1
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Kadsanit N, Worsawat P, Sakonsinsiri C, McElroy CR, Macquarrie D, Noppawan P, Hunt AJ. Sustainable methods for the carboxymethylation and methylation of ursolic acid with dimethyl carbonate under mild and acidic conditions. RSC Adv 2024; 14:16921-16934. [PMID: 38799212 PMCID: PMC11124730 DOI: 10.1039/d4ra02122c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Ursolic acid is a triterpene plant extract that exhibits significant potential as an anti-cancer, anti-tumour, and anti-inflammatory agent. Its direct use in the pharmaceutical industry is hampered by poor uptake of ursolic acid in the human body coupled with rapid metabolism causing a decrease in bioactivity. Modification of ursolic acid can overcome such issues, however, use of toxic reagents, unsustainable synthetic routes and poor reaction metrics have limited its potential. Herein, we demonstrate the first reported carboxymethylation and/or methylation of ursolic acid with dimethyl carbonate (DMC) as a green solvent and sustainable reagent under acidic conditions. The reaction of DMC with ursolic acid, in the presence of PTSA, ZnCl2, or H2SO4-SiO2 yielded the carboxymethylation product 3β-[[methoxy]carbonyl]oxyurs-12-en-28-oic acid, the methylation product 3β-methoxyurs-12-en-28-oic acid and the dehydration product urs-2,12-dien-28-oic acid. PTSA demonstrated high conversion and selectivity towards the previously unreported carboxymethylation of ursolic acid, while the application of formic acid in the system led to formylation of ursolic acid (3β-formylurs-12-en-28-oic acid) in quantitative yields via esterification, with DMC acting solely as a solvent. Meanwhile, the methylation product of ursolic acid, 3β-methoxyurs-12-en-28-oic acid, was successfully synthesised with FeCl3, demonstrating exceptional conversion and selectivity, >99% and 99%, respectively. Confirmed with the use of qualitative and quantitative green metrics, this result represents a significant improvement in conversion, selectivity, safety, and sustainability over previously reported methods of ursolic acid modification. It was demonstrated that these methods could be applied to other triterpenoids, including corosolic acid. The study also explored the potential pharmaceutical applications of ursolic acid, corosolic acid, and their derivatives, particularly in anti-inflammatory, anti-cancer, and anti-tumour treatments, using molecular ADMET and docking methods. The methods developed in this work have led to the synthesis of novel molecules, thus creating opportunities for the future investigation of biological activity and the modification of a wide range of triterpenoids applying acidic DMC systems to deliver novel active pharmaceutical intermediates.
Collapse
Affiliation(s)
- Nuttapong Kadsanit
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Pattamabhorn Worsawat
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Con R McElroy
- School of Chemistry, University of Lincoln Brayford Pool Campus Lincoln LN6 7TS UK
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Duncan Macquarrie
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Pakin Noppawan
- Department of Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
3
|
Zakirova L, Baikova I, Lobov A, Kukovinets O, Кazakova O. An unexpected conversion of 2E-furfurylidene-3-oxo-24-nor-allobetulin to 23-nor-allobetulins. Steroids 2024; 203:109379. [PMID: 38286318 DOI: 10.1016/j.steroids.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
A series of 2E-furfurylidene-23-nor- and 24-nor-allobetulins has been synthesized by the Claisen-Schmidt condensation and conditions of their formation were studied in detail. It was found that among an expected 2E-furfurylidene-3-oxo-24-nor-allobetulin 4 two byproducts holding 3-oxo-4α-hydroxy- 5 and 3β,4α-dihydroxy- 6 substituents were formed, which could become the main products under the change of reaction time and amount of the base solution. Moreover, a conversion of individual 2E-furfurylidene-23-nor-3-oxo-4α-hydroxy- 5 into 2E-furfurylidene-23-nor-3β,4α-dihydroxy-derivative 6 under the treatment with the base solution was observed. An inversion of the configuration at C4 from 24-nor- to 23-nor-allobetulins for compounds 5 - 7 was proved by the NMR spectra. The probable explanation of compound 5 formation includes oxidation by atmospheric oxygen to 4-hydroperoxide, which was further transformed into 4-hydroxy-group. In the presence of the base the reduction C3(=O)-function of compound 5 occurs like Meerwein- Ponndorf-Verley reaction to give compound 6. As a result, a difference in the reactivity of native allobetulin scaffold and 24-nor-allobetulin in the Claisen-Schmidt condensation was observed and a first case of conversion 24-nor- to 23-nor-allobetulin derivatives was described.
Collapse
Affiliation(s)
- Liana Zakirova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71, prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Irina Baikova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71, prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Alexander Lobov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71, prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Olga Kukovinets
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71, prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Oxana Кazakova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71, prospect Oktyabrya, 450054 Ufa, Russian Federation.
| |
Collapse
|
4
|
Khwaza V, Oselusi SO, Morifi E, Nwamadi M, Hlope KS, Ndinteh DT, Matsebatlela TM, Oyedeji OO, Aderibigbe BA. Synthesis of Ursolic Acid-based Hybrids: In Vitro Antibacterial, Cytotoxicity Studies, In Silico Physicochemical and Pharmacokinetic Properties. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:232-253. [PMID: 38317466 DOI: 10.2174/0127724344272444231114103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND There is a critical need for the discovery of novel and effective antibacterial or anticancer molecules. OBJECTIVES Amine-linked ursolic acid-based hybrid compounds were prepared in good yields in the range of 60-68%. METHODS Their molecular structures were successfully confirmed using different spectroscopic methods including 1H/13C NMR, UHPLC-HRMS and FTIR spectroscopy. The in vitro cytotoxicity of some of these hybrid molecules against three human tumour cells, such as MDA-MB23, MCF7, and HeLa was evaluated using the MTT colorimetric method. RESULT Their antibacterial efficacy was evaluated against eleven bacterial pathogens using a serial dilution assay. Majority of the bacterial strains were inhibited significantly by compounds 17 and 24, with the lowest MIC values in the range of 15.3-31.25 μg/mL. Compound 16 exhibited higher cytotoxicity against HeLa cells than ursolic acid, with an IC50 value of 43.64 g/mL. CONCLUSION The in vitro antibacterial activity and cytotoxicity of these hybrid compounds demonstrated that ursolic acid-based hybrid molecules are promising compounds. Further research into ursolic acid-based hybrid compounds is required.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Samson Olaitan Oselusi
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, Johannesburg, South Africa
| | - Mutshinyalo Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
| | - Kamogelo S Hlope
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Thabe Moses Matsebatlela
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| |
Collapse
|
5
|
Zhong Y, Tian X, Jiang X, Dang W, Cheng M, Li N, Liu Y. Novel Ziyuglycoside II derivatives inhibit MCF-7 cell proliferation via inducing apoptosis and autophagy. Bioorg Chem 2023; 139:106752. [PMID: 37499529 DOI: 10.1016/j.bioorg.2023.106752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A series of novel ziyuglycoside II derivatives were synthesized based on the classical 1,2,3-triazole moiety. Among the tested derivatives (Z-1 - Z-15), the compound Z-15 demonstrated the most potent antiproliferative effect on K562, MCF-7 and MV411 cell lines. Moreover, Z-15 did not show obvious cytotoxicity on MCF-10A cell, a human normal mammary epithelial cell. The cell colony formation assay showed that, compared to ziyuglycoside II and 5-fluorouracil, Z-15 could inhibit cell proliferation more robustly. Wound healing assays indicated that Z-15 could significantly inhibit MCF-7 cell migration. Further mechanistic research revealed that Z-15 induced mitochondrial-mediated apoptosis and autophagy in MCF-7 cell line in a dose-dependent manner.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyue Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
7
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
8
|
Kornel A, Nadile M, Tsiani E. Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules 2022; 27:7466. [PMID: 36364289 PMCID: PMC9655894 DOI: 10.3390/molecules27217466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally. Despite current treatment approaches that include surgery, chemotherapy, radiation and immunotherapies, lung cancer accounted for 1.79 million deaths worldwide in 2020, emphasizing the urgent need to find novel agents and approaches for more effective treatment. Traditionally, chemicals derived from plants, such as paclitaxel and docetaxel, have been used in cancer treatment, and in recent years, research has focused on finding other plant-derived chemicals that can be used in the fight against lung cancer. Ursolic acid is a polyphenol found in high concentrations in cranberries and other fruits and has been demonstrated to have anti-inflammatory, antioxidant and anticancer properties. In this review, we summarize recent research examining the effects of ursolic acid and its derivatives on lung cancer. Data from in vitro cell culture and in vivo animal studies show potent anticancer effects of ursolic acid and indicate the need for clinical studies.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
9
|
Huang X, Zhang CH, Deng H, Wu D, Guo HY, Lee JJ, Chen FE, Shen QK, Jin LL, Quan ZS. Synthesis and evaluation of anticancer activity of quillaic acid derivatives: A cell cycle arrest and apoptosis inducer through NF-κB and MAPK pathways. Front Chem 2022; 10:951713. [PMID: 36157038 PMCID: PMC9490060 DOI: 10.3389/fchem.2022.951713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
A series of quillaic acid derivatives with different substituents on the 28-carboxyl group were designed and synthesized. Five human cancer cell lines (HCT116, BEL7402, HepG2, SW620, and MCF-7) were evaluated for their antitumor activity in vitro. Some of the tested derivatives showed improved antiproliferative activity compared to the lead compound, quillaic acid. Among them, compound E (IC50 = 2.46 ± 0.44 μM) showed the strongest antiproliferative activity against HCT116 cells; compared with quillaic acid (IC50 > 10 μM), its efficacy against HCT116 cancer cells was approximately 4-fold higher than that of quillaic acid. Compound E also induces cell cycle arrest and apoptosis by modulating NF-κB and MAPK pathways. Therefore, the development of compound E is certainly valuable for anti-tumor applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li-Li Jin
- *Correspondence: Li-Li Jin, ; Zhe-Shan Quan,
| | | |
Collapse
|
10
|
Luan M, Xu Y, Zhang X, Li D, Yan M, Hou G, Meng Q, Zhao F, Zhao F. Design and synthesis of novel aza-ursolic acid derivatives: in vitro cytotoxicity and nitric oxide release inhibitory activity. Future Med Chem 2022; 14:535-555. [PMID: 35286228 DOI: 10.4155/fmc-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Inducible nitric oxide synthase (iNOS) is a validated target for anti-inflammatory treatment. Based on the authors' previous work, novel aza-ursolic acid derivatives were designed and synthesized and their inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) release from RAW264.7 cells was evaluated. Materials & results: 16 novel derivatives were screened for their in vitro inhibitory activity against NO release using Griess assays and the cytotoxicity was evaluated using MTT assays. The presence of furoxan joined to the A-ring of ursolic acid and N-methylpiperazine groups in the lead compound was identified for anti-inflammatory activity, and compound 21b showed 94.96% inhibition of NO release at 100 μM with an IC50 value of 8.58 μM. Conclusion: Compound 21b has potential anti-inflammatory activity with low cytotoxicity that warrants further preclinical study and evaluation.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yaoyao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengjun Yan
- Yantai Raphael Biotechnology Co., Ltd, Yantai, 264043, PR China
| | - Guige Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, PR China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
11
|
Feng Y, Wang W, Zhang Y, Fu X, Ping K, Zhao J, Lei Y, Mou Y, Wang S. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur J Med Chem 2021; 229:114070. [PMID: 34968902 DOI: 10.1016/j.ejmech.2021.114070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 μM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 μM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.
Collapse
Affiliation(s)
- Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Wenbao Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
12
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
13
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
14
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Ganaie BA, Shahid M, Rashid A, Ara T, Ahmad Banday J, Malik F, Bhat BA. Platanic Acid-Aryl Enones as Potential Anticancer Compounds: Synthesis and Biological Profiling against Breast, Prostate and Lung Cancer Cell Lines. Chem Biodivers 2021; 18:e2100292. [PMID: 34467653 DOI: 10.1002/cbdv.202100292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/19/2021] [Indexed: 11/11/2022]
Abstract
A series of rationally designed platanic acid-based compounds derived from naturally occurring betulinic acid were synthesized through a sequence of Lemieux-Johnson oxidation and Aldol condensation reaction. All the compounds were screened for cytotoxicity against a panel of human cancer and normal cell lines using MTT assay. From the biological data, it was observed that some of these semi-synthetic congeners exhibited potent biological profiles compared to platanic acid. One of the compounds with the p-tolyl substitution was found to be most active in this study, and its cytotoxicity against two of the cell lines, MDA-MB 231 and A-549 were in tune with the standard compound, 5-fluorouracil.
Collapse
Affiliation(s)
- Bilal Ahmad Ganaie
- National Institute of Technology, Hazratbal, Srinagar, 190006, India.,CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, 190005, India
| | - Mir Shahid
- CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, 190005, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Auqib Rashid
- CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, 190005, India
| | - Tabassum Ara
- National Institute of Technology, Hazratbal, Srinagar, 190006, India
| | | | - Fayaz Malik
- CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, 190005, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, 190005, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Teli B, Waseem MA, Rashid S, Ganaie BA, Bhat BA. Catalyst free synthesis of
2‐Aryl‐2
H
‐benzo[
b
][1,4]oxazines and
3‐Aryl‐2H
‐benzo[
b
][1,4]thiazin‐2‐ones: An ultrasonication‐assisted strategy. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bisma Teli
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Malik Abdul Waseem
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Showkat Rashid
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Bilal Ahmad Ganaie
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Bilal A. Bhat
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
17
|
Khwaza V, Mlala S, Oyedeji OO, Aderibigbe BA. Pentacyclic Triterpenoids with Nitrogen-Containing Heterocyclic Moiety, Privileged Hybrids in Anticancer Drug Discovery. Molecules 2021; 26:molecules26092401. [PMID: 33918996 PMCID: PMC8122576 DOI: 10.3390/molecules26092401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pentacyclic triterpenoids are well-known phytochemicals with various biological activities commonly found in plants as secondary metabolites. The wide range of biological activities exhibited by triterpenoids has made them the most valuable sources of pharmacological agents. A number of novel triterpenoid derivatives with many skeletal modifications have been developed. The most important modifications are the formation of analogues or derivatives with nitrogen-containing heterocyclic scaffolds. The derivatives with nitrogen-containing heterocyclic compounds are among the most promising candidate for the development of novel therapeutic drugs. About 75% of FDA-approved drugs are nitrogen-containing heterocyclic moieties. The unique properties of heterocyclic compounds have encouraged many researchers to develop new triterpenoid analogous with pharmacological activities. In this review, we discuss recent advances of nitrogen-containing heterocyclic triterpenoids as potential therapeutic agents. This comprehensive review will assist medicinal chemists to understand new strategies that can result in the development of compounds with potential therapeutic efficacy.
Collapse
|
18
|
Hassan Mir R, Godavari G, Siddiqui NA, Ahmad B, Mothana RA, Ullah R, Almarfadi OM, Jachak SM, Masoodi MH. Design, Synthesis, Molecular Modelling, and Biological Evaluation of Oleanolic Acid-Arylidene Derivatives as Potential Anti-Inflammatory Agents. Drug Des Devel Ther 2021; 15:385-397. [PMID: 33574657 PMCID: PMC7871991 DOI: 10.2147/dddt.s291784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Oleanolic acid, a pentacyclic triterpenic acid, is widely distributed in medicinal plants and is the most commonly studied triterpene for various biological activities, including anti-allergic, anti-cancer, and anti-inflammatory. METHODS The present study was carried out to synthesize arylidene derivatives of oleanolic acid at the C-2 position by Claisen Schmidt condensation to develop more effective anti-inflammatory agents. The derivatives were screened for anti-inflammatory activity by scrutinizing NO production inhibition in RAW 264.7 cells induced by LPS and their cytotoxicity. The potential candidates were further screened for inhibition of LPS-induced interleukin (IL-6) and tumour necrosis factor-alpha (TNF-α) production in RAW 264.7 cells. RESULTS The results of in vitro studies revealed that derivatives 3d, 3e, 3L, and 3o are comparable to that of the oleanolic acid on the inhibition of TNF-α and IL-6 release. However, derivative 3L was identified as the most potent inhibitor of IL-6 (77.2%) and TNF-α (75.4%) when compared to parent compound, and compounds 3a (77.18%), 3d (71.5%), and 3e (68.8%) showed potent inhibition of NO than oleanolic acid (65.22%) at 10µM. Besides, from docking score and Cyscore analysis analogs (3e, 3L, 3n) showed greater affinity towards TNF-α and IL-1β than dexamethasone. CONCLUSION Herein, we report a series of 15 new arylidene derivatives of oleanolic acid by Claisen Schmidt condensation reaction. All the compounds synthesized were screened for their anti-inflammatory activity against NO, TNF-α and IL-6. From the data, it was evident that most of the compounds exhibited better anti-inflammatory activity.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Goutami Godavari
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
19
|
Liu G, Li J, Shi L, Liu M, Cai B. Advances in the Study of Structural Modification and Biological Activities of Ursolic Acid. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zheng H, Feng H, Zhang W, Han Y, Zhao W. Targeting autophagy by natural product Ursolic acid for prevention and treatment of osteoporosis. Toxicol Appl Pharmacol 2020; 409:115271. [PMID: 33065153 DOI: 10.1016/j.taap.2020.115271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
With the growth of the aging population, osteoporosis is becoming a global health problem. Ursolic acid (UA) is an active ingredient existed in a variety of foods and nature plants and owns plenty of pharmacological effects especially in treating metabolic disease. Our predication from network pharmacology hinted that UA has potential for ameliorating osteoporosis. Firstly through in vivo experiment, we confirmed that UA administration obviously protected against ovariectomy (OVX)-induced osteoporosis in rats by improving microarchitectural deterioration of trabecular bone (P < 0.001), decreasing numbers of TRAP positive osteoclast in vertebra (P < 0.001), as well as decreasing serum osteoclast-specific cytokines release (P < 0.001). Besides, UA ameliorated kidney damage secondary to OVX-induced osteoporosis by ameliorating glomerular atrophy, decreasing BUN and creatinine levels in OVX rats. In vitro, UA noticeably decreased osteoclastic-special marker proteins c-Fos and NFATc1 expressions (P < 0.001) in response to RANKL stimulation in macrophagy. Importantly, autophagy pathway was activated in the process of osteoclast differentiation and blocked by UA pretreatment. Furthermore, autophagy inhibitors suppressed osteoclast differentiation (P < 0.001). Collectively, UA may ameliorate osteoporosis by suppressing osteoclast differentiation mediated by autophagy. Our research provides scientific support for UA treating osteoporosis and offers an optimal dose for daily intake of UA safely to prevent bone diseases.
Collapse
Affiliation(s)
- Haoyi Zheng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Haitao Feng
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Wenzhong Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yantao Han
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Wenwen Zhao
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China.
| |
Collapse
|
21
|
Wang R, Li Y, Dehaen W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem 2020; 207:112737. [DOI: 10.1016/j.ejmech.2020.112737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
|
22
|
Popov SA, Semenova MD, Baev DS, Frolova TS, Shestopalov MA, Wang C, Qi Z, Shults EE, Turks M. Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids 2020; 162:108698. [PMID: 32687846 DOI: 10.1016/j.steroids.2020.108698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Ursane and lupane type (1-((5-aryl-1,3,4-oxadiazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl and (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl hybrids were prepared by 1,3-cycloaddition reactions of azole-derived azides with alkyne esters connected to positions C-3 and C-28 of triterpene core and tested for cytotoxicity. Hybrid compounds of 1,3,4-oxadiazoles attached at positions 3- and 28- of triterpenoid frame via triazole spacer and combinations of 1,2,5-oxadiazole or 1,3,4-oxadiazole, tethered with succinate linker and 1,2,3-triazole at the position 3- of the ursane backbone, were inactive in relation to all the cancer cells tested. Eventually, combinations of furoxan fragment and 1,2,3-triazole linked to C-28 position of triterpene backbone demonstrated marked cytotoxic activity towards MCF-7 and HepG2 cells. The most active ester of ursolic acid with (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl substituent and 3-O-acetyl group was superior in activity and selectivity over doxorubicin and ursolic acid on MCF-7 cells. The length of the carbon spacer group may be of crucial importance for cytotoxicity. The introduction of the additional ester linker between the C-28 of triterpenoid and triazole or changing triazole spacer between furoxan moiety and triterpenoid core resulted in activity decrease against all the tested cells. In accordance with molecular modeling results, the activity of new derivatives may be explained in terms of the interaction of the new hybrid molecules and Mdm2 binding sites.
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia.
| | - Marya D Semenova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Tatiana S Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Acad. Lavrentiev ave., 3, 630090 Novosibirsk, Russia
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| |
Collapse
|
23
|
Li D, Wu Y, Wei P, Gao X, Li M, Zhang C, Zhou Z, Lu W. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Tuyet Anh DT, Cuc DT, Thuy Giang LN, Hien NT, Doan VN, Thanh NH, Tuyen NV, Van Kiem P. Design, Synthesis, and Cytotoxic Evaluation of Novel Lupane Triterpenoid Derived Hydroxamates. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20931967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of new hydroxamate derivatives of lupane triterpenoids has been designed and successfully synthesized. The synthesized compounds were evaluated for their in vitro antitumor activity using the 3-[4,5-dimethylthiazol-2-yl]−2,5-diphenyltetrazolium bromide-based assay against the human cancer cell lines KB and HepG2. Most of these derivatives possess at least moderate cytotoxic activity and the hydroxamate derivative compounds 3c, 3e, 7a, and 15b could be lead compounds for further optimization to develop novel anticancer agents.
Collapse
Affiliation(s)
- Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Dinh Thi Cuc
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Hien
- Faculty of Environment, Vietnam National University of Agriculture, Vietnam
| | - Vu Ngoc Doan
- Le Quy Don Technical University, Cau Giay, Hanoi, Vietnam
| | - Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Cau Giay, Hanoi, Vietnam
| |
Collapse
|
25
|
Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur J Med Chem 2020; 188:111974. [DOI: 10.1016/j.ejmech.2019.111974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
|
26
|
Glushkov VA, Shemyakina DA, Zhukova NK, Pavlogradskaya LV, Dmitriev MV, Eroshenko DV, Galeev AR, Mokrushin IG. Ferrocenyltriazoles from 3β,28-Diacylbetulin: Synthesis and Cytotoxic Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019110083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Luan T, Jin C, Jin CM, Gong GH, Quan ZS. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti-Toxoplasma gondii agents. J Enzyme Inhib Med Chem 2019; 34:761-772. [PMID: 30836795 PMCID: PMC6407578 DOI: 10.1080/14756366.2019.1584622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Ursolic acid (UA), a plant-derived compound, has many properties beneficial to health. In the present study, we synthesised three series of novel UA derivatives and evaluated their anti-Toxoplasma gondii activity both in vitro and in vivo. Most derivatives exhibited an improved anti-T. gondii activity in vitro when compared with UA (parent compound), whereas compound 3d exhibited the most potent anti-T. gondii activity in vivo. Spiramycin served as the positive control. Additionally, determination of biochemical parameters, including the liver and spleen indexes, indicated compound 3d to effectively reduce hepatotoxicity and significantly enhance anti-oxidative effects, as compared with UA. Furthermore, our molecular docking study indicated compound 3d to possess a strong binding affinity for T. gondii calcium-dependent protein kinase 1 (TgCDPK1). Based on these findings, we conclude that compound 3d, a derivative of UA, could act as a potential inhibitor of TgCDPK1.
Collapse
Affiliation(s)
- Tian Luan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guo-Hua Gong
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia University for Nationalities, Tongliao, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
29
|
Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019; 24:E2751. [PMID: 31362424 PMCID: PMC6695944 DOI: 10.3390/molecules24152751] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cancer, diabetes, and chronic respiratory and cardiovascular diseases continue to be threatening and deadly to human kind. Resistance to and side effects of known drugs for treatment further increase the threat, while at the same time leaving scientists to search for alternative sources from nature, especially from plants. Pentacyclic triterpenoids (PT) from medicinal plants have been identified as one class of secondary metabolites that could play a critical role in the treatment and management of several NCDs. One of such PT is ursolic acid (UA, 3 β-hydroxy-urs-12-en-28-oic acid), which possesses important biological effects, including anti-inflammatory, anticancer, antidiabetic, antioxidant and antibacterial effects, but its bioavailability and solubility limits its clinical application. Mimusops caffra, Ilex paraguarieni, and Glechoma hederacea, have been reported as major sources of UA. The chemistry of UA has been studied extensively based on the literature, with modifications mostly having been made at positions C-3 (hydroxyl), C12-C13 (double bonds) and C-28 (carboxylic acid), leading to several UA derivatives (esters, amides, oxadiazole quinolone, etc.) with enhanced potency, bioavailability and water solubility. This article comprehensively reviews the information that has become available over the last decade with respect to the sources, chemistry, biological potency and clinical trials of UA and its derivatives as potential therapeutic agents, with a focus on addressing NCDs.
Collapse
Affiliation(s)
- Sithenkosi Mlala
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
30
|
Zhang LH, Zhang ZH, Li MY, Wei ZY, Jin XJ, Piao HR. Synthesis and evaluation of the HIF-1α inhibitory activities of novel ursolic acid tetrazole derivatives. Bioorg Med Chem Lett 2019; 29:1440-1445. [PMID: 31006525 DOI: 10.1016/j.bmcl.2019.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The hypoxia-inducible factor-1α (HIF-1α) pathway has been implicated in tumor angiogenesis, growth, and metastasis. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of cancers. Here, we designed and synthesized 31 ursolic acid (UA) derivatives containing a tetrazole moiety and evaluated them for their potential anti-tumor activities as HIF-1α transcriptional inhibitors. Of these, compound 14d (IC50 0.8 ± 0.2 µM) displayed the most potent activity and compounds 14a (IC50 4.7 ± 0.2 µM) exhibited the most promising biological profile. Analysis of the structure-activity relationships of these compounds with HIF-1α suggested that the presence of a tetrazole group located at C-28 of the UA derivatives was critical for their inhibitory activities.
Collapse
Affiliation(s)
- Lin-Hao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Ming-Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China
| | - Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province, 116622, China
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, China.
| |
Collapse
|
31
|
Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. JOURNAL OF INTEGRATIVE MEDICINE 2019; 17:155-160. [PMID: 30928277 DOI: 10.1016/j.joim.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene of the ursane type. As a common chemical constituent among species of the family Lamiaceae, UA possesses a broad spectrum of pharmacological properties. This overview focuses on the anticancer properties of UA against breast cancer (BC) and colorectal cancer (CRC) that are most common among women and men, respectively. In vitro studies have shown that UA inhibited the growth of BC and CRC cell lines through various molecular targets and signaling pathways. There are several in vivo studies on the cytotoxic activity of UA against BC and CRC. UA also inhibits the growth of other types of cancer. Studies on structural modifications of UA have shown that the -OH groups at C3 and at C28 are critical factors influencing the cytotoxic activity of UA and its derivatives. Some needs for future research are suggested. Sources of information were from ScienceDirect, Google Scholar and PubMed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Chu Yong Soon
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Siu Kuin Wong
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Yew Woh Hui
- Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
32
|
Huang RZ, Liang GB, Li MS, Fang YL, Zhao SF, Zhou MM, Liao ZX, Sun J, Wang HS. Synthesis and discovery of asiatic acid based 1,2,3-triazole derivatives as antitumor agents blocking NF-κB activation and cell migration. MEDCHEMCOMM 2019; 10:584-597. [PMID: 31057738 DOI: 10.1039/c8md00620b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
A series of asiatic acid (AA) based 1,2,3-triazole derivatives were designed, synthesized and subjected to a cell-based NF-κB inhibition screening assay. Among the tested compounds, compound 6k displayed impressive NF-κB inhibitory activity with an IC50 value in the low micromolar range. A molecular docking study was performed to reveal key interactions between 6k and NF-κB in which the 1,2,3-triazole moiety and the hydroxyl groups of the AA skeleton were important for improving the inhibitory activity. Subsequently, surface plasmon resonance analysis validated the high affinity between compound 6k and NF-κB protein with an equilibrium dissociation constant (KD) value of 0.36 μM. Further studies showed that compound 6k observably inhibited the NF-κB DNA binding, nuclear translocation and IκBα phosphorylation. Moreover, in vitro antitumor activity screening showed that compound 6k (IC50 = 2.67 ± 0.06 μM) exhibited the best anticancer activity against A549 cells, at least partly, by inhibition of the activity of NF-κB. Additionally, the treatment of A549 cells with compound 6k resulted in apoptosis induction potency and in vitro cell migration inhibition. Thus, we conclude that AA based 1,2,3-triazole derivatives may be potential NF-κB inhibitors with the ability to induce apoptosis and suppress cell migration.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Department of Pharmaceutical Engineering , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P.R. China . .,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research , Southeast University , Nanjing 211189 , P.R. China
| | - Gui-Bin Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| | - Mei-Shan Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| | - Yi-Lin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| | - Shi-Feng Zhao
- Department of Pharmaceutical Engineering , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P.R. China .
| | - Mei-Mei Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P.R. China . .,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research , Southeast University , Nanjing 211189 , P.R. China
| | - Jing Sun
- Chinese Academy of Sciences , Northwest Institute of Plateau Biology , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Xining , 810000 , P.R. China .
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| |
Collapse
|
33
|
Wang W, Lei L, Liu Z, Wang H, Meng Q. Design, Synthesis, and Biological Evaluation of Novel Nitrogen Heterocycle-Containing Ursolic Acid Analogs as Antitumor Agents. Molecules 2019; 24:E877. [PMID: 30832266 PMCID: PMC6429512 DOI: 10.3390/molecules24050877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/07/2023] Open
Abstract
Nineteen ursolic acid analogues were designed, synthesized, and evaluated for their antiproliferative activity against the Hela and MKN45 cell lines. Some compounds containing a piperazine moiety displayed moderate to high levels of antitumor activities against the tested cancer cell lines. The most potent compound shares the IC50 value of 2.1 µM and 2.6 µM for the Hela and MKN45 cell lines, respectively. Further mechanism studies and in vivo antitumor studies have shown that it decreased the apoptosis regulator (BCL2/BAX) ratio, disrupted mitochondrial potential and induced apoptosis, and suppressed the growth of Hela xenografts in nude mice.
Collapse
Affiliation(s)
- Wenzhi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Lei Lei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Zhi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
34
|
Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett 2019; 29:949-958. [PMID: 30799214 DOI: 10.1016/j.bmcl.2019.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. "Hybrid-structures", i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.
Collapse
Affiliation(s)
- René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
35
|
Design and Synthesis of Novel Dehydroepiandrosterone Analogues as Potent Antiproliferative Agents. Molecules 2018; 23:molecules23092243. [PMID: 30177642 PMCID: PMC6225165 DOI: 10.3390/molecules23092243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to determine the cytotoxic effects of a series of novel dehydroepiandrosterone derivatives containing triazole at the C16 position on human cancer cells. The cancer cells used in the present study were A549, Hela, HepG-2, BEL7402, MCF-7, and HCT116. Several of the synthesised compounds exhibited potent antiproliferative effects. The most promising compound was (E)-3-hydroxy-16-((1-(4-iodophenyl)-1H-1,2,3-triazole-4-yl)methylene)-10,13-dimet-hyl-1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-2H-cyclopenta[a]phenanthren-17(14)-one (compound 2n), which showed considerably high antiproliferative activity in the HepG-2 cell line, with an IC50 value of 9.10 µM, and considerably high activity against the MCF-7 cell line, with an IC50 value of 9.18 µM. Flow cytometry assays demonstrated that compound 2n exerted antiproliferative effects by arresting cells in the G2 phase of the cell cycle and inducing apoptosis.
Collapse
|
36
|
Jaman MS, Sayeed MA. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer 2018; 25:517-528. [PMID: 29725861 DOI: 10.1007/s12282-018-0866-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 01/29/2023]
Abstract
Globally, breast cancer is the most common cancer and the second leading cause of cancer-related death among women. Surgery, chemotherapy, hormonal therapy, and radiotherapy are currently available treatment options for breast cancer therapy. However, chemotherapy, hormonal therapy, and radiotherapy are often associated with side effects and multidrug resistance, recurrence, and lack of treatment in metastasis are the major problems in the treatment of breast cancer. Recently, dietary phytochemicals have emerged as advantageous agents for the prevention and therapy of cancer due to their safe nature. Ellagic acid (EA), sulforaphane (SF), and ursolic acid (UA), which are found in widely consumed fruits and vegetables, have been shown to inhibit breast cancer cell proliferation and to induce apoptosis. This review encompasses the role of EA, SF, and UA in the fight against breast cancer. Both in vitro and in vivo effects of these agents are presented.
Collapse
Affiliation(s)
- Md Sadikuj Jaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| |
Collapse
|
37
|
Meng YQ, Cui HB, Li L, Zhang WC, Pan HS, Yu TT, Li W. Synthesis and antitumor activity evaluation of asiatic acid derivatives as survivin inhibitor. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:897-908. [PMID: 29304559 DOI: 10.1080/10286020.2017.1405940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
A series of asiatic acid derivatives were synthesized and their cytotoxicities in vitro against two cancer cell lines (HepG2 and SGC7901) were evaluated by MTT assay. The results showed that compounds I2, I6, and II6 have more potent anticancer activity than that of the positive control drug paclitaxel. The interactions between the compounds I2, I6, and II6 and survivin were also studied by docking simulations.
Collapse
Affiliation(s)
- Yan-Qiu Meng
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Hua-Bo Cui
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Lei Li
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Wei-Chen Zhang
- b ShanDong Sito Bio-Technology Co., Ltd. Shenyang Branch , Shenyang 110169 , China
| | - Hong-Shuang Pan
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Ting-Ting Yu
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| | - Wei Li
- a Department of Pharmaceutical Engineering , Shenyang University of Chemical Technology , Shenyang 110142 , China
| |
Collapse
|
38
|
Lu C, Zhang C, Zhao F, Li D, Lu W. Biosynthesis of ursolic acid and oleanolic acid inSaccharomyces cerevisiae. AIChE J 2018. [DOI: 10.1002/aic.16370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunzhe Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Chuanbo Zhang
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Fanglong Zhao
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Dashuai Li
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Wenyu Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Key Laboratory of system bioengineering (Tianjin University), Ministry of Education; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
39
|
Anh DTT, Cuc DT, Giang LNT, Hien NT, Doan VN, Thanh NH, Van Tuyen N, Van Kiem P. Design, Synthesis and Cytotoxic Evaluation of Novel Lupane Triterpenoid and Ursolic Acid Derived 2-Aminobenzamides. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Series of novel triterpenoid hybrids were designed and synthesized by introducing 2-aminobenzamide moiety at C28 position of triterpenoid derivatives. Thirteen new conjugates were thus successfully prepared and evaluated as cytotoxic agents, revealing an interesting anticancer activity in KB and HepG2 cancer cell lines.
Collapse
Affiliation(s)
- Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dinh Thi Cuc
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Hien
- Faculty of Environment, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Vu Ngoc Doan
- Le Quy Don Techical University, 236 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
40
|
Fu S, Meng Q, Yang J, Tu J, Sun DA. Biocatalysis of ursolic acid by the fungus Gliocladium roseum CGMCC 3.3657 and resulting anti-HCV activity. RSC Adv 2018; 8:16400-16405. [PMID: 35542219 PMCID: PMC9080225 DOI: 10.1039/c8ra01217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Biocatalysis of ursolic acid (UA 1) by Gliocladium roseum CGMCC 3.3657 was investigated.
Collapse
Affiliation(s)
- Shaobin Fu
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Qingfeng Meng
- Department of Public Health
- Zunyi Medical University
- Zunyi 563000
- China
| | - Junshan Yang
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Jiajia Tu
- Pharmacy School of Zunyi Medical University
- Zunyi 563000
- China
| | - Di-An Sun
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
41
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
42
|
Sun L, Li B, Su X, Chen G, Li Y, Yu L, Li L, Wei W. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis. J Med Chem 2017; 60:6638-6648. [PMID: 28678485 DOI: 10.1021/acs.jmedchem.7b00592] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.
Collapse
Affiliation(s)
- Lin Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Bin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Xiaohui Su
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Ge Chen
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai, 201210, China
| | - Yaqin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Linqian Yu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wanguo Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
43
|
From bench (laboratory) to bed (hospital/home): How to explore effective natural and synthetic PAK1-blockers/longevity-promoters for cancer therapy. Eur J Med Chem 2017; 142:229-243. [PMID: 28814374 DOI: 10.1016/j.ejmech.2017.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
PAK family kinases are RAC/CDC42-activated kinases that were first found in a soil amoeba 4 decades ago, and 2 decades later, were discovered in mammals as well. Since then at least 6 members of this family have been identified in mammals. One of them called PAK1 has been best studied so far, mainly because it is essential not only for malignant cell growth and metastasis, but also for many other diseases/disorders such as diabetes (type 2), AD (Alzheimer's disease), hypertension, and a variety of inflammatory or infectious diseases, which definitely shorten our lifespan. Moreover, PAK1-deficient mutant of C. elegans lives longer than the wild-type by 60%, clearly indicating that PAK1 is not only an oncogenic but also ageing kinase. Thus, in theory, both anti-oncogenic and longevity-promoting activities are among the "intrinsic" properties or criteria of "clinically useful" PAK1-blockers. There are a variety of PAK1-blocking natural products such as propolis and curcumin which indeed extend the healthy lifespan of small animals such as C. elegans by inducing the autophagy. Recently, we managed to synthesize a series of potent water-soluble and highly cell-permeable triazolyl esters of COOH-bearing PAK1-blockers such as Ketorolac, ARC (artepillin C) and CA (caffeic acid) via "Click Chemistry" that boosts their anti-cancer activity over 500-fold, mainly by increasing their cell-permeability, and one of them called 15K indeed extends the lifespan of C. elegans. In this mini-review we shall discuss both synthetic and natural PAK1-blockers, some of which would be potentially useful for cancer therapy with least side effect (rather promoting the longevity as well).
Collapse
|
44
|
Mtiraoui H, Nsira A, Msaddek M, Renard PY, Sabot C. Regioselective synthesis of o -triazolyl-1,5-benzodiazepin-2-ones and o -isoxazolyl-1,5-benzodiazepin-2-ones via copper-catalyzed 1,3-dipolar cycloaddition reactions. CR CHIM 2017. [DOI: 10.1016/j.crci.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Wu PP, Zhang BJ, Cui XP, Yang Y, Jiang ZY, Zhou ZH, Zhong YY, Mai YY, Ouyang Z, Chen HS, Zheng J, Zhao SQ, Zhang K. Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors. Sci Rep 2017; 7:45578. [PMID: 28358057 PMCID: PMC5372089 DOI: 10.1038/srep45578] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a major pentacyclic triterpenoid in plants, vegetables and fruits, which has been reported to have a potential anti-diabetic activity. Despite various semi-synthetic ursolic acid derivatives already described, new derivatives still need to be designed and synthesized to further improve the anti-diabetic activity. In the present study, two series of novel UA derivatives, were synthesized and their structures were confirmed. The enzyme inhibition activities of semi-synthesized analogues against α-glucosidase were screened in vitro. The results indicated that most of UA derivatives showed a significant inhibitory activity, especially analogues UA-O-i with the IC50 values of 0.71 ± 0.27 μM, which was more potential than other analogues and the positive control. Furthermore, molecular docking studies were also investigated to verify the in vitro study. Structure modification at the C-3 and C-2 positions of UA was an effective approach to obtain the desired ligand from UA, whose structure was in accordance with the active pocket. Besides, suitable hydrophobic group at the position of C-2 might play an important role for the docking selectivity and binding affinity between the ligand and the homology modelling protein. These results could be helpful for designing more potential α-glucosidase inhibitors from UA in the future.
Collapse
Affiliation(s)
- Pan-Pan Wu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Faculty of Chemical & Environmental Engineering, Wuyi University, Jiangmen, 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, China
| | - Bing-Jie Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xi-Ping Cui
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zheng-Yun Jiang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Hong Zhou
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying-Ying Zhong
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu-Ying Mai
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhong Ouyang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hui-Sheng Chen
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jie Zheng
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Su-Qing Zhao
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, China
| | - Kun Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Faculty of Chemical & Environmental Engineering, Wuyi University, Jiangmen, 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, China
| |
Collapse
|
46
|
Lamia B, Chakchouk-Mtibaa A, Hallouma B, Mansour L, Mellouli L, Özdemir I, Yaşar S, Hamdi N. A Palladium Catalyst System for the Efficient Cross-Coupling Reaction of Aryl Bromides and Chlorides with Phenylboronic Acid: Synthesis and Biological Activity Evaluation. Molecules 2017; 22:molecules22030420. [PMID: 28272376 PMCID: PMC6155392 DOI: 10.3390/molecules22030420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
New benzimidazolium salts 1a–c and their palladium bis-N-heterocyclic carbene complexes 2a–c and palladium PEPPSI-type complexes 3a–c were designed, synthesized and structurally characterized by NMR (1H and 13C), IR, DART-TOF mass spectrometry and elemental analysis. Then these complexes 2–3 were employed in the Suzuki-Miyaura cross-coupling reaction of substituted arenes with phenylboronic acid under mild conditions in toluene and DMF/H2O (1/1) to afford functionalized biaryl derivatives in good to excellent yields. The antibacterial activity of palladium bis-N-heterocyclic carbene complexes 2a–c and palladium PEPPSI-type complexes 3a–c was measured by disc diffusion method against Gram positive and Gram negative bacteria. Compounds 2a, 2c and 3a–c exhibited potential antibacterial activity against four bacterial species among the five used indicator cells. The product 2b inhibits the growth of the all five tested microorganisms. Moreover, the antioxidant activity determination of these complexes 2–3, using 2.2-diphenyl-1-picrylhydrazyl (DPPH) as a reagent, showed that compounds 2a–c and 3b possess DPPH antiradical activity. The higher antioxidant activity was obtained from the product 2b which has radical scavenging activity comparable to that of the two used positive controls (gallic acid “GA“ and tutylatedhydroxytoluene “BHT“). Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 2b, 3a, and 3b exhibited moderate activity at 100 μg/mL and product 2b is the most active.
Collapse
Affiliation(s)
- Boubakri Lamia
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif 2050, Tunisia; (B.L.); (B.H.)
| | - Ahlem Chakchouk-Mtibaa
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax-Tunisia, Road of Sidimansour, Km 6 B.P. 1117, Sfax 3018, Tunisia; (A.C.-M.); (L.M.)
| | - Bilel Hallouma
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif 2050, Tunisia; (B.L.); (B.H.)
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules of the Center of Biotechnology of Sfax-Tunisia, Road of Sidimansour, Km 6 B.P. 1117, Sfax 3018, Tunisia; (A.C.-M.); (L.M.)
| | - Ismail Özdemir
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey;
| | - Sedat Yaşar
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey;
- Correspondence: (S.Y.); (N.H.); Tel.: +216-98-503-980 (N.H.)
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif 2050, Tunisia; (B.L.); (B.H.)
- Chemistry Department, College of Science and Arts, Qassim University, Al-Rass 51921, Saudi Arabia
- Correspondence: (S.Y.); (N.H.); Tel.: +216-98-503-980 (N.H.)
| |
Collapse
|
47
|
Combination of amino acid/dipeptide with ligustrazine-betulinic acid as antitumor agents. Eur J Med Chem 2017; 130:26-38. [PMID: 28237794 DOI: 10.1016/j.ejmech.2017.02.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
The lead compound TBA, 3β-Hydroxy-lup-20(29)-ene-28-oic acid-3, 5, 6-trimethylpyrazin-2-methyl ester, which exhibited promising antitumor activity and induced tumor cell apoptosis in various cancer cell lines, had previously been reported. Moreover, reports have revealed that the introduction of amino acid to betulinic acid could improve selective cytotoxicity as well as water solubility. Thus, a series of novel TBA amino acid and dipeptide derivatives were designed, synthesized and screened for selective cytotoxic activity against five cancer cell lines (HepG2, HT-29, Hela, BCG-823 and A549) and the not malignant cell line MDCK by standard MTT assay. Most of the tested TBA-amino acid and dipeptide analogues showed stronger anti-proliferative activity against all tested tumor cell lines than TBA. Among them, BA-25 exhibited the greatest cytotoxic activity on tumor cell lines (mean IC50 = 2.31 ± 0.78 μM), that was twofold than the positive drug cisplatin (DDP), while it showed lower cytotoxicity on MDCK cell line than DDP. Further cell apoptosis analyses indicated BA-25-induced apoptosis was associated with loss of mitochondrial membrane potential and increase of intracellular free Ca2+ concentration.
Collapse
|
48
|
Sidova V, Zoufaly P, Pokorny J, Dzubak P, Hajduch M, Popa I, Urban M. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives. PLoS One 2017; 12:e0171621. [PMID: 28158265 PMCID: PMC5291411 DOI: 10.1371/journal.pone.0171621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
In this work, we describe synthesis of conjugates of betulinic acid with substituted triazoles prepared via Huisgen 1,3-cycloaddition. All compounds contain free 28-COOH group. Allylic bromination of protected betulinic acid by NBS gave corresponding 30-bromoderivatives, their substitution with sodium azides produced 30-azidoderivatives and these azides were subjected to CuI catalysed Huisgen 1,3-cycloaddition to give the final conjugates. Reactions had moderate to high yields. All new compounds were tested for their in vitro cytotoxic activities on eight cancer and two non-cancer cell lines. The most active compounds were conjugates of 3β-O-acetylbetulinic acid and among them, conjugate with triazole substituted by benzaldehyde 9b was the best with IC50 of 3.3 μM and therapeutic index of 9.1. Five compounds in this study had IC50 below 10 μM and inhibited DNA and RNA synthesis and caused block in G0/G1 cell cycle phase which is highly similar to actinomycin D. It is unusual that here prepared 3β-O-acetates were more active than compounds with the free 3-OH group and this suggests that this set may have common mechanism of action that is different from the mechanism of action of previously known 3β-O-acetoxybetulinic acid derivatives. Benzaldehyde type conjugate 9b is the best candidate for further drug development.
Collapse
Affiliation(s)
- Veronika Sidova
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Zoufaly
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jan Pokorny
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Igor Popa
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Milan Urban
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
49
|
Takahashi H, Nguyen BCQ, Uto Y, Shahinozzaman M, Tawata S, Maruta H. 1,2,3-Triazolyl esterization of PAK1-blocking propolis ingredients, artepillin C (ARC) and caffeic acid (CA), for boosting their anti-cancer/anti-PAK1 activities along with cell-permeability. Drug Discov Ther 2017; 11:104-109. [DOI: 10.5582/ddt.2017.01009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Chen Y, Li C, Zheng Y, Gao Y, Hu J, Chen H. Discovery of FZU-03,010 as a self-assembling anticancer amphiphile for acute myeloid leukemia. Bioorg Med Chem Lett 2016; 27:1007-1011. [PMID: 28073673 DOI: 10.1016/j.bmcl.2016.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/28/2016] [Indexed: 01/29/2023]
Abstract
Recently various drug candidates with excellent anticancer potency have been demonstrated, whereas their clinical application largely suffers from several limitations especially poor solubility. Ursolic acid (UA) as one of ubiquitous pentacyclic triterpenes in plantkingdom exhibited versatile antiproliferative effects in various cancer cell lines. However, the unfavorable pharmaceutical properties became the main obstacle for its clinical development. With the aim of development of novel derivatives with enhanced potency, a series of diversified UA amphiphiles have been designed, synthesized, and pharmacologically evaluated. Amphiphile 10 (FZU-03,010) with significant improved antiproliferative effect can self-assemble into stable nanoparticles in water, which may serve as a promising candidate for further development.
Collapse
Affiliation(s)
- Yingyu Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Cailong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|