1
|
Akhter S, Kaur G, Arjmand F, Tabassum S. De novo design and preparation of Copper(II)–based chemotherapeutic anticancer drug candidates with Boc–glycine and N,N–donor ligands: DNA binding, cleavage profile, and cytotoxic therapeutic response against MCF–7, PC–3, and HCT–116 cells. Polyhedron 2024; 259:117064. [DOI: 10.1016/j.poly.2024.117064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Chen P, Song Z, Yao X, Wang W, Teng L, Matyjaszewski K, Zhu W. Copper Nanodrugs by Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2024; 63:e202402747. [PMID: 38488767 DOI: 10.1002/anie.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/09/2024]
Abstract
In this study, some copper catalysts used for atom transfer radical polymerization (ATRP) were explored as efficient anti-tumor agents. The aqueous solution of copper-containing nanoparticles with uniform spheric morphology was in situ prepared through a copper-catalyzed activator generated by electron transfer (AGET) ATRP in water. Nanoparticles were then directly injected into tumor-bearing mice for antitumor chemotherapy. The copper nanodrugs had prolonged blood circulation time and enhanced accumulation at tumor sites, thus showing potent antitumor activity. This work provides a novel strategy for precise and large-scale preparation of copper nanodrugs with high antitumor activity.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weibin Wang
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lisong Teng
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Copper II Complexes Based on Benzimidazole Ligands as a Novel Photoredox Catalysis for Free Radical Polymerization Embedded Gold and Silver Nanoparticles. Polymers (Basel) 2023; 15:polym15051289. [PMID: 36904530 PMCID: PMC10007263 DOI: 10.3390/polym15051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
The copper II complex's novel benzimidazole Schiff base ligands were manufactured and gauged as a new photoredox catalyst/photoinitiator amalgamated with triethylamine (TEA) and iodonium salt (Iod) for the polymerization of ethylene glycol diacrylate while exposed to visible light by an LED Lamp at 405 nm with an intensity of 543 mW/cm2 at 28 °C. Gold and silver nanoparticles were obtained through the reactivity of the copper II complexes with amine/Iod salt. The size of NPs was around 1-30 nm. Lastly, the high performance of copper II complexes for photopolymerization containing nanoparticles is presented and examined. Ultimately, the photochemical mechanisms were observed using cyclic voltammetry. The preparation of the polymer nanocomposite nanoparticles in situ was photogenerated during the irradiation LED at 405 nm with an intensity of 543 mW/cm2 at 28 °C process. UV-Vis, FTIR, and TEM analyses were utilized for the determination of the generation of AuNPs and AgNPs which resided within the polymer matrix.
Collapse
|
4
|
Comprehensive Assessment of Biomolecular Interactions of Morpholine-Based Mixed Ligand Cu(II) and Zn(II) Complexes of 2,2'-Bipyridine as Potential Anticancer and SARS-CoV-2 Agents: A Synergistic Experimental and Structure-Based Virtual Screening. Bioinorg Chem Appl 2022; 2022:6987806. [PMID: 36545430 PMCID: PMC9763021 DOI: 10.1155/2022/6987806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
A new class of pharmacologically active mixed-ligand complexes (1a-2a) [MII(L)2 (bpy)], where L = 2-(4-morpholinobenzylideneamino)phenol), bpy = 2,2'-bipyridine, MII = Cu (1a), and Zn (2a), were assigned an octahedral geometry by analytical and spectral measurements. Gel electrophoresis showed that complex (1a) demonstrated the complete DNA cleavage mediated by H2O2. The overall DNA-binding constants observed from UV-vis, fluorometric, hydrodynamic, and electrochemical titrations were in the following sequence: (1a) > (2a) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is further supported by the biothermodynamic characteristics. The binding constant results of BSA by electronic absorption and fluorometric titration demonstrate that complex (1a) exhibits the highest binding effectiveness among others, which means that all compounds could interact with BSA through a static approach, additionally supported by FRET measurements. Density FunctionalTheory (DFT) and molecular docking calculations were relied on to unveil the electronic structure, reactivity, and interacting capability of all substances with DNA, BSA, and SARS-CoV-2 main protease (Mpro). These observed binding energies fell within the following ranges: -7.7 to -8.6, -7.2 to -10.2, and -6.7 to -8.2 kcal/mol, respectively. The higher reactivity of the complexes compared to free ligand is supported by the Frontier MolecularOrbital (FMO) theory. The in vitro antibacterial, cytotoxic, and radical scavenging characteristics revealed that complex (1a) has the best biological efficacy compared to others. This is encouraged because all experimental findings are closely correlated with the theoretical measurements.
Collapse
|
5
|
Chuen Chan W, Phin Ng M, Hoe Tan C, Wei Ang C, Shin Sim K, Yin Xin Tiong S, Amira Solehah Pungut N, Hee Ng C, Wai Tan K. A new lipophilic cationic rhodamine-based chemosensor for detection of Al(III)/Cu(II) and intracellular pH change and its application as a smartphone-assisted sensor in water sample analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Burgos-López Y, Balsa LM, Piro OE, León IE, García-Tojal J, Echeverría GA, González-Baró AC, Parajón-Costa BS. Tridentate acylhydrazone copper(II) complexes with heterocyclic bases as coligands. Synthesis, spectroscopic studies, crystal structure and cytotoxicity assays. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Leite CM, Honorato J, Martin ACBM, Silveira RG, Colombari FM, Amaral JC, Costa AR, Cominetti MR, Plutín AM, de Aguiar D, Vaz BG, Batista AA. Experimental and Theoretical DFT Study of Cu(I)/ N, N-Disubstituted- N'-acylthioureato Anticancer Complexes: Actin Cytoskeleton and Induction of Death by Apoptosis in Triple-Negative Breast Tumor Cells. Inorg Chem 2022; 61:664-677. [PMID: 34928593 DOI: 10.1021/acs.inorgchem.1c03389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six complexes with the general formula [Cu(acylthioureato)(PPh3)2] were synthesized and characterized using spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), mass spectrometry, elemental analysis, and X-ray diffraction. Interpretation of the in vitro cytotoxicity data of Cu(I) complexes took into account their stability in cell culture medium. DFT calculations showed that NMR properties, such as the shielding of carbon atoms, are affected by relativistic effects, supported by the ZORA Hamiltonian in the theoretical calculations. Additionally, the calculation of the energies of the frontier molecular orbitals predicted that the structural changes of the acylthiourea ligands did not cause marked changes in the reactivity descriptors. All complexes were cytotoxic to the evaluated tumor cell lines [MDA-MB-231 (triple-negative breast cancer, TNBC), MCF-7 (breast cancer), and A549 (lung cancer)]. In the MDA-MB-231 cell line, complex 1 significantly altered the cytoskeleton of the cells, reducing the density and promoting the condensation of F-actin filaments. In addition, the compound caused an increase in the percentage of cells in the fragmented DNA region (sub-G0) and induced cell death via the apoptotic pathway starting at the IC50 concentration. Taken together, the results show that complex 1 has cytotoxic and apoptotic effects on TNBC cells, which is a cell line originating from an aggressive, difficult-to-treat breast cancer.
Collapse
Affiliation(s)
- Celisnolia M Leite
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - João Honorato
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | | | - Rafael G Silveira
- Instituto Federal Goiano, Campus Ceres, Ceres, Goiás 76300000, Brazil
| | - Felippe M Colombari
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biorrenováveis, Campinas, São Paulo 13083-970, Brazil
| | - Jéssica C Amaral
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Márcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Ana M Plutín
- Laboratório de Síntesis Orgánica, Facultad de Química, Universidad de La Habana - UH, Habana 10400, Cuba
| | - Debora de Aguiar
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
- Instituto de Química, Universidade Federal de Goiás, Goiania, Goiás 74690900, Brazil
| |
Collapse
|
9
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|
10
|
Ebenezer B, Nagashri K. Synthesis and in vitro biochemical properties, DNA binding and DNA cleavage ability of copper complexes of hydroxyflavone derivatives of novel organosulfur compounds as therapeutic agent. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1159-1197. [PMID: 34612797 DOI: 10.1080/15257770.2021.1985517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Novel and synthetically essential flavonoids compounds containing the organosulfur moiety from Schiff bases, as well as their copper complexes, were synthesized from chrysin and 2-(phenylthio)aniline. These complexes were characterized using elemental analysis, mass spectrometry, electronic absorption spectroscopy, IR, 1H, and 13C NMR spectroscopy techniques. All the Cu(II) complexes exhibit square planar geometry. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae and fungal species, Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola, and Candida albicans by serial dilution method. The DNA binding and DNA cleavage properties of copper complexes were studied. Free radical scavenging, superoxide dismutase, glutathione peroxidase, and antioxidant activities of the copper complexes have also been studied. In addition, using the egg albumin process, the in vitro anti-inflammatory efficacy of metal chelates was examined. Anti-tuberculosis and α-glucosidase inhibition activity were carried out from the prepared metal complexes. The flavonoid compounds containing the organosulfur moiety of Cu(II) complexes (1-8) exhibited better therapeutic agent.
Collapse
Affiliation(s)
- B Ebenezer
- Department of Pharmaceutical Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - K Nagashri
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
11
|
Paul A, Singh P, Kuznetsov ML, Karmakar A, Guedes da Silva MFC, Koch B, Pombeiro AJL. Influence of anchoring moieties on new benzimidazole-based Schiff base copper(II) complexes towards estrogen dependent breast cancer cells. Dalton Trans 2021; 50:3701-3716. [PMID: 33634805 DOI: 10.1039/d0dt03873c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new benzimidazole Schiff base copper(ii) compounds [Cu(5-CH2PPh3-2-salmethylben)(NO3)(H2O)][BF4]·2/3(H2O)·1/3(MeOH) (1) and [Cu(5-CH2NEt3-2-salmethylben)(Cl)][BF4] (2) were synthesised by mixing 2-(1-methyl-1H-benzo[d]imidazol-2-yl)aniline, (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride or N,N-diethyl-N-(3-formyl-4-hydroxybenzyl)ethanaminium chloride and Cu(NO3)2·3H2O or CuCl2·2H2O in the presence of tetrafluoroborate in a binary mixture of MeOH : H2O under refluxing conditions. The structures of the compounds were established by elemental analysis, FT-IR, ESI-MS analytical techniques and, for 1, by single-crystal X-ray diffraction analysis. Absorption and fluorescence spectroscopic methods were performed to evaluate the calf thymus DNA interactions with the compounds. The calculated binding constants (Kb) of 3.14 × 105 M-1 for 1 and 3.20 × 105 M-1 for 2 were established. The intercalative DNA binding mode was also verified by molecular docking studies. Both compounds demonstrated a notable in vitro cytotoxic effect against human A-549 (lung carcinoma), MCF-7 (breast cancer) and HeLa (cervical cancer) cancer cell lines. A substantial repressive effect on the proliferation of MCF-7 cells (breast cancer cells) was observed for compound 1. The mechanism of action for the effective antiproliferative activity of 1 has additionally been confirmed by means of various biological studies such as morphological assessment through AO/EB, detection of apoptotic induction via Hoechst/PI dual staining, flow cytometry for detection of cell cycle arrest, quantitative analysis of apoptotic cells, DNA degradation, generation of reactive oxygen species (ROS) and by apoptotic induction through mitochondrial staining.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Priya Singh
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, U.P., India.
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Biplob Koch
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, U.P., India.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Rodrigues JAO, Oliveira Neto JGD, da Silva de Barros AO, Ayala AP, Santos-Oliveira R, de Menezes AS, de Sousa FF. Copper(II):phenanthroline complexes with l-asparagine and l-methionine: Synthesis, crystal structure and in-vitro cytotoxic effects on prostate, breast and melanoma cancer cells. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Santiago PH, Aiube CM, de Macedo JL, Gatto CC. Hydrazone-derived copper(II) coordination polymer as a selective liquid-phase catalyst: Synthesis, crystal structure and performance towards benzyl alcohol oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Tar H, Kashar TI, Kouki N, Aldawas R, Graff B, Lalevée J. Novel Copper Photoredox Catalysts for Polymerization: An In Situ Synthesis of Metal Nanoparticles. Polymers (Basel) 2020; 12:polym12102293. [PMID: 33036390 PMCID: PMC7599841 DOI: 10.3390/polym12102293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023] Open
Abstract
The copper II complex (HLCuCl) carrying 2,4 dinitrophenylhydrazone (L) is synthesized and evaluated as a new photoredox catalyst/photoinitiator in combination with triethylamine (TEA) and iodonium salt (Iod) for the radical polymerization of ethylene glycol diacrylate during exposure to visible light using a photoreactor at 419 nm. The copper complex reactivity with TEA/Iod salt/gold chloride showed a good production and stability of gold nanoparticles. Finally, the high performance of Cu (II) complex for radical photopolymerization incorporating gold nanoparticles is provided. The photochemical mechanisms for the production of initiating radicals are studied using cyclic voltammetry. Polymer nanocomposites containing gold nanoparticles (Au NPs) in situ photogenerated during the irradiation process were prepared. The formation of Au NPs inside the polymer matrix was through UV-Vis and EDS/SEM analyses.
Collapse
Affiliation(s)
- Haja Tar
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, Buraydah, Qassim 1162 SA, Saudi Arabia; (N.K.); (R.A.)
- Correspondence: ; Tel.: +966-16-30-13490
| | - Tahani I. Kashar
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, Buraydah, Qassim 1162 SA, Saudi Arabia; (N.K.); (R.A.)
| | - Reema Aldawas
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, Buraydah, Qassim 1162 SA, Saudi Arabia; (N.K.); (R.A.)
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA, 15, rue Jean Starcky, 68057 Mulhouse CEDEX, France; (B.G.); (J.L.)
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2M – UMR CNRS 7361 – UHA, 15, rue Jean Starcky, 68057 Mulhouse CEDEX, France; (B.G.); (J.L.)
| |
Collapse
|
15
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
16
|
Santiago PH, Santiago MB, Martins CH, Gatto CC. Copper(II) and zinc(II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
18
|
Aydin A, Korkmaz ŞA. Evaluation of Pharmacological Activity of Heterobimetallic Coordination Compounds Containing N, N-Bis (2-hydroxyethyl)-Ethylenediamine on HT29, HeLa, C6 and Vero cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2011-2027. [PMID: 32184866 PMCID: PMC7059045 DOI: 10.22037/ijpr.2019.1100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was conducted in order to investigate the pharmacological activities of three heterobimetallic coordination compounds: [Cd(N-bishydeten)2][Ni(CN)4] (C1), [Cu2(N-bishydeten)2Co(CN)6].3H2O (C2), and K[Cd(N-bishydeten)Co(CN)6].1.5H2O (C3) (N-bishydeten = N,N-bis(2-hydroxyethyl)-ethylenediamine). This paper describes the ability of complexes to inhibit cell growth, cell migration and human topoisomerase I and to interact with DNA/BSA; this paper also evaluates the potential mechanisms of action exhibited by these compounds via the use of powerful measurement techniques. Studies on HT29, HeLa, C6 and Vero cells revealed that each compound demonstrated significant antiproliferative activity in conjunction with regressed cell migration velocity and caused apoptotic changes in morphology. There are strong data suggesting that the mechanisms of action exhibited by these compounds are associated with their DNA/BSA binding features. The IC50 and binding constant range for the compounds are 20-180 µM and 1.2-3.2 x 104 M-1, respectively. Moreover, we observed that these compounds alter the P53-Bcl-2 ratio and inhibit the relaxation activity of human topoisomerase I. Furthermore, a correlation between the antiproliferative effects of these compounds and their cytotoxic activity was observed. In conclusion, preliminary information demonstrates that these compounds have been found to exhibit effective antiproliferative activity against cancer cell lines, indicating that they are a potent candidate for further pharmacological study.
Collapse
Affiliation(s)
- Ali Aydin
- Faculty of Art and Science, Department of Molecular Biology and Genetics, Gaziosmanpaşa University, 60240, Tokat, Turkey
| | - Şengül Aslan Korkmaz
- Faculty of Engineering, Department of Bioengineering, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
19
|
Ceramella J, Mariconda A, Iacopetta D, Saturnino C, Barbarossa A, Caruso A, Rosano C, Sinicropi MS, Longo P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg Med Chem Lett 2019; 30:126905. [PMID: 31874823 DOI: 10.1016/j.bmcl.2019.126905] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, 16132 Genova, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
20
|
Yu P, Deng J, Cai J, Zhang Z, Zhang J, Hamid Khan M, Liang H, Yang F. Anticancer and biological properties of a Zn-2,6-diacetylpyridine bis(thiosemicarbazone) complex. Metallomics 2019; 11:1372-1386. [PMID: 31267119 DOI: 10.1039/c9mt00124g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, to develop a multi-target anticancer metal agent and achieve a "1 + 1 > 2" pharmaceutical effect, we rationally designed and synthesized five complexes (C1-C5) by synergistically exploiting the properties of Zn(ii) and a series of modified 2,6-diacetylpyridine bis(thiosemicarbazone) ligands. By investigating the structure-activity relationships, we found that the binuclear Zn(ii) complex (C5) acts against human bladder cancer cells (T-24) with significant cytotoxicity. We subsequently determined the multiple anticancer mechanisms of C5 to T-24 cells, including inhibiting the activity of topoisomerase I (Topo I), blocking the cell cycle in the S phase, and inducing apoptosis and autophagy in T-24 cells. Furthermore, C5 inhibited the migration of T-24 cells and showed a significant cytostatic effect in the T-24 3D spheroid model.
Collapse
Affiliation(s)
- Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jungang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jinhua Cai
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, Jiangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Muhammad Hamid Khan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| |
Collapse
|
21
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
22
|
Qi YY, Gan Q, Liu YX, Xiong YH, Mao ZW, Le XY. Two new Cu(II) dipeptide complexes based on 5-methyl-2-(2′-pyridyl)benzimidazole as potential antimicrobial and anticancer drugs: Special exploration of their possible anticancer mechanism. Eur J Med Chem 2018; 154:220-232. [DOI: 10.1016/j.ejmech.2018.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
|
23
|
Vieira AP, Wegermann CA, Da Costa Ferreira AM. Comparative studies of Schiff base-copper(ii) and zinc(ii) complexes regarding their DNA binding ability and cytotoxicity against sarcoma cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj04799a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schiff base-copper(ii) and zinc(ii) complexes were prepared and characterized, and their binding ability to DNA and cytotoxicity against healthy and carcinogenic cells were studied.
Collapse
Affiliation(s)
- Adriana Pires Vieira
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Camila Anchau Wegermann
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | |
Collapse
|
24
|
|
25
|
de Almeida SMV, Ribeiro AG, de Lima Silva GC, Ferreira Alves JE, Beltrão EIC, de Oliveira JF, de Carvalho LB, Alves de Lima MDC. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017; 96:1538-1556. [DOI: 10.1016/j.biopha.2017.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
|
26
|
Sinniah SK, Sim KS, Ng SW, Tan KW. Structural and cytotoxic studies of cationic thiosemicarbazones. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Acilan C, Cevatemre B, Adiguzel Z, Karakas D, Ulukaya E, Ribeiro N, Correia I, Pessoa JC. Synthesis, biological characterization and evaluation of molecular mechanisms of novel copper complexes as anticancer agents. Biochim Biophys Acta Gen Subj 2017; 1861:218-234. [DOI: 10.1016/j.bbagen.2016.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
|
28
|
Xu J, Zhou T, Xu ZQ, Gu XN, Wu WN, Chen H, Wang Y, Jia L, Zhu TF, Chen RH. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Zhang Y, Yang T, Zheng BY, Liu MY, Xing N. Synthesis, crystal structures of oxovanadium(V) complexes with hydrazone ligands and their catalytic performance for the styrene oxidation. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.09.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Lee SK, Tan KW, Ng SW. Topoisomerase I inhibition and DNA cleavage by zinc, copper, and nickel derivatives of 2-[2-bromoethyliminomethyl]-4-[ethoxymethyl]phenol complexes exhibiting anti-proliferation and anti-metastasis activity. J Inorg Biochem 2016; 159:14-21. [DOI: 10.1016/j.jinorgbio.2016.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
|
32
|
Yousef Ebrahimipour S, Sheikhshoaie I, Simpson J, Ebrahimnejad H, Dusek M, Kharazmi N, Eigner V. Antimicrobial activity of aroylhydrazone-based oxido vanadium(v) complexes: in vitro and in silico studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj02594j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of oxido vanadium(v) complexes have been synthesized and evaluated from the point of experimental and theoretical antimicrobial activity.
Collapse
Affiliation(s)
| | - Iran Sheikhshoaie
- Department of Chemistry
- Faculty of Science
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - Jim Simpson
- Department of Chemistry
- University of Otago
- Dunedin 9054
- New Zealand
| | - Hadi Ebrahimnejad
- Department of Veterinary Medicine
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | | | - Nima Kharazmi
- Department of Chemistry
- Faculty of Science
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | | |
Collapse
|
33
|
Tiago FS, Santiago PH, Amaral MM, Martins JB, Gatto CC. New Cu(II) complex with acetylpyridine benzoyl hydrazone: experimental and theoretical analysis. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1105367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fernanda S. Tiago
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Pedro H.O. Santiago
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Marília M.P. Amaral
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - João B.L. Martins
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| |
Collapse
|
34
|
León IE, Cadavid-Vargas JF, Tiscornia I, Porro V, Castelli S, Katkar P, Desideri A, Bollati-Fogolin M, Etcheverry SB. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model. J Biol Inorg Chem 2015; 20:1175-91. [PMID: 26404080 DOI: 10.1007/s00775-015-1298-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.
Collapse
Affiliation(s)
- I E León
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - J F Cadavid-Vargas
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - I Tiscornia
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - V Porro
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S Castelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - P Katkar
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Desideri
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - M Bollati-Fogolin
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S B Etcheverry
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina. .,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
35
|
Ebrahimipour SY, Sheikhshoaie I, Mohamadi M, Suarez S, Baggio R, Khaleghi M, Torkzadeh-Mahani M, Mostafavi A. Synthesis, characterization, X-ray crystal structure, DFT calculation, DNA binding, and antimicrobial assays of two new mixed-ligand copper(II) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 142:410-422. [PMID: 25725448 DOI: 10.1016/j.saa.2015.01.088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Two new Cu(II) complexes, [Cu(L)(phen)] (1), [Cu(L)(bipy)] (2), where L(2-)=(3-methoxy-2oxidobenzylidene)benzohydrazidato, phen=1,10 phenanthroline, and bipy=2,2' bipyridine, were prepared and fully characterized using elemental analyses, FT-IR, molar conductivity, and electronic spectra. The structures of both complexes were also determined by X-ray diffraction. It was found that, both complexes possessed square pyramidal coordination environment in which, Cu(II) ions were coordinated by donor atoms of HL and two nitrogens of heterocyclic bases. Computational studies were performed using DFT calculations at B3LYP/6-311+G(d,p) level of theory. DNA binding activities of these complexes were also investigated using electronic absorption, competitive fluorescence titration and cyclic voltammetry studies. The obtained results indicated that binding of the complexes to DNA was of intercalative mode. Furthermore, antimicrobial activities of these compounds were screened against microorganisms.
Collapse
Affiliation(s)
- S Yousef Ebrahimipour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Mohamadi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Chemistry, Payame Noor University (PNU), 19395-4697 Tehran, Iran
| | - Sebastian Suarez
- Departamento de Química Inorgínica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Moj Khaleghi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Science, Graduate University of Advance Technology, Kerman, Iran
| | - Ali Mostafavi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
36
|
Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez E, Havel J. Coordination compounds in cancer: Past, present and perspectives. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
37
|
Qu D, Niu F, Zhao X, Yan KX, Ye YT, Wang J, Zhang M, You Z. Synthesis, crystal structures, and urease inhibition of an acetohydroxamate-coordinated oxovanadium(V) complex derived from N′-(3-bromo-2-hydroxybenzylidene)-4-methoxybenzohydrazide. Bioorg Med Chem 2015; 23:1944-9. [DOI: 10.1016/j.bmc.2015.03.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022]
|
38
|
Ramakrishnan A, Chourasiya SS, Bharatam PV. Azine or hydrazone? The dilemma in amidinohydrazones. RSC Adv 2015. [DOI: 10.1039/c5ra05574a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Amidinohydrazone, an important class of biologically active molecules, is generally represented as a hydrazone. This moiety prefers to exist in its azine tautomeric state and hence, influences the physical, chemical and receptor binding properties.
Collapse
Affiliation(s)
- Ashok Ramakrishnan
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| | - Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| |
Collapse
|
39
|
Fitzpatrick AJ, O'Connor HM, Morgan GG. A room temperature spin crossover ionic liquid. Dalton Trans 2015; 44:20839-42. [DOI: 10.1039/c5dt04264j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new paramagnetic ionic liquids (ILs) comprising a mononuclear iron(iii) or manganese(iii) complex cation, charge balanced by a dicyanamide anion are reported which show a range of spin states including spin crossover.
Collapse
|
40
|
Ma T, Xu J, Wang Y, Yu H, Yang Y, Liu Y, Ding W, Zhu W, Chen R, Ge Z, Tan Y, Jia L, Zhu T. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties. J Inorg Biochem 2014; 144:38-46. [PMID: 25555321 DOI: 10.1016/j.jinorgbio.2014.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
Abstract
Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells.
Collapse
Affiliation(s)
- Tieliang Ma
- Central Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu Province, China
| | - Jun Xu
- Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan Province, China
| | - Yuan Wang
- Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan Province, China.
| | - Hao Yu
- Department of Breast Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yong Yang
- Department of Brain Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yang Liu
- Department of Respiratory, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Weiliang Ding
- Central Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu Province, China
| | - Wenjiao Zhu
- Central Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu Province, China
| | - Ruhua Chen
- Department of Respiratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu Province, China
| | - Zhijun Ge
- Department of Critical Care Medicine, the Affiliated Yixing Hospital of Jiangsu University, Yixing City, Jiangsu Province, China
| | - Yongfei Tan
- Department of Cardiac & Thoracic Surgery, the Affiliated Yixing Hospital of Jiangsu University, Yixing City, Jiangsu Province, China
| | - Lei Jia
- Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan Province, China.
| | - Taofeng Zhu
- Department of Respiratory, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
41
|
Chew ST, Lo KM, Sinniah SK, Sim KS, Tan KW. Synthesis, characterization and biological evaluation of cationic hydrazone copper complexes with diverse diimine co-ligands. RSC Adv 2014. [DOI: 10.1039/c4ra11716f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Win YF, Choong CS, Dang JC, Iqbal MA, Quah CK, Majid AMSA, Teoh SG. Polymeric seven-coordinated organotin(IV) complexes derived from 5-amino-2-chlorobenzoic acid and in vitro anti-cancer studies. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.963571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yip-Foo Win
- Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Chen-Shang Choong
- Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Jia-Chin Dang
- Faculty of Science, Department of Chemical Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | | | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Pulau Penang, Malaysia
| | - Amin Malik Shaw Abdul Majid
- Eman Testing and Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Penang, Malaysia
| | - Siang-Guan Teoh
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Penang, Malaysia
| |
Collapse
|
43
|
A new mixed-ligand copper(II) complex of (E)-N′-(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Lee SK, Tan KW, Ng SW. Zinc, copper and nickel derivatives of 2-[2-bromoethyliminomethyl]phenol as topoisomerase inhibitors exhibiting anti-proliferative and anti-metastatic properties. RSC Adv 2014. [DOI: 10.1039/c4ra09256b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transition metal (Zn, Cu and Ni) derivatives of (2-[2-bromoethyliminomethyl]phenol), were found to inhibit topoisomerase I activity, induce DNA cleavage and bind to calf thymus DNA. The compounds are also cytotoxic and anti-invasive against PC3.
Collapse
Affiliation(s)
- Sze Koon Lee
- Department of Chemistry
- University of Malaya
- Kuala Lumpur, Malaysia
| | - Kong Wai Tan
- Department of Chemistry
- University of Malaya
- Kuala Lumpur, Malaysia
| | - Seik Weng Ng
- Department of Chemistry
- University of Malaya
- Kuala Lumpur, Malaysia
- Chemistry Department
- Faculty of Science
| |
Collapse
|