1
|
Başoğlu-Ünal F, Becer E, Ensarioğlu HK, -Güzeldemirci NU, Kuran ED, Vatansever HS. A newly synthesized thiosemicarbazide derivative trigger apoptosis rather than necroptosis on HEPG2 cell line. Chem Biol Drug Des 2024; 103:e14355. [PMID: 37776268 DOI: 10.1111/cbdd.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Thiosemicarbazide derivatives have been the focus of scientists owing to their broad biological activities such as anticancer, antimicrobial, and anti-inflammatory. Herein, we designed and synthesized a new thiosemicarbazide derivative (TS-1) and evaluated its antiproliferative potential against the human hepatocellular carcinoma cell line (HEPG2) and human umbilical vein endothelial cell line (ECV-304). Also, it was aimed to investigate the necroptotic and apoptotic cell death effects of TS-1 in HEPG2 cells, and these effects were supported by molecular docking. The new synthesized compound structure was characterized using various spectroscopic methods such as FT-IR, 1 H-NMR, 13 C-NMR, and elemental analysis. The cytotoxic activity of the tested compound was measured by the MTT assay. Apoptotic and necroptotic properties of the TS-1 were evaluated by indirect immunoperoxidase method using antibodies against Ki-67, Bax, Bcl-2, caspase-3, caspase-8, caspase-9, RIP3, and RIPK1. Apoptotic and necroptotic effects of TS-1 were supported by molecular docking. Compound TS-1 was synthesized as a pure compound with a high yield. The effective value of TS-1 was 10 μM in HEPG2 cells. TS-1 did not show any cytotoxic effect on ECV-304. Caspase-3 and RIPK1 immunoreactivities were significantly increased in HEPG2 cells after being treated with TS-1. As the results of the molecular docking studies, the molecular docking showed that the TS-1 exhibits H-bond interaction with various significant amino acid residues in the active site of both RIPK1. It could be concluded that TS-1 could be a promising novel therapeutic agent by inducing apoptosis rather than necroptosis in HEPG2 cells.
Collapse
Affiliation(s)
- Faika Başoğlu-Ünal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, European University of Lefke, Lefke, Turkey
| | - Eda Becer
- Department of Biochemistry, Faculty of pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| | - Hilal Kabadayı Ensarioğlu
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Ebru Didem Kuran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, İstanbul, Turkey
| | - H Seda Vatansever
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin, Turkey
| |
Collapse
|
2
|
Ahmed S, Mahendiran D, Bhat AR, Rahiman AK. Theoretical, in Vitro Antiproliferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Complexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem Biodivers 2023; 20:e202300702. [PMID: 37528701 DOI: 10.1002/cbdv.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Center for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| |
Collapse
|
3
|
Laamari Y, Bimoussa A, Fawzi M, Oubella A, Rohand T, Van Meervelt L, IttoMorjani MYA, Auhmani A. Synthesis, crystal structure and evaluation of anticancer activities of some novel heterocyclic compounds based on thymol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Habibi A, Bakhshi N, Moradi shoili Z, Amirmozafari N. Iron Oxide Nanoparticles Conjugated to Thiosemicarbazone Reduce the Survival of Cancer Cells by Increasing the Gene Expression of MicroRNA let-7c in Lung Cancer A549 Cells. ARCHIVES OF IRANIAN MEDICINE 2022; 25:807-816. [PMID: 37543908 PMCID: PMC10685841 DOI: 10.34172/aim.2022.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Cancer cells have a higher demand for iron to grow and proliferate. A new complex of iron nanoparticles and thiosemicarbazones was synthesized. Confirmation tests included UV-visible, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and zeta potential. METHODS MTT assay, flow cytometry and qRT-PCR were used to investigate anti-proliferative effect, amount of apoptosis and the effect of Fe3 O4 @Glu/BTSC on changes in gene expression of microRNA let-7c (let-7c), respectively. The specifications of Fe3 O4 @ Glu/BTSC were confirmed at 5 nm. RESULTS Fe3O4@Glu/BTSC was more effective than BTSC and Fe3 O4 on A549 cells (IC50=166.77 µg/mL) but its effect on healthy cells was smaller (CC50=189.15 µg/mL). The drug selectivity index (SI) was calculated to be 1.13. The initial apoptosis rate was 46.33% for Fe3 O4 @Glu/BTSC, 28.27% for BTSC and 26.02% for Fe3 O4 . BTSC and BTSC@Fe3 O4 inhibited the cell cycle progression in the Sub-G1 and S phases. let-7c expression was 6.9 times higher in treated cells compared to the control group. The expression rate was 2.2 with BTSC compared to the control group and 1.6 times for Fe3 O4. CONCLUSION Fe3 O4 @Glu/BTSC has proper anti-proliferative effects against lung cancer cells by increasing the expression of let-7c and inhibiting the cell cycle with the apoptosis activation pathway.
Collapse
Affiliation(s)
- Alireza Habibi
- Departman of Basic Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Nesa Bakhshi
- Departman of Molecular Cell Biology, Faculty of Science, Islamic Azad University of Lahijan, Lahijan, Iran
| | | | - Nour Amirmozafari
- Departman of Microbiology, School of Medicine, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Maldonado J, Acevedo W, Molinari A, Oliva A, Knox M, San Feliciano A. Synthesis, in vitro evaluation and molecular docking studies of novel naphthoisoxazolequinone carboxamide hybrids as potential antitumor agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2095410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Knox
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas-Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Universidad de Salamanca, Salamanca, Spain
- Programa de Pós-Graduaçao em Ciências Farmacêuticas, Universidade Do Vale Do Itajaí, UNIVALI, Itajaí, SC, Brazil
| |
Collapse
|
6
|
Yenilmez Çiftçi G, Bayık N, Turhal G, Nermin Başlılar İ, Demiroglu-Zergeroglu A. The first mono anthraquinone substituted monospiro cyclotriphosphazene derivatives and their effects on non-small cell lung cancer cells. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
8
|
Design, synthesis, antiproliferative activity, and cell cycle analysis of new thiosemicarbazone derivatives targeting ribonucleotide reductase. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
A novel 8-nitro quinoline-thiosemicarbazone analogues induces G1/S & G2/M phase cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway. Bioorg Chem 2020; 97:103709. [DOI: 10.1016/j.bioorg.2020.103709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023]
|
10
|
Hussein MA, Iqbal MA, Umar MI, Haque RA, Guan TS. Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
12
|
Jakovljević K, Joksović MD, Matić IZ, Petrović N, Stanojković T, Sladić D, Vujčić M, Janović B, Joksović L, Trifunović S, Marković V. Novel 1,3,4-thiadiazole-chalcone hybrids containing catechol moiety: synthesis, antioxidant activity, cytotoxicity and DNA interaction studies. MEDCHEMCOMM 2018; 9:1679-1697. [PMID: 30429973 DOI: 10.1039/c8md00316e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Hybrid compounds that combine the 1,3,4-thiadiazole-containing catechol moiety with a chalcone motif were synthesized and examined for their antioxidant activity, cytotoxicity, and DNA-binding activity. A series of thirteen compounds showed strong antioxidant and cytotoxic effects on human acute promyelocytic leukemia HL-60 cells. Several compounds exerted good cytotoxic activities on cervical adenocarcinoma HeLa cells. The treatment of HeLa cells with IC50 and double IC50 concentrations of the compounds 5a, 5c, 5f, and 5m induced a statistically significant increase in the percentage of cells within a subG1 cell cycle phase. The examined compounds caused G2/M cell cycle arrest in HeLa cells. Each of these compounds triggered apoptosis in HeLa cells through activation of caspase-3, the main effector caspase, caspase-8, which is involved in the extrinsic apoptotic pathway, and caspase-9, which is involved in the intrinsic apoptotic pathway. All of the examined compounds decreased the expression levels of MMP2 in HeLa cells and levels of protumorigenic miR-133b. Compounds 5a and 5m lowered the expression level of oncogenic miR-21 in HeLa cells. In addition, compounds 5a, 5f, and 5m decreased the expression levels of oncogenic miR-155 while the treatment of HeLa cells with compounds 5a, 5c, and 5f increased expression of tumor-suppressive miR-206. Observed effects of these compounds on expression levels of four examined miRNAs suggest their prominent cancer-suppressive activity. An investigation by absorption and fluorescence spectroscopy showed more efficient calf thymus DNA binding activity of the compound 5m in comparison to other tested compounds. Results of a pUC19 plasmid cleavage study and comet assay showed DNA damaging activities of compounds 5a and 5c.
Collapse
Affiliation(s)
- Katarina Jakovljević
- Faculty of Science , Department of Chemistry , University of Kragujevac , R. Domanovica 12 , 34000 Kragujevac , Serbia .
| | - Milan D Joksović
- Faculty of Science , Department of Chemistry , University of Kragujevac , R. Domanovica 12 , 34000 Kragujevac , Serbia .
| | - Ivana Z Matić
- Institute of Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Nina Petrović
- Institute of Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia.,Laboratory for Radiobiology and Molecular Genetics , "Vinča" Institute of Nuclear Sciences , University of Belgrade , 11000 Belgrade , Serbia
| | - Tatjana Stanojković
- Institute of Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Dušan Sladić
- Faculty of Chemistry , University of Belgrade , Studentski trg 16 , 11000 Belgrade , Serbia
| | - Miroslava Vujčić
- Institute for Chemistry , Technology and Metallurgy , Njegoševa 12 , 11000 Belgrade , Serbia
| | - Barbara Janović
- Institute for Chemistry , Technology and Metallurgy , Njegoševa 12 , 11000 Belgrade , Serbia
| | - Ljubinka Joksović
- Faculty of Science , Department of Chemistry , University of Kragujevac , R. Domanovica 12 , 34000 Kragujevac , Serbia .
| | - Snežana Trifunović
- Faculty of Chemistry , University of Belgrade , Studentski trg 16 , 11000 Belgrade , Serbia
| | - Violeta Marković
- Faculty of Science , Department of Chemistry , University of Kragujevac , R. Domanovica 12 , 34000 Kragujevac , Serbia .
| |
Collapse
|
13
|
de Almeida SMV, Ribeiro AG, de Lima Silva GC, Ferreira Alves JE, Beltrão EIC, de Oliveira JF, de Carvalho LB, Alves de Lima MDC. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017; 96:1538-1556. [DOI: 10.1016/j.biopha.2017.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
|
14
|
Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution. Sci Rep 2017; 7:13766. [PMID: 29062001 PMCID: PMC5653788 DOI: 10.1038/s41598-017-14094-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) and atoms in molecules (AIM) theory are combined to study the photoinduced excited state intramolecular proton transfer (ESIPT) dynamics for eight anthraquinones (AQs) derivatives in solution. The calculated absorption and emission spectra are consistent with the available experimental data, verifying the suitability of the theory selected. The systems with the excited-state exothermic proton transfer, such as 1-HAQ, 1,5-DHAQ and TFAQ, emit completely from transfer structure (T), while the reactions for those without ESIPT including 1,4-DHAQ and AAAQ appear to be endothermic. Three reaction properties of three systems (1,8-DHAQ, DCAQ and CAAQ) are between the exothermic and endothermic, sensitive to the solvent. Energy scanning shows that 1,4-DHAQ and AAAQ exhibit the higher ESIPT energy barriers compared to 1-HAQ, 1,5-DHAQ and TFAQ with the "barrierless" ESIPT process. The ESIPT process is facilitated by the strengthening of hydrogen bonds in excited state. With AIM theory, it is observed that the change in electrons density ρ(r) and potential energy density V(r) at BCP position between ground state and excited state are crucial factors to quantitatively elucidate the ESIPT.
Collapse
|
15
|
Rogolino D, Cavazzoni A, Gatti A, Tegoni M, Pelosi G, Verdolino V, Fumarola C, Cretella D, Petronini PG, Carcelli M. Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands. Eur J Med Chem 2017; 128:140-153. [DOI: 10.1016/j.ejmech.2017.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 01/21/2017] [Indexed: 01/21/2023]
|
16
|
de Oliveira JF, da Silva AL, Vendramini-Costa DB, da Cruz Amorim CA, Campos JF, Ribeiro AG, Olímpio de Moura R, Neves JL, Ruiz ALTG, Ernesto de Carvalho J, Alves de Lima MDC. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur J Med Chem 2015; 104:148-56. [DOI: 10.1016/j.ejmech.2015.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
|
17
|
Onder Nİ, İncesu Z, Özkay Y. Synthesis and evaluation of new dithiocarbamic acid 6,11-dioxo-6,11-dihydro-1H-anthra[1,2-d]-imidazol-2-yl methyl esters. Arch Pharm (Weinheim) 2015; 348:508-17. [PMID: 25996310 DOI: 10.1002/ardp.201500063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 11/06/2022]
Abstract
A novel series of dithiocarbamic acid 6,11-dioxo-6,11-dihydro-1H-anthra[1,2-d]imidazol-2-yl methyl esters were synthesized and their cytotoxic and apoptotic activities were evaluated on HeLa cells. Some of these compounds showed potent cytotoxic activities and are able to induce the apoptosis mechanism in this cell line. Especially, 2c, 2d, and 2f had a high cytotoxic activity with an IC50 value of 8 or 10 μM at 24 h. These three compounds also induced HeLa cell apoptosis as compared to mitoxantrone. Particularly, 3 μM of 2f induced a high rate of early apoptotic cells (12.9%) at 6 h whereas mitoxantrone induced early apoptosis (5.5%) at 24 h. Compound 2c demonstrated a high ADP/ATP ratio (9.31) in HeLa cells at 12 h compared to mitoxantrone or other compounds, suggesting that 2c might induce HeLa cell apoptosis through the mitochondrial pathway. Caspase-3 activity started to increase after treatment with 6 μM of 2c for 6 h, and the maximal peak of activity was obtained at 12 h of incubation time. All three compounds were found to be potent apoptotic inducers compared to mitoxantrone.
Collapse
Affiliation(s)
- Nur İpek Onder
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zerrin İncesu
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
18
|
Marković V, Debeljak N, Stanojković T, Kolundžija B, Sladić D, Vujčić M, Janović B, Tanić N, Perović M, Tešić V, Antić J, Joksović MD. Anthraquinone–chalcone hybrids: Synthesis, preliminary antiproliferative evaluation and DNA-interaction studies. Eur J Med Chem 2015; 89:401-10. [DOI: 10.1016/j.ejmech.2014.10.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/01/2022]
|
19
|
Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with a thiosemicarbazone derived from 3-formyl-6-methylchromone. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.05.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Kolundžija B, Marković V, Stanojković T, Joksović L, Matić I, Todorović N, Nikolić M, Joksović MD. Novel anthraquinone based chalcone analogues containing an imine fragment: Synthesis, cytotoxicity and anti-angiogenic activity. Bioorg Med Chem Lett 2014; 24:65-71. [DOI: 10.1016/j.bmcl.2013.11.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
|
21
|
Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|