lines with IC50 values of 2.71, 2.02, and 3.86 μM, respectively. The antitumor efficiency of compound 6gin vivo was also evaluated, and the results revealed that compound 6g significantly suppressed tumor development and reduced tumor weight in a mouse colorectal cancer homograft model. Further investigation on mechanisms of action demonstrated that compound 6g inhibited HCT116 cell growth by stimulating the ATG5/ATG7-dependent autophagic pathway. These molecules might be served as candidates for further development of colorectal cancer therapy agent.
Collapse
|
11
|
Design, synthesis and mechanism of action of novel 1,9-disubstituted β-carboline derivatives as antitumor agents. Biomed Pharmacother 2022; 153:113494. [DOI: 10.1016/j.biopha.2022.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
|
12
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liu SH, Wang QZ, Liu T, Bai R, Ma MM, Liu QL, Zhou HG, Liu J, Wang M. Enhanced Glioblastoma Selectivity of Harmine via the Albumin Carrier. J Biomed Nanotechnol 2022; 18:1052-1063. [PMID: 35854453 DOI: 10.1166/jbn.2022.3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glioblastoma, the most common tumor in the brain, has witnessed very little clinical progress over the last decades. Exploring and discovering new therapeutic strategies for glioblastoma has become a critical problem. Harmine (HM), belonging to the beta-carboline alkaloid, is a natural product and isolated from the seeds of Peganum harmala L., which own notable antitumor activity in vitro. However, the poor water solubility and less selectivity of HM severely limit its clinical use. For enhancing its selective ability to tumor cells, we fabricated a kind of protein nanoparticles (BSA-HM NPs), composed of the modified bovine serum albumin (BSA) and HM. It was substantiated through in vitro and in vivo experiment that BSA-HM NPs could predominantly accumulate in tumor tissues and exhibited remarkably enhanced antitumor efficacy. This study provides a promising strategy to improve the bioavailability and avoid side effects of HM as antitumor agents by choosing BSA as carriers.
Collapse
Affiliation(s)
- Shi-Hui Liu
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Qing-Zhen Wang
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Tao Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Ru Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Man-Man Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Qiao-Lin Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Hui-Ge Zhou
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Mei Wang
- Department of Pharmaceutics, College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, P. R. China
| |
Collapse
|
14
|
Beus M, Persoons L, Daelemans D, Schols D, Savijoki K, Varmanen P, Yli-Kauhaluoma J, Pavić K, Zorc B. Anthranilamides with quinoline and β-carboline scaffolds: design, synthesis, and biological activity. Mol Divers 2022; 26:2595-2612. [PMID: 34997441 PMCID: PMC8741576 DOI: 10.1007/s11030-021-10347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
In the present study, we report the design and synthesis of novel amide-type hybrid molecules based on anthranilic acid and quinoline or β-carboline heterocyclic scaffolds. Three types of biological screenings were performed: (i) in vitro antiproliferative screening against a panel of solid tumor and leukemia cell lines, (ii) antiviral screening against several RNA viruses, and (iii) anti-quorum sensing screening using gram-negative Chromobacterium violaceum as the reporter strain. Antiproliferative screening revealed a high activity of several compounds. Anthranilamides 12 and 13 with chloroquine core and halogenated anthranilic acid were the most active agents toward diverse cancer cell lines such as glioblastoma, pancreatic adenocarcinoma, colorectal carcinoma, lung carcinoma, acute lymphoblastic, acute myeloid, chronic myeloid leukemia, and non-Hodgkin lymphoma, but also against noncancerous cell lines. Boc-protected analogs 2 and 3 showed moderate activities against the tested cancer cells without toxic effects against noncancerous cells. A nonhalogenated quinoline derivative 10 with N-benzylanthranilic acid residue was equally active as 12 and 13 and selective toward tumor cells. Chloroquine and quinoline anthranilamides 10-13 exerted pronounced antiviral effect against human coronaviruses 229E and OC43, whereas 12 and 13 against coronavirus OC43 (EC50 values in low micromolar range; selectivity indices from 4.6 to > 10.4). Anthranilamides 14 and 16 with PQ core inhibited HIV-1 with EC50 values of 9.3 and 14.1 µM, respectively. Compound 13 displayed significant anti-quorum/biofilm effect against the quorum sensing reporter strain (IC50 of 3.7 μM) with no apparent bactericidal effect.
Collapse
Affiliation(s)
- Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, 00014, Helsinki, Finland.,Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristina Pavić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
15
|
Hu D, Han G, Li X, Ren H, Yue L, Guo L, Feng J. Synthesis and Evaluation in vitro of Novel Harmine Derivatives as Anticancer Activity Agents. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhang H, Cao R, Zeng F, Fan W, Guo L, Ma Q, Ke S. Bivalent β-Carbolines Inhibit Colorectal Cancer Growth through Inducing Autophagy. Chem Pharm Bull (Tokyo) 2021; 69:1104-1109. [PMID: 34719593 DOI: 10.1248/cpb.c21-00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a series of alkyl diamine linked bivalent β-carbolines was synthesized and evaluated as antitumor agent. The results demonstrated that most compounds displayed good antiproliferative activities with IC50 value lower than 10 µM against a panel of human tumor cell lines, and compound 8 was found to be the most potent antiproliferative agent with IC50 value of 1.39, 1.96, 1.42, 1.49, 1.32, 1.96 and 1.63 µM against human breast cancer cell line (MCF-7), human adenocarcinoma cell line (769-P), human malighant melanoma cell line (A375), human ovarian cancer cell line (SK-OV-3), human colon carcinoma cell line (HCT-116), human gastric cancer cell line (BGC-823) and human esophageal squamous carcinoma cell line (Eca-109), respectively. Further investigations on mechanism of action of this class of compound demonstrated that the representative compound 8 inhibited colorectal cancer growth through inducing autophagy.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Laboratory Medicine, Hunan Normal University School of Medicine
| | - Rihui Cao
- School of Chemistry, Sun Yat-sen University
| | - Feng Zeng
- Cancer Center, Renmin Hospital of Wuhan University
| | - Wenxi Fan
- Xinjiang Huashidan Pharmaceutical Co,. Ltd
| | - Liang Guo
- Xinjiang Huashidan Pharmaceutical Co,. Ltd
| | - Qin Ma
- Xinjiang Huashidan Pharmaceutical Co,. Ltd
| | - Shaobo Ke
- Cancer Center, Renmin Hospital of Wuhan University
| |
Collapse
|
17
|
Tarpley M, Oladapo HO, Strepay D, Caligan TB, Chdid L, Shehata H, Roques JR, Thomas R, Laudeman CP, Onyenwoke RU, Darr DB, Williams KP. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies. Eur J Pharm Sci 2021; 162:105821. [PMID: 33781856 PMCID: PMC8404221 DOI: 10.1016/j.ejps.2021.105821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is highly expressed in glioma, an aggressive brain tumor, and has been proposed as a therapeutic target for cancer. In the current study, we have used an optimized and validated time-resolved fluorescence energy transfer (TR-FRET)-based DYRK1A assay for high-throughput screening (HTS) in 384-well format. A small-scale screen of the FDA-approved Prestwick drug collection identified the β-carboline, harmine, and four related analogs as DYRK1A inhibitors. Hits were confirmed by dose response and in an orthogonal DYRK1A assay. Harmine's potential therapeutic use has been hampered by its off-target activity for monoamine oxidase A (MAO-A) which impacts multiple nervous system targets. Selectivity profiling of harmine and a broader collection of analogs allowed us to map some divergent SAR (structure-activity relationships) for the DYRK1A and MAO-A activities. The panel of harmine analogs had varying activities in vitro in glioblastoma (GBM) cell lines when tested for anti-proliferative effects using a high content imaging assay. In particular, of the identified analogs, harmol was found to have the best selectivity for DYRK1A over MAO-A and, when tested in a glioma tumor xenograft model, harmol demonstrated a better therapeutic window compared to harmine.
Collapse
Affiliation(s)
- Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Helen O Oladapo
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Dillon Strepay
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Thomas B Caligan
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Hassan Shehata
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Jose R Roques
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Rhashad Thomas
- Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences; North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
18
|
Soni JP, Yeole Y, Shankaraiah N. β-Carboline-based molecular hybrids as anticancer agents: a brief sketch. RSC Med Chem 2021; 12:730-750. [PMID: 34124672 PMCID: PMC8152596 DOI: 10.1039/d0md00422g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is a huge burden on the healthcare system and is foremost cause of mortality across the globe. Among various therapeutic strategies, chemotherapy plays an enormous role in overcoming the challenges of treating cancer, especially in late stage detection. However, limitations such as extreme side/adverse effects and drug resistance associated with available drugs have impelled the development of novel chemotherapeutic agents. In this regard, we have reviewed the development of β-carboline-based chemotherapeutic agents reported in last five years. The review mainly emphasizes on the molecular hybrids of β-carbolines with various pharmacophores, their synthetic strategies, and in vitro anticancer evaluation. In addition, the mechanisms of action, in silico studies, structural influence on the potency and selectivity among diverse cancer cell lines have been critically presented. The review updates readers on the diverse molecular hybrids prepared and the governing structural features of high potential molecules that can help in the future development of novel cytotoxic agents.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Yogesh Yeole
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
19
|
β-Carbolines as potential anticancer agents. Eur J Med Chem 2021; 216:113321. [PMID: 33684825 DOI: 10.1016/j.ejmech.2021.113321] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners.
Collapse
|
20
|
Alzain AA, Brisson L, Delaye PO, Pénichon M, Chadet S, Besson P, Chevalier S, Allouchi H, Mohamed MA, Roger S, Enguehard-Gueiffier C. Bioinspired imidazo[1,2-a:4,5-c']dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur J Med Chem 2021; 218:113258. [PMID: 33813152 DOI: 10.1016/j.ejmech.2021.113258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/24/2022]
Abstract
Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 μM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O box 20, Gezira, Sudan
| | - Lucie Brisson
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre-Olivier Delaye
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Mélanie Pénichon
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Stéphanie Chadet
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Pierre Besson
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Stéphan Chevalier
- University of Tours, INSERM, UMR 1069 N2C, 10 boulevard Tonnellé, 37032, Tours Cedex, France
| | - Hassan Allouchi
- University of Tours, Faculty of Pharmacy, EA 7502 SIMBA, 31 Avenue Monge, 37200, Tours, France
| | - Magdi A Mohamed
- University of Khartoum, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Khartoum, Sudan; Jouf University, College of Pharmacy, Department of Pharmaceutical Chemistry, Saudi Arabia
| | - Sébastien Roger
- University of Tours, EA 4245 T2I, 10 boulevard Tonnellé, 37032, Tours Cedex, France; Institut Universitaire de France, 75006, Paris, France.
| | | |
Collapse
|
21
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
22
|
Loidreau Y, Dubouilh-Benard C, Nourrisson MR, Loaëc N, Meijer L, Besson T, Marchand P. Exploring Kinase Inhibition Properties of 9 H-pyrimido[5,4- b]- and [4,5- b]indol-4-amine Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13050089. [PMID: 32397570 PMCID: PMC7281298 DOI: 10.3390/ph13050089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Carole Dubouilh-Benard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
| | - Nadège Loaëc
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
| | - Laurent Meijer
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| |
Collapse
|
23
|
Cui G, Yuan H, Jiang Z, Zhang J, Sun Z, Zhong G. Natural harmine negatively regulates the developmental signaling network of Drosophila melanogaster (Drosophilidae: Diptera) in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110134. [PMID: 31901541 DOI: 10.1016/j.ecoenv.2019.110134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The widely distributed β-carboline alkaloids exhibit promising psychopharmacological and biochemical effects. Harmine, a natural β-carboline, can inhibit insect growth and development with unclear mechanisms. In this study, harmine (at 0-200 mg/L) showed a dose-dependent inhibitory effect on the pupal weight, length, height, pupation rate and eclosion rate of fruit flies Drosophila melanogaster, which was similar to the inhibition induced by the well-known botanical insect growth regulator azadirachtin. Moreover, the expression levels of major regulators from the developmental signaling network were down-regulated during the pupal stage except Numb, Fringe, Yorkie and Pten. The Notch, Wnt, Hedgehog and TGF-β pathways mainly played vital roles in coping with harmine exposure in pupae stage, while the Hippo, Hedgehog and TGF-β elements were involved in the sex differences. Notch, Hippo, Hedgehog, Dpp and Armadillo were proved to be suppressed in the developmental inhibition with fly mutants, while Numb and Punt were increased by harmine. In conclusion, harmine significantly inhibited the development of Drosophila by negatively affecting their developmental signaling network during different stages. Our results establish a preliminary understanding of the developmental signaling network subjected to botanical component-induced growth inhibition and lay the groundwork for further application.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Haiqi Yuan
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiyan Jiang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Zhang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhipeng Sun
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Qadir A, Waseem MA, Khuroo MA. Efficient Metal‐Free Process: A Facile Synthesis of Biologically Versatile Harmol‐Linked Benzothiazoline Hybrids. ChemistrySelect 2020. [DOI: 10.1002/slct.201901640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anmbiya Qadir
- Laboratory of Natural product and Designing organic synthesis Department of Chemistry, University of Kashmir Kashmir- 190001 India
| | - Malik A. Waseem
- Laboratory of Natural product and Designing organic synthesis Department of Chemistry, University of Kashmir Kashmir- 190001 India
| | - Mohammad A. Khuroo
- Laboratory of Natural product and Designing organic synthesis, Department of Chemistry University of Kashmir Kashmir- 190001 India
| |
Collapse
|
25
|
Serdaroğlu G. Harmine derivatives: a comprehensive quantum chemical investigation of the structural, electronic (FMO, NBO, and MEP), and spectroscopic (FT-IR and UV–Vis) properties. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04020-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Design and Synthesis of a New Soluble Natural β-Carboline Derivative for Preclinical Study by Intravenous Injection. Int J Mol Sci 2019; 20:ijms20061491. [PMID: 30934601 PMCID: PMC6471559 DOI: 10.3390/ijms20061491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022] Open
Abstract
Harmine is a natural β-carboline compound showing several biological activities, including antiproliferative properties, but this soluble natural molecule lacks selectivity. Harmine derivatives were reported to overcome this problem, but they are usually poorly soluble. Here, we designed and synthesized a new 2, 7, 9-trisubstituted molecule (1-methyl-7-(3-methylbutoxy)-9-propyl-2-[(pyridin-2-yl)methyl]-9H-pyrido[3,4-b]indol-2-ium bromide) with a solubility of 1.87 ± 0.07 mg/mL in a simulated injection vehicle. This compound is stable for at least 72 h in acidic and physiological conditions (pH 1.1 and 7.4) as well as in a simulated injection vehicle (physiological liquid + 0.1% Tween80®). Solubility in those media is 1.06 ± 0.08 mg/mL and 1.62 ± 0.13 mg/mL at pH 7.4 and 1. The synthesized molecule displays a significant activity on five different cancer cell lines (IC50 range from 0.2 to 2 µM on A549, MDA-MB-231, PANC-1, T98G and Hs683 cell lines). This compound is also more active on cancer cells (MDA-MB-231) than on normal cells (MCF-10a) at IC50 concentrations. Due to its high activity at low concentration, such solubility values should be sufficient for further in vivo antitumoral activity evaluation via intravenous injection.
Collapse
|
27
|
Guo L, Ma Q, Chen W, Fan W, Zhang J, Dai B. Synthesis and biological evaluation of novel N 9-heterobivalent β-carbolines as angiogenesis inhibitors. J Enzyme Inhib Med Chem 2019; 34:375-387. [PMID: 30734606 PMCID: PMC6327987 DOI: 10.1080/14756366.2018.1497619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A series of novel N9-heterobivalent β-carbolines has been synthesized. All the novel compounds were tested for their anticancer activity against six tumour cell lines in vitro. Among these molecules, compounds 5b, and 5w exhibited strong cytotoxic activities with IC50 value of lower than 20 μM. Acute toxicities and antitumor efficacies of the selected compounds in mice were also evaluated, compounds 5b and 5w exhibited that tumour inhibition rate of over 40% in the Sarcoma 180 and Lewis lung cancer animal models. Preliminary structure-activity relationships (SARs) analysis indicated that: (1) C1-methylation and C7-methoxylation were favorable for increased activities; (2) 3-Pyridyl or 2-thienyl group substituent into position-1 of the β-carboline core, and the aryl substituent into another β-carboline ring might be detrimental to cytotoxic effects of this class compounds. Investigation of the preliminary mechanism of action demonstrated that compound 5b had obvious angiogenesis inhibitory effects in the chicken chorioallantoic membrane (CAM) assay.
Collapse
Affiliation(s)
- Liang Guo
- a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan , Shihezi University , Shihezi , China
| | - Qin Ma
- b XinJiang Huashidan Pharmaceutical Research Co. Ltd. , Urumqi , China
| | - Wei Chen
- b XinJiang Huashidan Pharmaceutical Research Co. Ltd. , Urumqi , China
| | - Wenxi Fan
- b XinJiang Huashidan Pharmaceutical Research Co. Ltd. , Urumqi , China
| | - Jie Zhang
- a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan , Shihezi University , Shihezi , China
| | - Bin Dai
- a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan , Shihezi University , Shihezi , China
| |
Collapse
|
28
|
Recio J, Pérez-Redondo A, Alvarez-Builla J, Burgos C. Access to 2-substituted 1-pyridin-3-yl-β-carboline derivatives by intramolecular radical cyclization-ring opening-SNAr substitution. Org Chem Front 2019. [DOI: 10.1039/c9qo00944b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new method for the synthesis of 1-pyridin-3-yl-β-carboline derivatives involving an intramolecular radical reaction and SNAr substitution, is described.
Collapse
Affiliation(s)
- Javier Recio
- Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR)
- Universidad de Alcalá
- 28805-Alcalá de Henares
- Madrid
- Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR)
- Universidad de Alcalá
- 28805-Alcalá de Henares
- Madrid
- Spain
| | - Julio Alvarez-Builla
- Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR)
- Universidad de Alcalá
- 28805-Alcalá de Henares
- Madrid
- Spain
| | - Carolina Burgos
- Departamento de Química Orgánica y Química Inorgánica and Instituto de Investigación Química "Andrés M. del Río" (IQAR)
- Universidad de Alcalá
- 28805-Alcalá de Henares
- Madrid
- Spain
| |
Collapse
|
29
|
Li S, Hu L, Li J, Zhu J, Zeng F, Huang Q, Qiu L, Du R, Cao R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur J Med Chem 2019; 162:666-678. [DOI: 10.1016/j.ejmech.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
30
|
Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. J Med Chem 2018; 61:7687-7699. [PMID: 30059217 PMCID: PMC6350255 DOI: 10.1021/acs.jmedchem.8b00658] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo. Since harmine has suboptimal kinase selectivity, we sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity, while retaining human β-cell proliferation capability. We carried out the optimization of the 1-position of harmine and synthesized 15 harmine analogues. Six compounds showed excellent DYRK1A inhibition with IC50 in the range of 49.5-264 nM. Two compounds, 2-2 and 2-8, exhibited excellent human β-cell proliferation at doses of 3-30 μM, and compound 2-2 showed improved kinase selectivity as compared to harmine.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ethan A Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
31
|
Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase. Future Med Chem 2018; 10:1435-1448. [PMID: 29788780 DOI: 10.4155/fmc-2018-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM There is little information available on the monoamine oxidase isoform selectivity of N-alkyl harmine analogs, which exhibit a myriad of activities including MAO-A, DYRK1A and cytotoxicity to several select cancer cell lines. RESULTS Compounds 3e and 4c exhibited an IC50 of 0.83 ± 0.03 and 0.43 ± 0.002 μM against MAO-A and an IC50 of 0.26 ± 0.04 and 0.36 ± 0.001 μM against MAO-B, respectively. Molecular docking studies revealed π-π interactions between the synthesized molecules and aromatic amino acid residues. Conclusion & future perspective: The current study delineates the structural requirements for MAO-A selectivity and such information may be helpful in designing selective analogs for kinase, DYRK1A and harmine-based cytotoxics without apparent MAO enzyme inhibition.
Collapse
|
32
|
Venkataramana Reddy PO, Hridhay M, Nikhil K, Khan S, Jha PN, Shah K, Kumar D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg Med Chem Lett 2018; 28:1278-1282. [PMID: 29573910 PMCID: PMC6423518 DOI: 10.1016/j.bmcl.2018.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
A series of sixteen β-carbolines, bearing chalcone moiety at C-1 position, were prepared from easily accessible 1-acetyl-β-carboline and various aldehydes under basic conditions followed by N2-alkylation using different alkyl bromides. The prepared compounds were evaluated for in vitro cytotoxicity against a panel of human tumor cell lines. N2-Alkylated-β-carboline chalcones 13a-i represented the interesting anticancer activities compared to N2-unsubstituted β-carboline chalcones 12a-g. Off the prepared β-carbolines, 13g exhibited broad spectrum of activity with IC50 values lower than 22.5 µM against all the tested cancer cell lines. Further, the N2-alkylated-β-carboline chalcone 13g markedly induced cell death in MDA-MB-231 cells by AO/EB staining assay. The most cytotoxic compound 13g possessed a relatively high drug score of 0.48. Additionally, the prepared β-carboline chalcones displayed moderate antibacterial activities against tested bacterial strains.
Collapse
Affiliation(s)
- P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - M Hridhay
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Shahid Khan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - P N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
33
|
Geng X, Ren Y, Wang F, Tian D, Yao X, Zhang Y, Tang J. Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem Biophys Res Commun 2018; 498:99-104. [PMID: 29501493 DOI: 10.1016/j.bbrc.2018.02.205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Harmine and its analogs have long been considered as anticancer agents. In vitro analyses suggested that intercalating DNA or inhibiting topoisomerase might contribute to the cytotoxic effect of this class of compound. However, this idea has not been rigorously tested in intact cells. By synthesizing novel derivatives, here we demonstrate that harmines did not activate the DNA damage response, a cellular signaling commonly induced by agents that intercalate DNA or inhibit topoisomerase. These findings suggest that mechanisms other than DNA intercalating or topoisomerase inhibiting contribute to the toxicity of harmines in vivo. Using a novel N2-benzyl and N9-arylated alkyl compound 10f that has good solubility and stability as the model, we show that harmines strongly inhibited the growth of cancer cells originated from breast, lung, bone and pancreas, but not that of normal fibroblasts. We further show that 10f induced apoptosis and inhibited autophagy in a dose and time-dependent manner. An apoptosis inhibitor suppressed 10f-induced cell death. Together, our results reveal previously unidentified insights into the anticancer mechanism of harmines, supporting future development of this compound class in the treatment of human cancers.
Collapse
Affiliation(s)
- Xinran Geng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yichang Ren
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
34
|
Guo L, Chen W, Cao R, Fan W, Ma Q, Zhang J, Dai B. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents. Eur J Med Chem 2018; 147:253-265. [PMID: 29448140 DOI: 10.1016/j.ejmech.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
A series of newly asymmetric dimeric β-carbolines with a spacer of 4-6 methylene units between the indole nitrogen and the harmine oxygen were synthesized. Structures of all the novel synthesized compounds were confirmed by their spectral and analytical studies. All of the synthesized compounds were screened for their in vitro cytotoxic activity against nine cancer cell lines. The results revealed that compounds 7c, 7o and 7s exhibited the highest cytotoxic activities with IC50 values of less than 20 μM against the tumor cell lines tested. Acute toxicities and antitumor efficacies of the selected compounds in mice were also evaluated, and compound 7o exhibited potent antitumor activities with the tumor inhibition rate of over 40%. The wound healing assay displayed a specific impairment in the motility of the HT-29 cells, which suggested the anti-metastatic potential of compound 7o. Moreover, compound 7o had obvious angiogenesis inhibitory effects in the chicken chorioallantoic membrane (CAM) assay. Preliminary structure-activity relationship (SAR) analysis indicated that: (1) 3-phenylpropyl substituent at the N9-position of the indole ring was the most suitable group giving rise to potent cytotoxic agents; (2) the spacer length affected the antitumor potencies, and four methylene units were more favorable.
Collapse
Affiliation(s)
- Liang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Wei Chen
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, PR China
| | - Rihui Cao
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, 135 Xin Gang West Road, Guangzhou 510275, PR China
| | - Wenxi Fan
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, PR China
| | - Qin Ma
- Xinjiang Huashidan Pharmaceutical Research Co. Ltd., 175 He Nan East Road, Urumqi 830011, PR China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
35
|
ELİK M, Serdaroğlu G. A Computational Study of 1-substituted methyl 9-methyl-9H-pyrido[3,4-b]indole-3-carboxylate: Quantum Chemical Descriptors, FMO and NBO Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.17776/csj.356185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Devi N, Kumar S, Pandey SK, Singh V. 1(3)-Formyl-β-carbolines: Potential Aldo-X Precursors for the Synthesis of β-Carboline-Based Molecular Architectures. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nisha Devi
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | - Sunit Kumar
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | | | - Virender Singh
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| |
Collapse
|
37
|
Yochum ZA, Cades J, Mazzacurati L, Neumann NM, Khetarpal SK, Chatterjee S, Wang H, Attar MA, Huang EHB, Chatley SN, Nugent K, Somasundaram A, Engh JA, Ewald AJ, Cho YJ, Rudin CM, Tran PT, Burns TF. A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer. Mol Cancer Res 2017; 15:1764-1776. [PMID: 28851812 DOI: 10.1158/1541-7786.mcr-17-0298] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.
Collapse
Affiliation(s)
- Zachary A Yochum
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Cades
- Department of Pharmacology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucia Mazzacurati
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susheel K Khetarpal
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Suman Chatterjee
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myriam A Attar
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Eric H-B Huang
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Sarah N Chatley
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Somasundaram
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Johnathan A Engh
- Department of Neurological Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, Oregon
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy F Burns
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Tahan A, Ahmadinejad N. Theoretical investigation of NMR–NQR tensors of hallucinogenic harmine in monomeric and cluster states. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study, density functional theory was employed to analyze the structure and nuclear magnetic resonance (NMR) — nuclear quadrupole resonance (NQR) spectra of hallucinogenic harmine in monomeric, dimeric, trimeric, and tetrameric states in the gas phase. Furthermore, the effects of hydrogen and resonance interactions on the values of NMR and NQR parameters of nitrogen nuclei in the four states mentioned above were investigated. The computations at the B3LYP/6-311[Formula: see text]G** level of theory indicated that NQR — NMR parameters of nitrogen nuclei varied for each of the four states and were strongly affected by chemical environment, molecular cluster size and molecular interactions. Accordingly, by increasing the participation of lone pair electrons in resonance interactions and aromaticity development, the values of NMR chemical shielding around them increased, whereas their NQR parameters ([Formula: see text] and [Formula: see text] decreased. In contrast, it could be observed that resonance interaction was not the only effective factor influencing changes in values and trends of NMR — NQR parameters by passing from monomeric state to other ones. Moreover, the negative charge on nitrogen atoms and the possibility of hydrogen bond formation were other important factors influencing NMR — NQR parameters.
Collapse
Affiliation(s)
- Arezoo Tahan
- Semnan Branch, Islamic Azad University, Semnan, Iran
| | - Neda Ahmadinejad
- Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
39
|
Kumar S, Singh A, Kumar K, Kumar V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur J Med Chem 2017; 142:48-73. [PMID: 28583770 DOI: 10.1016/j.ejmech.2017.05.059] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Cancer, an uncontrolled and rapid proliferation of abnormal cells, has become one of the leading cause of death worldwide. The development of resistance among the numerous drugs in clinical use has provided strong impetus for the identification and development of novel cancer therapeutics. β-carbolines constitute an important class of pharmacologically active scaffolds known to exert their anticancer activities via diverse mechanisms. The purpose of present review article is to update the readers on the current developments in β-carbolines with an emphasis on synthetic strategies, structure-activity relationships, mechanism of action and in vivo studies wherever possible.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kewal Kumar
- Department of Applied Chemistry, Giani Zail Singh Campus College of Engineering & Technology, MRSPTU, Dabwali Road, Bathinda, 151001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
40
|
Ayoob I, Hazari YM, Lone SH, Shakeel-u-Rehman, Khuroo MA, Fazili KM, Bhat KA. Phytochemical and Cytotoxic Evaluation of Peganum Harmala: Structure Activity Relationship Studies of Harmine. ChemistrySelect 2017. [DOI: 10.1002/slct.201700232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Iram Ayoob
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Younis M. Hazari
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Shabir H. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Shakeel-u-Rehman
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Mohammad A. Khuroo
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khalid M. Fazili
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| |
Collapse
|
41
|
Venkataramana Reddy PO, Mishra S, Tantak MP, Nikhil K, Sadana R, Shah K, Kumar D. Design, synthesis and in vitro cytotoxicity studies of novel β-carbolinium bromides. Bioorg Med Chem Lett 2017; 27:1379-1384. [PMID: 28254167 PMCID: PMC6368682 DOI: 10.1016/j.bmcl.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 11/30/2022]
Abstract
A series of novel β-carbolinium bromides has been synthesized from easily accessible β-carbolines and 1-aryl-2-bromoethanones. The newly synthesized compounds were evaluated for their in vitro anticancer activity. Among the synthesized derivatives, compounds 16l, 16o and 16s exhibited potent anticancer activity with IC50 values of <10μM against tested cancer cell lines. The most potent analogue 16l was broadly active against all the tested cancer cell lines (IC50=3.16-7.93μM). In order to test the mechanism of cell death, we exposed castration resistant prostate cancer cell line (C4-2) to compounds 16l and 16s, which resulted in increased levels of cleaved PARP1 and AO/EB staining, indicating that β-carbolinium salts induce apoptosis in these cells. Additionally, the most potent β-carbolines 16l and 16s were found to inhibit tubulin polymerization.
Collapse
Affiliation(s)
- P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Shriprada Mishra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Mukund P Tantak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Rachna Sadana
- Department of Natural Sciences, University of Houston - Downtown, Houston, TX 77002, United States
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
42
|
Singh D, Kumar V, Devi N, Malakar CC, Shankar R, Singh V. Metal-free Decarboxylative Amination: An Alternative Approach Towards Regioselective Synthesis of β-CarbolineN-fused Imidazoles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600970] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dharmender Singh
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Vipin Kumar
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Nisha Devi
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology (NIT) Manipur; Imphal 795004 Manipur India
| | - Ravi Shankar
- Bio-Organic Chemistry Division; CSIR - Indian Institute of Integrative Medicine (IIIM); Jammu 180001 India
| | - Virender Singh
- Department of Chemistry; National Institute of Technology (NIT); Jalandhar 144011 Punjab India
| |
Collapse
|
43
|
Chen W, Zhang G, Guo L, Fan W, Ma Q, Zhang X, Du R, Cao R. Synthesis and biological evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors. Eur J Med Chem 2016; 124:249-261. [DOI: 10.1016/j.ejmech.2016.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 02/09/2023]
|
44
|
Chen Q, Chen W, Fan W, Guo L, Ma Q, Zhang X, Du R, Cao R. Design, synthesis and biological evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors. Bioorg Med Chem Lett 2016; 26:5065-5068. [DOI: 10.1016/j.bmcl.2016.08.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
|
45
|
Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents. Sci Rep 2016; 6:33204. [PMID: 27625151 PMCID: PMC5021947 DOI: 10.1038/srep33204] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment.
Collapse
|
46
|
Long S, Sousa E, Kijjoa A, Pinto MMM. Marine Natural Products as Models to Circumvent Multidrug Resistance. Molecules 2016; 21:molecules21070892. [PMID: 27399665 PMCID: PMC6273648 DOI: 10.3390/molecules21070892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 02/01/2023] Open
Abstract
Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.
Collapse
Affiliation(s)
- Solida Long
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-123, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto 4050-123, Portugal.
| |
Collapse
|
47
|
Guo L, Chen W, Fan W, Ma Q, Sun R, Shao G, Cao R. Synthesis and preliminary evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel bivalent β-carbolines were synthesized and evaluated as potent angiogenesis inhibitors.
Collapse
Affiliation(s)
- Liang Guo
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
- Xinjiang Huashidan Pharmaceutical Co. Ltd
| | - Wei Chen
- Xinjiang Huashidan Pharmaceutical Co. Ltd
- Urumqi 830011
- PR China
| | - Wenxi Fan
- Xinjiang Huashidan Pharmaceutical Co. Ltd
- Urumqi 830011
- PR China
| | - Qin Ma
- Xinjiang Huashidan Pharmaceutical Co. Ltd
- Urumqi 830011
- PR China
| | - Rongqin Sun
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- PR China
| | - Guang Shao
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- PR China
| | - Rihui Cao
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- PR China
| |
Collapse
|
48
|
Yue Z, Zhang W, Lu Y, Yang Q, Ding Q, Xia J, Chen Y. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties. PeerJ 2015; 3:e1425. [PMID: 26644976 PMCID: PMC4671159 DOI: 10.7717/peerj.1425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.
Collapse
Affiliation(s)
- Zhenyu Yue
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Wenna Zhang
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Yongming Lu
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Qiaoyue Yang
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Qiuying Ding
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Junfeng Xia
- Institute of Health Sciences, Anhui University , Hefei, Anhui , China
| | - Yan Chen
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| |
Collapse
|
49
|
Dighe SU, Khan S, Soni I, Jain P, Shukla S, Yadav R, Sen P, Meeran SM, Batra S. Synthesis of β-Carboline-Based N-Heterocyclic Carbenes and Their Antiproliferative and Antimetastatic Activities against Human Breast Cancer Cells. J Med Chem 2015; 58:3485-99. [PMID: 25835200 DOI: 10.1021/acs.jmedchem.5b00016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of novel β-carboline-based N-heterocyclic carbenes was prepared via Mannich reaction between methyl 1-(dimethoxymethyl)-9H-pyrido[3,4-b]indole-3-carboxylate, formaldehyde, and primary amines. All compounds were evaluated for their antiproliferative activity using human breast cancer and lung cancer cell lines. Three compounds, 3c, 3j, and 3h, were discovered to display IC50 less than 10 μM against human breast cancer MDA-MB-231 cells at 24 h of treatment. Pharmacologically these compounds lead to G2/M phase cell cycle arrest and induction of cellular apoptosis by triggering intrinsic apoptotic pathway through depolarization of mitochondrial membrane potential and activation of caspases. At lower concentrations, these compounds also showed antimigratory and antiinvasive effects against highly metastatic human breast cancer MDA-MB-231 cells via aberration of MAP-kinase signaling and by the inhibition of matrix metalloproteinases. However, these analogues lack in vivo effect in mouse model which may be attributed to their strong affinity to HSA that was investigated spectroscopically with compound 3h.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev Yadav
- §Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pratik Sen
- §Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed M Meeran
- ∥Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Sanjay Batra
- ∥Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
50
|
Meinguet C, Bruyère C, Frédérick R, Mathieu V, Vancraeynest C, Pochet L, Laloy J, Mortier J, Wolber G, Kiss R, Masereel B, Wouters J. 3D-QSAR, design, synthesis and characterization of trisubstituted harmine derivatives with in vitro antiproliferative properties. Eur J Med Chem 2015; 94:45-55. [PMID: 25747498 DOI: 10.1016/j.ejmech.2015.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 11/18/2022]
Abstract
Apolar trisubstituted derivatives of harmine show high antiproliferative activity on diverse cancer cell lines. However, these molecules present a poor solubility making these compounds poorly bioavailable. Here, new compounds were synthesized in order to improve solubility while retaining antiproliferative activity. First, polar substituents have shown a higher solubility but a loss of antiproliferative activity. Second, a Comparative Molecular Field Analysis (CoMFA) model was developed, guiding the design and synthesis of eight new compounds. Characterization has underlined the in vitro antiproliferative character of these compounds on five cancerous cell lines, combining with a high solubility at physiological pH, making these molecules druggable. Moreover, targeting glioma treatment, human intestinal absorption and blood brain penetration have been calculated, showing high absorption and penetration properties.
Collapse
Affiliation(s)
- Céline Meinguet
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium.
| | - Céline Bruyère
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), University of Louvain (UCL), 73, Avenue Mounier, 1200 Bruxelles, Belgium
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Christelle Vancraeynest
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Julie Laloy
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Jérémie Mortier
- Institute of Pharmacy, Freie Universität Berlin, 2+4 Königin Luise Straβe, 14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, 2+4 Königin Luise Straβe, 14195 Berlin, Germany
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Bernard Masereel
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Johan Wouters
- Namur Medicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur (Unamur), 61, rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|