1
|
Vilvest J, Milton MCJ, Yagoo A, Balakrishna K. Structural elucidation of andrographolide from Andrographis paniculata and its ovicidal, larvicidal and pupicidal activities against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Exp Parasitol 2024; 267:108858. [PMID: 39481589 DOI: 10.1016/j.exppara.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Both human beings and animals around the globe are vulnerable to the transmission of infectious diseases carried by mosquitoes. They have the ability to transmit a diverse array of pathogenic agents, such as viruses and parasites, while feeding on blood. The objective of this research is to investigate andrographolide isolation, characterization, and structure elucidation from Andrographis paniculata. Furthermore, it aims to evaluate the activity of andrographolide against the immature stages of Aedes aegypti and Culex quinquefasciatus. The fractions obtained from A. paniculata extracts underwent further purification and analysis to identify the most active ones. To confirm the structure of andrographolide, spectroscopic methods including IR, 1H-NMR, 13C-NMR, and GC-MS were used. Biological assays were conducted to assess its ovicidal, larvicidal, and pupicidal activities. Importantly, andrographolide demonstrated moderate ovicidal activity, resulting in mortality rates of 36% and 32% in Ae. aegypti and Cx. quinquefasciatus eggs, respectively, at a concentration of 2 ppm. Additionally, it exhibited strong larvicidal and pupicidal efficacy, with LC50 values of 2.02 ppm and 3.19 ppm against Ae. aegypti larvae and pupae, and 2.14 ppm and 2.73 ppm against Cx. quinquefasciatus larvae and pupae. These findings highlight the potential of andrographolide as a powerful natural compound in mosquito control efforts. Furthermore, this study underscores the importance of natural products as viable alternatives to synthetic insecticides in managing vector-borne diseases.
Collapse
Affiliation(s)
- Jelin Vilvest
- PG & Research Department of Advanced Zoology & Biotechnology, Loyola College (Autonomous), Chennai, 600034, India.
| | - M C John Milton
- PG & Research Department of Advanced Zoology & Biotechnology, Loyola College (Autonomous), Chennai, 600034, India
| | - Alex Yagoo
- PG & Research Department of Advanced Zoology & Biotechnology, Loyola College (Autonomous), Chennai, 600034, India; Department of Zoology, St. Xavier's College (Autonomous), Palayamkottai, Tirunelveli, Tamil Nadu, India, 627002
| | | |
Collapse
|
2
|
Van Chien T, Van Loc T, The Anh N, Van Sung T, Phuong Thao TT. Cytotoxic and Anti-Inflammatory Activity of 3,19-Isopropylidene-/Arylidene-Andrographolide Analogs. Chem Biodivers 2023; 20:e202300420. [PMID: 37466261 DOI: 10.1002/cbdv.202300420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
A series of 3,19-isopropylidene-/or arylidene-andrographolide analogs were synthesized and their structures were confirmed by NMR spectroscopic methodology. Twenty-five analogs were evaluated for their in vitro cytotoxic activity against HT-29, HepG2 and LNCaP cancer cell lines based on the sulforhodamine B (SRB) assay. Analog 2 f exhibited the most potent cytotoxic activity, with IC50 values of 11.14 and 9.25 μM on HepG2 and LNCaP cancer cell lines, respectively. Esterification of hydroxy functional group at position C-14 in andrographolide analogs, 2 a and 2 b, showed somewhat higher cytotoxicity than the precursor. In addition, andrographolide analogs (2 a-2 d, 2 f, 3 a, 4 a and 4 h) were evaluated for the NO inhibitory activity in the LPS stimulated RAW264.7 macrophages. The most active analog 2 a significantly reduced nitric oxide (NO) production from LPS stimulated RAW264.7 cells, with IC50 values of 0.34±0.02 μM providing encouraging results for anti-inflammatory compound development.
Collapse
Affiliation(s)
- Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Nguyen The Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| |
Collapse
|
3
|
Synthesis and anti-influenza virus activity evaluation of novel andrographolide derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Tamang N, Andrews C, Mavileti SK, Nanduri S, Golakoti NR, Karanam B. Anti-cancer activity of heteroaromatic acetals of andrographolide and its isomers. NEW J CHEM 2022; 46:9745-9754. [PMID: 36093125 PMCID: PMC9454336 DOI: 10.1039/d2nj01055k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Acetals (2a-d, 3a-d, and 6a-d) of andrographolide (1), 14-deoxy-12-hydroxyandrographolide (4), and isoandrographolide (5) were synthesized using benzaldehyde and heteroaromatic aldehydes. All the synthesized derivatives were characterized using 1H-NMR, 13C-NMR, mass spectrometry, UV, and IR. The compound 6d was characterized via a single-crystal X-ray diffraction study. All the compounds were tested against 60 cell lines of NCI. The acetals (2a-d) of andrographolide (1) exhibited better activity than the acetals (3a-d, and 6a-d) of 12-hydroxyandrographolide (4) and isoandrographolide (5). Preliminary studies suggested that acetals synthesized using benzaldehyde improved anticancer activity. Compound 2a showed the highest growth inhibition of 90.97% against the leukaemia cancer cell line CCRF-CEM. Andrographolide and seven selected compounds were tested against the MDA-MB-231 breast cancer cell line. Compound 3b showed the best activity with an IC50 value of 3 μM among all the tested compounds. Furthermore, this compound 3b was subjected to cell cycle analysis and protein expression confirming apoptosis through the disruption of the mitochondrial potential membrane (Δψ m).
Collapse
Affiliation(s)
- Nitesh Tamang
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Christopher Andrews
- Department of Biology and Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sai Kiran Mavileti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Srinivas Nanduri
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research, Balanagar, 500037, Hyderabad, Telangana, India
| | - Nageswara Rao Golakoti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | | |
Collapse
|
5
|
Yan W, Yu H, Liu B, Jiang Z, Jin H, Li Z, Li L, Zou D, Jiang H. Andrographolide suppresses osteoarthritis progression by regulating circ_Rapgef1/miR-383-3p/NLRP3 signaling axis. Transpl Immunol 2022; 71:101548. [PMID: 35122957 DOI: 10.1016/j.trim.2022.101548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Andrographolide (AD) has been reported to play a potential anti-arthritic role by facilitating the proliferation and inhibiting the apoptosis of chondrocytes. However, the molecular mechanism underlying the protective role of AD in osteoarthritis (OA) remains to be elucidated. METHODS OA mice model was established via anterior cruciate ligament transection (ACLT) operation. OA cell model was established through treating mice primary chondrocytes with LPS (1 μg/mL, 24 h). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines in the supernatant. Cell proliferation was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was evaluated by flow cytometry. The intermolecular interaction was verified by dual-luciferase reporter assay. RESULTS AD administration reduced the infiltration of inflammatory cells in the synovial tissues of ankle joint and suppressed the inflammatory response in OA mice model in vivo. Lipopolysaccharide (LPS) stimulation suppressed the proliferation and induced the apoptosis and inflammation of chondrocytes, and AD treatment protected chondrocytes from LPS-induced dysfunction. Circular RNA (circRNA) Rap guanine nucleotide exchange factor 1 (circ_Rapgef1) overexpression attenuated AD-mediated protective effects in OA cell model. Circ_Rapgef1/microRNA-383-3p (miR-383-3p)/Nod-like receptor pyrin domain 3 (NLRP3) axis was identified in this study for the first time. Circ_Rapgef1 overexpression-mediated effects were partly reversed by the overexpression of miR-383-3p in chondrocytes. NLRP3 silencing partly overturned miR-383-3p knockdown-mediated effects in chondrocytes. Circ_Rapgef1 overexpression up-regulated the expression of NLRP3 partly by targeting miR-383-3p in chondrocytes. CONCLUSION Circ_Rapgef1 suppressed AD-mediated protective effects in OA partly by regulating miR-383-3p/NLRP3 signaling.
Collapse
Affiliation(s)
- Wei Yan
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hong Yu
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Bo Liu
- Department of Orthopaedics, Qingdao Municipal Hospital, Shandong, China
| | - Zewei Jiang
- Department of Spine and Spinal Cord, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hailong Jin
- Department of Hand and Microsurgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Zhiheng Li
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Lei Li
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Debao Zou
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China
| | - Hongjiang Jiang
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong, China.
| |
Collapse
|
6
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
7
|
Toppo E, Al-Dhabi NA, Sankar C, Kumar SN, Buvanesvaragurunathan K, Darvin SS, Stalin A, Balakrishna K, Ceasar SA, Pandikumar P, Ignacimuthu S, Sivasankaran K, Agastian P. Hepatoprotective effect of selected isoandrographolide derivatives on steatotic HepG2 cells and High Fat Diet fed rats. Eur J Pharmacol 2021; 899:174056. [PMID: 33753108 DOI: 10.1016/j.ejphar.2021.174056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is one of the growing epidemics of the globe. This study was aimed to evaluate the anti-NAFLD effect of selected IAN derivatives using in silico, in vitro and in vivo models. In silico tools viz., DataWarrior, SwissADME and Gaussian 09 were used to predict the pharmacokinetic properties and electronic distribution patterns of the derivatives; docking analysis was done with Autodock against PPARα. Toxicities of the derivatives were assessed in HepG2 cells using MTT assay. Anti-NAFLD efficacies of the derivatives were assessed in free fatty acid induced steatotic HepG2 cells. In vivo anti-NAFLD effect of active isoandrographolide (IAN) derivative, 19-propionyl isoandrographolide (IAN-19P) was assessed in High Fat Diet fed rats. In silico and in vitro studies indicated that IAN-19P showed improved drug-likeness and drug score. The toxicity of IAN-19P to HepG2 cells was comparatively less than IAN and other derivatives. In free fatty acid induced steatotic HepG2 cells, treatment with IAN-19P significantly lowered intracellular triglyceride content and leakage of LDH and transaminases. Treating High Fat Diet fed animals with IAN-19P significantly lowered plasma lipids, transaminases, LDH and GGT levels. The treatment with IAN-19P upregulated the expressions of PPARα and CPT-1. IAN-19P did not produce any noticeable adverse effect till 2 g/kg concentration in acute and 250 mg/kg concentration in subacute toxicity studies. This study indicated the beneficial effect of IAN-19P for the treatment of NAFLD; however robust investigations are needed to establish the potential of IAN-19P to treat NAFLD.
Collapse
Affiliation(s)
- Erenius Toppo
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India; St Xavier's College, Tejpur, Sonabheel Solabsti, Bokajan, Assam, 784105, India
| | - Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chinnakulandai Sankar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | | | | | | | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Kedeke Balakrishna
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Biosciences Department, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - Perumal Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India.
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India; Bharath Institute of Higher Education and Research, Selaiyur, Tambaram, Chennai, Tamil Nadu, 600073, India.
| | - Kuppusamy Sivasankaran
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | - Paul Agastian
- Department of Plant Biology & Biotechnology, Loyola College, Chennai, Tamil Nadu, 600034, India
| |
Collapse
|
8
|
Sharma R, Srivastava T, Pandey AR, Mishra T, Gupta B, Reddy SS, Singh SP, Narender T, Tripathi A, Chandramouli B, Sashidhara KV, Priya S, Kumar N. Identification of Natural Products as Potential Pharmacological Chaperones for Protein Misfolding Diseases. ChemMedChem 2021; 16:2146-2156. [PMID: 33760394 DOI: 10.1002/cmdc.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/12/2023]
Abstract
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside (C-10, chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.
Collapse
Affiliation(s)
- Richa Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tulika Srivastava
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Alka Raj Pandey
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Tripti Mishra
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhagyashri Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Suriya P Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tadigoppula Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aradhya Tripathi
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Koneni V Sashidhara
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Smriti Priya
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
9
|
Cai W, Li J, Chen C, Wu J, Li J, Xue X. Design, synthesis, and anticancer evaluation of novel andrographolide derivatives bearing an α,β-unsaturated ketone moiety. Bioorg Chem 2021; 112:104941. [PMID: 33940445 DOI: 10.1016/j.bioorg.2021.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
A series of 1,2-didehydro-3-ox-andrographolide derivatives based on two Michael acceptors were designed, synthesized and evaluated for their anticancer activity against two human cancer cell lines (HCT116 and MCF-7). All tested compounds exhibited significant growth inhibitory effect on HCT116 and moderate to good inhibitory effect on MCF-7 cell proliferation. Compound 10b displayed the best inhibitory activities against both HCT116 and MCF-7 cell lines, with IC50 values of 2.49 and 7.80 μM respectively. Preliminary anticancer mechanistic investigation was performed in terms of the cell cycle arrest and cell apoptosis assays of compound 10b against HCT116 using flow cytometry, and the results indicated that 10b blocked the proliferation of HCT116 cells by inducing cell apoptosis in a concentration-dependent manner and arresting cell cycle in G2/M phase.
Collapse
Affiliation(s)
- Wei Cai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jieyi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabin Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowen Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Tran QT, Tan DW, Wong WF, Chai CL. From irreversible to reversible covalent inhibitors: Harnessing the andrographolide scaffold for anti-inflammatory action. Eur J Med Chem 2020; 204:112481. [DOI: 10.1016/j.ejmech.2020.112481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
|
11
|
Chen S, Luo Z, Chen X. Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression. J Gene Med 2020; 22:e3187. [PMID: 32196852 DOI: 10.1002/jgm.3187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a potential anti-arthritic agent, Andrographolide (And) is capable of promoting chondrocyte proliferation and preventing apoptosis in pathologic condition. The present study aimed to explore the roles of And in in vivo and in vitro models of osteoarthritis (OA), as well as its underlying molecular mechanisms. METHODS An OA mouse model was established using anterior cruciate ligament transection operation on the left knee joint. The pathological changes of articular cartilage were assessed using safranin O staining. Chondrocyte proliferation and apoptosis were measured using cell a counting kit-8 assay and flow cytometry. Bioinformatics algorithms and a luciferase reporter assay were used to evaluate matrix metalloproteinase13 (MMP13) as a direct target of miR-27-3p. RESULTS And had the ability to prevent catabolism and facilitate anabolism of articular cartilage in an experimental OA model in mice. In addition, And alleviated chondrocyte apoptosis in in vitro and in vivo models of OA. We also found that both up-regulation of MMP13 and down-regulation of miR-27-3p in the proximal tibia of OA mice and interleukin (IL)-1β-stimulated chondrocytes were reversed by And administration simultaneously. MMP13 was validated as direct target of miR-27-3p and could be suppressed by overexpression of miR-27-3p in mouse chondrocyte. Furthermore, overexpression of miR-27-3p or MMP13 loss-of-function in chondrocytes could alleviate IL-1β-induced apoptosis. CONCLUSIONS These results indicated that miR-27-3p/MMP13 signaling axis might be a potential therapeutic target of And for preventing the progression of OA.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Zhihuan Luo
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Xiaguang Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
12
|
Cai W, Huang S, Wu J, Song Z, Xin Z, Li J, Xue X. Synthesis of ent-Cleistanthane Diterpenoid Spruceanol: Construction of an Aromatic C Ring via Lewis Acid-Controlled Regioselective Diels-Alder Cycloaddition. J Org Chem 2020; 85:6709-6718. [PMID: 32340453 DOI: 10.1021/acs.joc.0c00713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first synthesis of ent-cleistanthane-type diterpenoid spruceanol with significant anticancer activity is described. A chiral pool approach was employed with a linear sequence of 13 steps beginning from readily available and inexpensive andrographolide. The approach features the construction of an aromatic ring with hydroxyl and methyl groups at C-12 and C-13 of the target compound, respectively, via Lewis acid-controlled regioselective Diels-Alder cycloaddition and the regioselective removal of the primary hydroxyl group of the Diels-Alder adduct.
Collapse
Affiliation(s)
- Wei Cai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Sujie Huang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiajia Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiqiang Song
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyuan Xin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiabin Li
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaowen Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Cheng CR, Zheng Z, Liang RM, Li XF, Jiang QQ, Yue L, Wang Q, Ding J, Liu Y. Preparation and Cytotoxic Activity of 3,19-Analogues of 12-Thioether Andrographolide. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Huang Q, Tang P. Silver-Mediated Intermolecular Iodotrifluoromethoxylation of Alkenes. J Org Chem 2020; 85:2512-2519. [PMID: 31927888 DOI: 10.1021/acs.joc.9b03206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the first time, intermolecular iodotrifluoromethoxylation between alkenes and NIS with AgF as the catalyst and TFMS as the trifluoromethoxylation reagent has been explored. The practical processes, good functional group tolerance, and easy scalability make this reaction an attractive protocol for the synthesis of trifluoromethoxylated iodides, which can be readily used for further synthetic manipulation.
Collapse
Affiliation(s)
- Qingyun Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
15
|
Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem 2020; 95:103511. [DOI: 10.1016/j.bioorg.2019.103511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
|
16
|
Kandanur SGS, Tamang N, Golakoti NR, Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur J Med Chem 2019; 176:513-533. [DOI: 10.1016/j.ejmech.2019.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/11/2023]
|
17
|
Wang W, Wu Y, Yang K, Wu C, Tang R, Li H, Chen L. Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities. Eur J Med Chem 2019; 173:282-293. [DOI: 10.1016/j.ejmech.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
|
18
|
Triacetylated andrographolide solid dispersions: Preparation, stability study and in vivo anti-inflammation in mice ulcerative colitis model. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Xu Y, Wei H, Wang J, Wang W, Gao J. Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities. Bioorg Med Chem 2019; 27:2209-2219. [DOI: 10.1016/j.bmc.2019.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
20
|
Xu M, Xu J, Hao M, Zhang K, Lv M, Xu H. Evaluation of andrographolide-based analogs derived from Andrographis paniculata against Mythimna separata Walker and Tetranychus cinnabarinus Boisduval. Bioorg Chem 2019; 86:28-33. [DOI: 10.1016/j.bioorg.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
|
21
|
Kandanur SGS, Kundu S, Cadena C, Juan HS, Bajaj A, Guzman JD, Nanduri S, Golakoti NR. Design, synthesis, and biological evaluation of new 12-substituted-14-deoxy-andrographolide derivatives as apoptosis inducers. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00718-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Song Z, Huang S, He Y, Li J, Lin K, Xue X. Synthesis and anti-fibrosis activity study of 14-deoxyandrographolide-19-oic acid and 14-deoxydidehydroandrographolide-19-oic acid derivatives. Eur J Med Chem 2018; 157:805-816. [DOI: 10.1016/j.ejmech.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
|
23
|
Xin Z, Song YLZ, He Y, Li J, Lin K, Xue X. Stereoselective Synthesis and Biological Evaluation of ent
-Asperolide C and its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyuan Xin
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Yunlong Lu Zhiqiang Song
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Yuchen He
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Jiabin Li
- School of Science; China Pharmaceutical University; 639 Long Mian Da Dao 211198 Nanjing China
| | - Kejiang Lin
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| | - Xiaowen Xue
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang 210009 Nanjing China
| |
Collapse
|
24
|
Toppo E, Darvin SS, Esakkimuthu S, Nayak MK, Balakrishna K, Sivasankaran K, Pandikumar P, Ignacimuthu S, Al-Dhabi NA. Effect of two andrographolide derivatives on cellular and rodent models of non-alcoholic fatty liver disease. Biomed Pharmacother 2017; 95:402-411. [PMID: 28863380 DOI: 10.1016/j.biopha.2017.08.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
The prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) is increasing and there is an increasing interest in natural products to treat NAFLD. This study aimed to evaluate the hepatoprotective effect of andrographolide and two of its derivatives; in one the OH group at C-14 was removed and in the other OH groups at C-3 and C-19 were protected. Andrographolide (AN) was isolated from the aerial parts of Andrographis paniculata Wall. Isoandrographolide (IAN) and 3,19-acetonylidene andrographolide (ANA) were derivatized from AN. Drug likeness of the compounds was studied using DataWarrior. The effect of the compounds in ameliorating hepatic steatosis and lipotoxicity was assessed using palmitate-oleate induced steatotic HepG2 cell lines. In vivo efficacy of the compounds was assessed by using HFD fed rats. IAN showed comparatively high drug score and low irritability than AN. MTT assay indicated that the treatment with IAN had comparatively less toxicity than AN and ANA to HepG2 cells. The treatment with IAN significantly reduced the lipid accumulation and the leakage of LDH and transaminases, while the treatments with AN and ANA did not prohibit the leakage. In the in vivo experiment, the treatment with IAN showed comparatively better hepatoprotection by reducing the serum lipid, transaminases and ALP levels than with AN and ANA. Our results showed that IAN could be a promising lead to treat NAFLD with comparatively low toxicity and improved efficacy.
Collapse
Affiliation(s)
- Erenius Toppo
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - S Sylvester Darvin
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - S Esakkimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - Mahesh Kumar Nayak
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - K Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - K Sivasankaran
- Division of Taxonomy & Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India
| | - P Pandikumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India.
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India; Division of Taxonomy & Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600 034, India.
| | - N A Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Islam MT. Andrographolide, a New Hope in the Prevention and Treatment of Metabolic Syndrome. Front Pharmacol 2017; 8:571. [PMID: 28878680 PMCID: PMC5572404 DOI: 10.3389/fphar.2017.00571] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
Recently, the use of plant-derived medicines is increasing interest in the prevention and treatment of a variety of disorders including metabolic syndromes. Metabolic syndrome is one of the major risk factors for cardiovascular diseases (CVDs) and incidence of mortality worldwide. Scientific evidence suggests that Andrographis paniculata and its derived components, especially andrographolide (AGL) and its analogs/derivatives have a broad spectrum of biological activities. This review aims to sketch the activity of AGL and its analogs/derivatives against the components of metabolic syndromes such as diabetes, hyperlipidemia, hypertension, and obesity. Additionally, AGL activity against CVDs is also summarized. The finding suggests that AGL and its analogs/derivatives have a potential role in the management of metabolic syndrome; however, more studies should be conducted to evaluate their effectiveness.
Collapse
Affiliation(s)
- Muhammad T Islam
- Department of Pharmacy, Southern University BangladeshChittagong, Bangladesh.,Postgraduate Program in Pharmaceutical Sciences, Federal University of PiauíTeresina, Brazil
| |
Collapse
|
26
|
Kandanur SGS, Nanduri S, Golakoti NR. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg Med Chem Lett 2017; 27:2854-2862. [PMID: 28527822 DOI: 10.1016/j.bmcl.2017.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO2-NH-R1. The new derivatives (III a-e) exhibited improved cytotoxicity (GI50, TGI and LC50) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1.
Collapse
Affiliation(s)
- Sai Giridhar Sarma Kandanur
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| | - Srinivas Nanduri
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research, Balanagar 500037, Hyderabad, Telangana, India.
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Prasanthi Nilayam 515134, Andhra Pradesh, India.
| |
Collapse
|
27
|
Zheng D, Shao J, Chen W, Luo Y. In vitro Metabolism of Sodium 9-dehydro-17-hydro-andrographolide-19-yl Sulfate in Rat Liver S9 by Liquid Chromatography-Mass Spectrometry Method. Pharmacogn Mag 2016; 12:S102-8. [PMID: 27279693 PMCID: PMC4883065 DOI: 10.4103/0973-1296.182194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/08/2015] [Indexed: 11/05/2022] Open
Abstract
Background: Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate (DHAS) is the active ingredient of Xiyanping injection, a traditional Chinese medicine in clinical use. However, there has been no report about the metabolic rate and metabolites of DHAS in vitro. Materials and Methods: In this article, DHAS was incubated with rat liver S9, and liquid chromatography/mass spectrometry (LC/MS) was used for the metabolism study. The residual concentrations of substrate were determined by ultra-high-performance liquid chromatography-electrospray ionization–tandem mass spectrometry method for the metabolic rate study of DHAS in liver S9. Metabolites were identified by the (UPLC-TOF-MSE) Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry method. Results: The calibration curves of DHAS were linear over the concentration range from 0.75 μM to 75.22 μM with correlation coefficients >0.99. The lower limit of quantification was 0.150 μM for DHAS. The determination recoveries of DHAS were in the range of 84.9–90.6%. The t½ and CLint of DHAS in rat liver S9 were 98.6 ± 2.1 min and 3.5 ± 0.1 mL/min/g, respectively. Five metabolites were preliminarily identified based on the high resolution mass spectrum data in comparison with related references. These metabolites were mainly the products of dehydration and hydrogenation of DHAS. Conclusion: The present in vitro metabolic study of DHAS provided valuable information about the metabolic rate and potential metabolites of DHAS, which are important for future in vivo metabolism studies of DHAS and the discovery of more active andrographolide derivatives. SUMMARY In this paper, sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate (DHAS) metabolism in vitro has been investigated with rat liver S9 using liquid chromatography-mass spectrometry (LC-MS). The result of quantitative analysis showed that DHAS had a long t1/2, which indicated its high metabolic stability. Five metabolites of DHAS were identified in the incubation system based on the high resolution mass spectrum data in comparison with related references, particularly dehydrated and hydrogenated products. The results would provide certain references to screen out more active andrographolide derivative for pre-clinically.
Abbreviations used: MRM: Multiple reaction monitoring, DHAS: Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate, IS: Internal standard.
Collapse
Affiliation(s)
- Dongkun Zheng
- Department of Traditional Chinese Pharmacy, Jiangxi Provincial Research Institute for Drug Control/Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, China; Department of Pharmacy, Nanchang University, Nanchang, China
| | - Jun Shao
- Department of Traditional Chinese Pharmacy, Jiangxi Provincial Research Institute for Drug Control/Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, China; Department of Pharmacy, Nanchang University, Nanchang, China
| | - Weikang Chen
- Department of Traditional Chinese Pharmacy, Jiangxi Provincial Research Institute for Drug Control/Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
| | - Yuehua Luo
- Department of Traditional Chinese Pharmacy, Jiangxi Provincial Research Institute for Drug Control/Jiangxi Provincial Engineering Research Center for Drug and Medical Device Quality, Nanchang, China; Department of Pharmacy, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation on cytotoxic activities. Bioorg Med Chem Lett 2015; 25:2421-4. [DOI: 10.1016/j.bmcl.2015.03.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/22/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
29
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
30
|
Song Y, Xin Z, Wan Y, Li J, Ye B, Xue X. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents. Eur J Med Chem 2015; 90:695-706. [DOI: 10.1016/j.ejmech.2014.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
31
|
Sarkar S, Sonkar R, Bhatia G, Tadigoppula N. Synthesis of new N-acryl-1-amino-2-phenylethanol and N-acyl-1-amino-3-aryloxypropanols and evaluation of their antihyperlipidemic, LDL-oxidation and antioxidant activity. Eur J Med Chem 2014; 80:135-44. [PMID: 24769351 DOI: 10.1016/j.ejmech.2014.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/27/2014] [Accepted: 04/05/2014] [Indexed: 01/04/2023]
Abstract
As a part of our drug discovery program, we identified an alkaloidal amide i.e. Aegeline (V) isolated from the leaves of Aegle marmelos as a dual acting agent (antihyperlipidemic and antihyperglycemic). In continuation of this program, we synthesized new N-acyl-1-amino-2-alcohols (N-acrylated-1-amino-2-phenylethanol and N-acylated-1-amino-3-aryloxypropanols) via Ritter reaction and screened for their in-vivo antihyperlipdemic activity in Triton induced hyperlipidemia model, LDL-oxidation and antioxidant activity. Compounds 3, 11 and 13 showed good antihyperlipidemic activity, LDL-oxidation as well as antioxidant activity and comparable activity with marketed antidyslipidemic drug.
Collapse
Affiliation(s)
- Satinath Sarkar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, U.P., India
| | - Ravi Sonkar
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, U.P., India
| | - Gitika Bhatia
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, U.P., India
| | - Narender Tadigoppula
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, U.P., India.
| |
Collapse
|