1
|
Patel UK, Tiwari P, Tilak R, Joshi G, Kumar R, Agarwal A. Synthesis of ciprofloxacin-linked 1,2,3-triazole conjugates as potent antibacterial agents using click chemistry: exploring their function as DNA gyrase inhibitors via in silico- and in vitro-based studies. RSC Adv 2024; 14:17051-17070. [PMID: 38818013 PMCID: PMC11138863 DOI: 10.1039/d4ra01332h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
The antibacterial efficacy of some newly developed C-3 carboxylic group-containing ciprofloxacin-linked 1,2,3-triazole conjugates was studied. Twenty-one compounds from three different series of triazoles were synthesized using click chemistry and evaluated for their antibacterial activity against nine different pathogenic strains, including three Gram-positive strains, i.e. Enterococcus faecalis (ATCC29212), Staphylococcus aureus (ATCC25923), Staphylococcus epidermidis (clinical isolate), and six Gram-negative bacterial strains, i.e. Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853), Salmonella typhi (clinical isolate), Proteus mirabilis (clinical isolate), Acinetobacter baumannii (clinical isolate) and Klebsiella pneumonia (clinical isolate). Among the compounds, 10, 10a, 10b, 10c, 10d, 11a, 11f, 12c, 12e and 12f showed excellent activity with MIC values upto 12.5 μg mL-1, whereas the control ciprofloxacin showed MIC values of 0.781-25 μg mL-1 towards various strains. In addition, the low toxicity profile of the synthesized molecules revealed that they are potent antibiotics. Molecular docking and MD analysis were performed using the protein structure of E. coli DNA gyrase B, which was further corroborated with an in vitro assay to evaluate the inhibition of DNA gyrase. The analysis revealed that compound 10b was the most potent inhibitor of DNA gyrase compared to ciprofloxacin, which was employed as the positive control. Furthermore, the structure of two title compounds (11a and 12d) was characterized using single-crystal analysis.
Collapse
Affiliation(s)
- Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University) Dist. Garhwal (Uttarakhand) Srinagar-246174 India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab Ghudda Bathinda-151401 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| |
Collapse
|
2
|
Liu Y, Wu Z, Li M, Gao H, Wan C, Mao Z. Anticancer evaluation of benzofuran derivatives linked to dipiperazine moiety. Bioorg Med Chem Lett 2023; 91:129378. [PMID: 37330115 DOI: 10.1016/j.bmcl.2023.129378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
In this work, a series of novel benzofuran derivatives linked to dipiperazine moiety have been prepared, and in vitro anticancer activity against Hela and A549 was investigated. The results demonstrated that benzofuran derivatives exerted potent antitumor effect. Especially, compounds 8c and 8d showed better antitumor activity against A549 (IC50 = 0.12 μM and 0.43 μM). Further mechanism study indicated that compound 8d could significantly induce cell apoptosis in A549 by FACs analysis.
Collapse
Affiliation(s)
- Yixin Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Zhao Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Minxin Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hui Gao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Chunping Wan
- Central Laboratory, The NO.1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, PR China.
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
3
|
Mukhtar SS, Saleh FM, Hassaneen HM, Hafez TS, Hassan AS, Morsy NM, Teleb MAM. Synthesis, reaction, antimicrobial, and docking study of new chalcones incorporating isoquinoline moiety. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shorouk S. Mukhtar
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Nesrin M. Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
4
|
Mohamed Teleb MA, Kamel MG, Ead HA, Hassaneen HM, Saleh FM. Reactivity of N-(4-Nitrophenyl)propionohydrazonoyl Bromide. Synthesis and Antimicrobial Study of Thiadiazoles and 4,6-Dithia-1,2,9-triazaspiro-[4.4]-non-2-en-8-ones. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2019065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Monica G. Kamel
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamed A. Ead
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Moussaoui O, Byadi S, Eddine Hachim M, Sghyar R, Bahsis L, Moslova K, Aboulmouhajir A, Rodi YK, Podlipnik Č, Hadrami EMEL, Chakroune S. Selective synthesis of novel quinolones-amino esters as potential antibacterial and antifungal agents: Experimental, mechanistic study, docking and molecular dynamic simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Bazine I, Bendjedid S, Boukhari A. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety. Arch Pharm (Weinheim) 2021; 354:e2000291. [PMID: 33283901 PMCID: PMC7883286 DOI: 10.1002/ardp.202000291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
A series of new α-sulfamidophosphonate/sulfonamidophosphonate (4a-n) and cyclosulfamidophosphonate (5a-d) derivatives containing the quinoline or quinolone moiety was designed and synthesized via Kabachnik-Fields reaction in the presence of ionic liquid under ultrasound irradiation. This efficient methodology provides new 1,2,5-thiadiazolidine-1,1-dioxide derivatives 5a-d in one step and optimal conditions. The molecular structures of the novel compounds 4a-n and 5a-d were confirmed using various spectroscopic methods. All these compounds were evaluated for their in vitro antibacterial activity against Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) and Gram-positive (Staphylococcus aureus ATCC 27923) bacteria, in addition to three clinical strains (E. coli 1, P. aeruginosa 1, and S. aureus 1). Most of the tested compounds showed more potent inhibitory activities against both Gram-positive and -negative bacteria compared with the sulfamethoxazole reference. The following compounds, 4n, 4f, 4g, 4m, 4l, 4d, and 4e, are the most active sulfamidophosphonate derivatives. Furthermore, these molecules gave interesting zones of inhibition varying between 28 and 49 mm, against all tested bacterial strains, with a low minimum inhibitory concentration (MIC) value ranging from 0.125 to 8 μg/ml. All the synthesized derivatives were also evaluated for their in vitro antifungal activity against Fusarium oxyporum f. sp. lycopersici and Alternaria sp. The results revealed that all the synthesized compounds exhibited excellent antifungal inhibition and the compounds 4f, 4g, 4m, and 4i were the most potent derivatives with MIC values ranging from 0.25 to 1 µg/ml against the two tested fungal strains. The strongest inhibition of bacteria and fungi strains was detected by the effect of quinolone and sulfamide moieties.
Collapse
Affiliation(s)
- Ismahene Bazine
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba UniversityAnnabaAlgeria
| | - Samira Bendjedid
- Research Laboratory of Functional and Evolutionary Ecology, Department of BiologyChadli Bendjedid UniversityEl TarefAlgeria
| | - Abbes Boukhari
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba UniversityAnnabaAlgeria
| |
Collapse
|
7
|
Yi XG, Lai FP, Yan YY, Zhang C, Li WP. Preparation, crystal structures, properties, and time-dependent density functional theory of two cobalt complexes with 3-hydroxy-2-methyl-quinoline-4-carboxylate. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820948363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One organic compound [HMCA]2 (1) and two novel cobalt complexes [Co(MCA)(bipy)(H2O)]·(H2O) (2), [Co2(MCA)2(Phen)3]·3(H2O) (3) are synthesized by a solvothermal approach and are structurally determined by single-crystal X-ray diffraction. Compound 1 exhibits a two-dimensional structure by hydrogen bond and π. . .π stacking interaction. The complexes exhibit a three-dimensional and one-dimensional metal-organic framework. Solid-state photoluminescence spectrums reveal that they show blue emission bands at 449 nm, and theoretical calculation results of time-dependent density functional theory show that all belong to ligand-to-ligand charge transfer. Solid-state diffuse reflectance spectrums reveal the presence of a narrow optical band gap of 1.72 and 1.60 eV in the complexes 2 and 3, respectively.
Collapse
Affiliation(s)
- Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, P.R. China
| | - Fei-Ping Lai
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, P.R. China
| | - Yun-Yi Yan
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, P.R. China
| | - Cong Zhang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, P.R. China
| | - Wen-Ping Li
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, P.R. China
| |
Collapse
|
8
|
Tabassum R, Ashfaq M, Oku H. Recent Advances in Transition Metal Free Synthetic Protocols for Quinoline Derivatives. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200616122557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The quinoline moiety is a privileged scaffold among heterocyclic compounds
that is an important construction motif in the fields of pharmaceutical chemistry. Quinoline
molecule possesses a variety of therapeutic activities like antiviral, antimalarial, antibacterial,
antitumor, anticancer, antioxidant antihypertensive, antifungal, anthelmintic, cardiotonic,
anticonvulsant and anti-inflammatory. This review provides an insight into recent
development in transition metal free novel and modified conventional synthetic routes to
yield a wide variety of substituted quinolines.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Hiroyuki Oku
- Division of Molecular Science, Graduate School of Science & Engineering Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
9
|
Wang YF, Yi XG, Fang XN, Li J, Xu Y, Xie SK. Hydrothermal preparation, crystal structure, a series of properties and theoretical calculation of a novel cadmium compound. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yin-Feng Wang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| | - Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| | - Xiao-Niu Fang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| | - Yao Xu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| | - Shi-Kun Xie
- School of Mechanical and Electrical Engineering, Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
10
|
Girase PS, Dhawan S, Kumar V, Shinde SR, Palkar MB, Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur J Med Chem 2020; 210:112967. [PMID: 33190957 DOI: 10.1016/j.ejmech.2020.112967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023]
Abstract
Piperazine, is privileged six membered nitrogen containing heterocyclic ring also known as 1,4-Diazacyclohexane. Consequently, piperazine is a versatile medicinally important scaffold and is an essential core in numerous marketed drugs with diverse pharmacological activities. In recent years several potent molecules containing piperazine as an essential subunit of the structural frame have been reported, especially against Mycobacterium tuberculosis (MTB). Remarkably, a good number of these reported molecules also displayed potential activity against multidrug-resistant (MDR), and extremely drug-resistant (XDR) strains of MTB. In this review, we have made a concerted effort to retrace anti-mycobacterial compounds for the past five decades (1971-2019) specifically where piperazine has been used as a vital building block. This review will benefit medicinal chemists as it elaborates on the design, rationale and structure-activity relationship (SAR) of the reported potent piperazine based anti-TB molecules, which in turn will assist them in addressing the gaps, exploiting the reported strategies and developing safer, selective, and cost-effective anti-mycobacterial agents.
Collapse
Affiliation(s)
- Pankaj S Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Suraj R Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa; Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy (Constituent Unit of KAHER), Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa.
| |
Collapse
|
11
|
Horn CM, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N’Da DD. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02553-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Li Y, Xu Q, Li Z, Gao W, Chen Y. Application of 2,4-bis(halomethyl)quinoline: synthesis and biological activities of 2,4-bis(benzofuran-2-yl)- and 2,4-bis(aroxymethyl)quinolines. Mol Divers 2020; 24:167-178. [PMID: 30895448 DOI: 10.1007/s11030-019-09938-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
In the present investigation, the synthesis of a new type of halomethylquinoline building block, i.e., ethyl 4-(bromomethyl)-2-(chloromethyl)quinoline-3-carboxylate, and its synthetic applications in the reaction with salicylaldehydes or phenols to make a range of structurally novel and intriguing 2,4-bis(benzofuran-2-yl)quinoline- and 2,4-bis(aroxymethyl)quinoline-3-carboxylic acids is described. Our newly synthesized compounds belong to a new class of quinoline derivatives, and their structures were elucidated on the basis of their spectral data and elemental analyses. Screening for in vitro anti-tubercular against Mycobacterium smegmatis and anti-bacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was carried out. Compounds 5e and 5g showed significant anti-tubercular activity comparable with the reference rifampicin and might be used as promising candidates for further investigation.
Collapse
Affiliation(s)
- Yang Li
- Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China.
| | - Qiqi Xu
- Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China
| | - Zhiyuan Li
- Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China
| | - Wentao Gao
- Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
13
|
Hassaneen HM, Saleh FM, Abdallah TA, Mohamed YS, Awad EM. Synthesis, reactions, and antimicrobial activity of some novel pyrazolo[3,4‐d]pyrimidine, pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]pyrimidine, and pyrazolo[4,3‐e][1,2,4]triazolo[3,4‐c]pyrimidine derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | | | | | - Enas M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo Egypt
| |
Collapse
|
14
|
Saleh FM, Abdelhamid AO, Hassaneen HM. Synthesis and antimicrobial activity of new thiazole and thiadiazole derivatives via ethyl pyruvate. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1694678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fatma M. Saleh
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | | | - Hamdi M. Hassaneen
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
|
16
|
Mohammed HH, Abuo-Rahma GEDA, Abbas SH, Abdelhafez ESM. Current Trends and Future Directions of Fluoroquinolones. Curr Med Chem 2019; 26:3132-3149. [DOI: 10.2174/0929867325666180214122944] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
Fluoroquinolones represent an interesting synthetic class of antimicrobial agents with broad spectrum and potent activity. Since the discovery of nalidixic acid, the prototype of quinolones, several structural modifications to the quinolone nucleus have been carried out for improvement of potency, spectrum of activity, and to understand their structure activity relationship (SAR). The C-7 substituent was reported to have a major impact on the activity. Accordingly, Substitution at C-7 or its N-4-piperazinyl moiety was found to affect potency, bioavailability, and physicochemical properties. Also, it can increase the affinity towards mammalian topoisomerases that may shift quinolones from antibacterial to anticancer candidates. Moreover, the presence of DNA topoisomerases in both eukaryotic and prokaryotic cells makes them excellent targets for chemotherapeutic intervention in antibacterial and anticancer therapies. Based on this concept, several fluoroquionolones derivatives have been synthesized and biologically evaluated as antibacterial, antituberculosis, antiproliferative, antiviral and antifungal agents. This review is an attempt to focus on the therapeutic prospects of fluoroquinolones with an updated account on their atypical applications such as antitubercular and anticancer activities.
Collapse
Affiliation(s)
- Hamada H.H. Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Samar H. Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | |
Collapse
|
17
|
Hu C, Su H, Luo J, Han L, Liu Q, Wu W, Mu Y, Guan P, Sun T, Huang X. Design, synthesis and antifungal evaluation of borrelidin derivatives. Bioorg Med Chem 2018; 26:6035-6049. [DOI: 10.1016/j.bmc.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
|
18
|
Hassaneen HM, Saleh FM, Abdallah TA, Mohamed MF, Mohamed YS, Awad EM, Abdelhamid IA. Synthesis, Cytotoxicity, Antimicrobial and Docking Simulation of Novel Pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c] pyrimidine Derivatives. Mini Rev Med Chem 2018; 19:657-670. [PMID: 30332953 DOI: 10.2174/1389557518666181017162459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isobutyrohydrazonoyl bromide 1 was used as a precursor for the synthesis of 4-imino-3-isopropyl-1-(4-nitrophenyl)-1,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine 4, which was converted into hydrazino derivative 5 by heating with hydrazine hydrate at reflux. Hydrazino, as well as imino-amino derivatives, underwent condensation and cyclization reactions to give pyrazolo[ 3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c]pyrimidine derivatives, respectively. METHOD Antimicrobial studies are performed using two-gram positive bacteria and two-gram negative bacteria. RESULTS Data revealed that compound 9a is the most promising antibacterial agent with high efficiency (low MIC value (48 μg/ml)). The cytotoxic assay was investigated for in vitro antitumor screening against Caucasian breast adenocarcinoma MCF7, hepatocellular carcinoma HepG2 and colon carcinoma HCT-116 cell lines. CONCLUSION The results are compared with doxorubicin standard anticancer drugs as well as normal cell lines like MCF10 and MCF12. Molecular docking was carried out for the highest potent compound 8c with the binding site of dihydrofolate reductase enzyme DHFR PDB:ID (1DLS).
Collapse
Affiliation(s)
- Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Tayseer A Abdallah
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magda F Mohamed
- Chemistry Department (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Yasmin Sh Mohamed
- National Organization for Drug Control and Research, Dokki, Giza, Egypt
| | - Enas M Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
19
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
20
|
Fan YL, Wu JB, Cheng XW, Zhang FZ, Feng LS. Fluoroquinolone derivatives and their anti-tubercular activities. Eur J Med Chem 2018; 146:554-563. [DOI: 10.1016/j.ejmech.2018.01.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
|
21
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
22
|
Abdelrahman MA, Salama I, Gomaa MS, Elaasser MM, Abdel-Aziz MM, Soliman DH. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur J Med Chem 2017; 138:698-714. [DOI: 10.1016/j.ejmech.2017.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
|
23
|
Hassaneen HM, Saleh FM, Mohammed YS, Awad EM. A Convenient Regioselective Synthesis of Novel 1,4-Phenylenemethylene-6,6′-bis-([1,2,4-triazolo]-[4,3-b][1,2,4]-triazin-7(1H)-ones). J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| | | | - Enas M. Awad
- Department of Natural and Microbial Products, Research Division of Pharmaceutical and Drug Industries, National Research Centre; Dokki Giza Egypt
| |
Collapse
|
24
|
Hassaneen HM, Wardakhan WW, Mohammed YS. Synthesis and Reactions of Pyrido[2,1-a]isoquinolin-4-yl Formimidate Derivatives and Antimicrobial Activities of Isolated Products. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science; Cairo University; Giza 12613 Egypt
| | | | | |
Collapse
|
25
|
Tanwar B, Kumar A, Yogeeswari P, Sriram D, Chakraborti AK. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads. Bioorg Med Chem Lett 2016; 26:5960-5966. [DOI: 10.1016/j.bmcl.2016.10.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
26
|
Akhtar R, Yousaf M, Naqvi SAR, Irfan M, Zahoor AF, Hussain AI, Chatha SAS. Synthesis of ciprofloxacin-based compounds: A review. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1234622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rabia Akhtar
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Yousaf
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | | |
Collapse
|
27
|
Shaveta, Mishra S, Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur J Med Chem 2016; 124:500-536. [PMID: 27598238 DOI: 10.1016/j.ejmech.2016.08.039] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
The practice of polypharmacology is not a new concept but the approaches which are being adopted for administering the two or more drugs together are varied from time to time. Taking two or more drugs simultaneously, co-formulation of two or more active agents in a single tablet and development of hybrid molecular entities capable to modulate multiple targets are the three popular approaches for multidrug therapy. The simultaneous use of more than one drug for the chemotherapy of a single disease demands a lot of patient compliance. Hence the present form of polypharmacology is gaining popularity in the form of hybrid molecules (multiple ligand approach). From the last 1-2 decades, the synthesis of hybrid molecules by the combination of different biologically relevant moieties has been under constant escalation along with their evaluation as diverse range of pharmacological agents and as potent drugs. This review is focused on the biological potential of hybrid molecules with particular mention of those exhibiting anti-fungal, anti-tuberculosis, anti-malarial, anti-inflammatory and anti-cancer activities. A comparison of the drug potency of the hybrid molecules with their individual counterparts is discussed for quantifying the significance of the concept of molecular hybridisation.
Collapse
Affiliation(s)
- Shaveta
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sahil Mishra
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Palwinder Singh
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
28
|
Ashok D, Elsanoosi M, Alanab BFH, Sarasija M, Ravi S. Solvent-free microwave assisted synthesis of morpholine–piperidine–pyrrolidine annulated quinoline-naphthyl based chalcones and their antimicrobial activity. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216050236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Benzo[ d ]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies. Eur J Med Chem 2016; 116:187-199. [DOI: 10.1016/j.ejmech.2016.03.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022]
|
30
|
Wang X, Xie X, Cai Y, Yang X, Li J, Li Y, Chen W, He M. Design, Synthesis and Antibacterial Evaluation of Some New 2-Phenyl-quinoline-4-carboxylic Acid Derivatives. Molecules 2016; 21:340. [PMID: 26978336 PMCID: PMC6273947 DOI: 10.3390/molecules21030340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/02/2022] Open
Abstract
A series of new 2-phenyl-quinoline-4-carboxylic acid derivatives was synthesized starting from aniline, 2-nitrobenzaldehyde, pyruvic acid followed by Doebner reaction, amidation, reduction, acylation and amination. All of the newly-synthesized compounds were characterized by 1H-NMR, 13C-NMR and HRMS. The antibacterial activities of these compounds against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), as well as one strain of methicillin-resistant Staphylococcus aureus (MRSA) bacteria were evaluated by the agar diffusion method (zone of inhibition) and a broth dilution method (minimum inhibitory concentration (MIC)), and their structure-activity relationships were obtained and discussed. The results revealed that some compounds displayed good antibacterial activity against Staphylococcus aureus, and Compounds 5a4 and 5a7 showed the best inhibition with an MIC value of 64 μg/mL against Staphylococcus aureus and with an MIC value of 128 μg/mL against Escherichia coli, respectively. The results of the MTT assay illustrated the low cytotoxicity of Compound 5a4.
Collapse
Affiliation(s)
- Xiaoqin Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Xiaoyang Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Yuanhong Cai
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Xiaolan Yang
- Department of Hematology, Donghua Affiliated Hospital of Sun Yat-sen University, Dongguan 523110, China.
| | - Jiayu Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Yinghan Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Wenna Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Minghua He
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
31
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
32
|
Geng ZZ, Zhang JJ, Lin J, Huang MY, An LK, Zhang HB, Sun PH, Ye WC, Chen WM. Novel cajaninstilbene acid derivatives as antibacterial agents. Eur J Med Chem 2015; 100:235-45. [DOI: 10.1016/j.ejmech.2015.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 01/17/2023]
|
33
|
Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)-4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. Eur J Med Chem 2014; 84:605-13. [DOI: 10.1016/j.ejmech.2014.07.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/03/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022]
|